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Abstract

The preferred chemisorption sites on a variety of palladium-iridium nanoalloys are determined for benzene and hydrogen
molecules. Available sites on the surface of the nanoalloys are explored using a random-search method, directly at the density
functional level of theory. These searches successfully reveal the site preference for benzene and significant nanosize effects in
the chemisorption of hydrogen. It is hoped that through the study of the chemisorption properties of Pd-Ir nanoalloys, complex
catalytic processes, such as tetralin hydroconversion and the preferential oxidation of CO, can be better understood.
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1. Introduction

Nanoalloys (NAs) are a class of nanomaterials composed of
two or more metallic elements. These include nanoparticles
(NPs), 2D-like structures, such as nanogrids and sheets, and
1D-like structures, such as nanowires and nanotubes.[1] The
combination of metals in a NP results in properties which are
dependent not only on size and shape,[2] but also on the compo-
sition and chemical ordering.[3] The presence of two or more
metals introduces homotops, isomers differing in only the or-
dering of elements.[4]

Palladium-iridium is a strongly demixing alloy system[5, 6,
7]. This is reflected in the structural characteristics of the cor-
responding nanoalloys.[8, 9] Pd-Ir nanoalloys have been in-
vestigated previously for application in a number of catalytic
processes,[10, 11, 12, 13, 14, 15, 16] including tetralin hydro-
conversion through selective ring opening,[14] a process which
is key to understanding how to reduce particulate emissions
from diesel fuel. Here it was hoped the catalytic properties of
each metal would be combined in the nanoalloy catalyst. Ir
has been shown to be active in C-C bond hydrogenolysis.[17]
Pd shows improved hydrogen activation and thioresistance over
other noble metal catalysts. Through alloying, depending on the
relative proportions of metals, increased activity and selectivity
can be obtained.

Understanding the role of hydrogen in tetralin hydroconver-
sion and other reactions, such as the preferential oxidation of
CO (PROX), is vital.[15, 16] Bulk Pd is the only metal at ambi-
ent temperature and hydrogen pressure to form a hydride.[18,
19] Nanosize effects on the Pd-H system have been widely
studied.[19, 20] Nanosize Pd exhibits an increased hydrogen

∗r.l.johnston@bham.ac.uk

absorption rate and decreased adsorption capacity.[21, 22] Re-
cently, the interaction of hydrogen with Pd, Ir and Pd-Ir was
probed, with nanosized-induced hydrogen absorption being re-
ported for Ir.[23, 16] The sorption (adsorption+absorption) ca-
pacity of Pd-Ir nanoalloys was found to be strongly reduced
compared with the pure NPs.[16] Furthermore, the addition of
Ir to Pd inhibits the formation of Pd hydride. This is thought
to be beneficial to the activity of Pd-Ir as a catalyst since the
hydride is unselective in PROX.

Theoretical studies of the interaction of molecular hydrogen
with nanoalloys are limited. Pd, Pt and Pd-Pt nanoparticles
(NPs) have been investigated previously using density func-
tional theory (DFT).[24, 25] Kozlov and co-workers investi-
gated the differences between the adsorption and absorption of
hydrogen atoms on Pd and Pt NPs.[25] The work was found to
be in agreement with previous studies suggesting that hydrogen
dissociatively adsorbs in the subsurface of Pd.

A study of the interactions between benzene and hydrogen
molecules with a range of Pd-Ir nanoalloys is presented here.
The nanoalloy structures are truncated octahedra (TOs), whose
chemical ordering has been predicted using the Free-Energy
Concentration Expansion Method with coordination-dependent
bond energy variations (FCEM/CBEV).[8] The FCEM/CBEV
lowest energy TO homotops for Pd4Ir34, Pd8Ir30 and Pd20Ir18,
are studied alongside monometallic Pd38 and Ir38. Although for
38-atoms the TO is almost certainly not the global minimum,
it is representative of the TO structures seen for larger Pd-Ir
particles.[14]

2. Methodology

2.1. DFT
Gamma-point, spin-polarised DFT calculations were per-

formed using VASP.[26, 27, 28, 29, 30] Projected-augmented
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wave pseudopotentials were used with the PBEsol exchange
correlation functional.[31, 32] A plane-wave basis set with a
cut-off of 400 eV was used. Methfessel-Paxton smearing,
with a sigma value of 0.01 eV, was used to improve metallic
convergence.[33]

2.2. Search Method

To determine the site preferences for both benzene and hy-
drogen, a DFT-based random search method was utilised, anal-
ogous to the ab initio random search (AIRS) approach of
Pickard et al.[34] To begin a search an initial configuration of
the ligand-cluster system was generated by placing a single lig-
and molecule tangential to a locally minimised cluster. The ran-
dom search then consisted of a fixed numbers of steps. A step
in the search combined a random rotation move with a local
minimisation at the DFT level.

The random rotation was performed on the cluster whilst
keeping the position of the ligand molecule fixed. After each
selective rotation a local minimisation was performed using
VASP. These calculations were performed at 0 K and, there-
fore, no atom diffusion occurred. This methodology was able
to sample comprehensively the available adsorption sites on the
surface of the cluster.

2.3. Energetics

The adsorption energy, Eads for each cluster was defined as
the difference between the energy of the cluster with adsorbate,
Ecluster+ligand, and the sum of the energies of the bare cluster,
Ecluster and gas-phase ligand, Eligand, as shown in equation 1.

Eads = Ecluster+ligand −
(
Ecluster + Eligand

)
(1)

3. Results

3.1. Benzene

The Pd-Ir FCEM/CBEV TO homotop structures used in
the searches are shown in Figure 1. Each clearly shows Pd
segregating to the surface of the cluster, giving a variety of
mono- and bimetallic adsorption sites. The segregation of Pd
is favoured by the lower surface energy of Pd compared to Ir.

For each composition, local minimisations were carried out
on 50 random chemisorption sites. The adsorption energies of
the most favourable sites are given in Table 1. The lowest en-
ergy structures are given in Figure 2. Benzene was found to
chemisorb most favourably to Ir and Ir-rich clusters, with Eads

of around -4.5 eV. This interaction diminishes as the proportion
of Pd is increased.

The graph in Figure 3 shows the ordered chemisorption en-
ergies from each random search. The plot gives an indication
as to how many inequivalent sites have been explored for each
composition. Several steps taken for Pd4Ir34 and Pd8Ir30 pro-
duce non-interacting structures, shown by Eads values around
0 eV. In some cases energetically equivalent minima are sam-
pled multiple times producing steps on the plots. This is shown
by the Ir38 plot, which exhibits eight clearly inequivalent steps.
Many of the smaller differences seen for the other compositions

Figure 1: Top views of the FCEM/CBEV lowest energy homotop structures for
Pd4Ir34, Pd8Ir30 and Pd20Ir18 shown from left to right. Ir and Pd are shown in
gold and silver, respectively.

Ir38 Pd4Ir34 Pd8Ir30

Pd20Ir18 Pd38

Figure 2: Lowest energy benzene chemisorption site for each composition. Pd,
Ir, C and H are shown in silver, gold, black and pink, respectively.
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Figure 3: Adsorption energies for the 50 random steps taken for each nanoalloy
composition in the presence of benzenes. Energies are ordered from lowest to
highest.

may arise from the greater orientational flexibility of the ben-
zene molecule.

The lowest energy site found for Pd38 and Ir38 was the (100)
face of the TO. For Pd4Ir34 and Pd20Ir18 the lowest energy site
was the Ir (100) face of the cluster. The lowest energy site found
on Pd8Ir30 was a bimetallic (100) face but on closer inspection,
the monometallic Ir (100) face had not been explored by the
random search. A local minimisation was carried out with ben-
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zene placed at the (100) site. This was found to be the new
lowest energy site.

These results compare favourably with those from previous
studies of benzene adsorption on bulk metal surfaces. The
adsorption energies reported for the Ir(100) and Pd(100) sur-
faces are -2.88 eV and -2.03 eV, respectively.[35, 36] These are
considerably larger (in absolute values) than the corresponding
(111) values and explain the preference for the (100) site on the
TO.[37] The Eads reported for the NA clusters are considerably
larger than those values reported for the bulk metal surfaces.
This suggests a significant nanosize effect, especially in case of
the pure Ir and Ir-rich clusters.

After adsorption, significant strain can be seen in the benzene
molecule. Figure 4 shows benzene chemisorbed onto Pd20Ir18.
The benzene structure is distorted with C-H bonds clearly bent
away from the cluster. The amount of strain a NA can introduce
into a benzene molecule could be related to its catalytic activity
in the ring opening of cyclic hydrocarbons.

Table 1: The average C-C bond lengths, RC−C, and adsorption energies, Eads
for benzene on the Pd, Ir and Pd-Ir clusters.

Composition RC−C / Å Eads / eV
Ir38 1.46 -4.44

Pd4Ir34 1.46 -4.50
Pd8Ir30 1.46 -4.44
Pd20Ir18 1.46 -3.87

Pd38 1.41 -2.66

Figure 4: Top and side views of the lowest energy chemisorption site for ben-
zene on Pd20Ir18.

3.2. Hydrogen
For each composition, local minimisations were carried out

on 50 random chemisorption sites. The chemisorption energies
and structures of the most favourable sites are given in Table 2
and figure 5.

For Pd38 molecular hydrogen is found to chemisorb non-
dissociatively at a large number of sites on the cluster. This dif-
fers from Ir38 where for each site explored hydrogen is found to
dissociate upon chemisorption. On the mixed clusters, the num-
ber of dissociated hydrogen molecules was found to increase as
the Ir content of the cluster increased (Table 2).

The lowest energy site for each composition is found to be
one in which the hydrogen molecule has dissociated. For the

Table 2: The total number of dissociated hydrogen molecules, Ndiss, and lowest
adsorption energy, Eads, from 50 random search steps for hydrogen on the Pd,
Ir and Pd-Ir clusters.

Composition Ndiss Eads / eV
Ir38 50 -1.98

Pd4Ir34 50 -1.94
Pd8Ir30 44 -1.95
Pd20Ir18 42 -1.64

Pd38 28 -1.46

Ir and Pd-Ir clusters each hydrogen atom is chemisorbed to an
edge site of a (100) face. For Pd38 each hydrogen is found to
chemisorb to a fcc site on a (111) face. These results correlate
well with those from a previous DFT study of the bulk metal
surfaces.[38] Hydrogen was found to favour the bridge sites on
the Ir(100) surface, equivalent to the edge sites on the cluster.
On Pd the fcc sites on the (111) surface were preferred, equiva-
lent to fcc sites on the (111) face of the TO.

The difference in Eads for a hydrogen atom on the Ir(100)
bridge and Ir(111) fcc sites was reported as 0.3 eV. This cor-
relates with the preference for hydrogen to chemisorb to the
(100) edge sites of the Ir and Ir-rich clusters. Pd shows the op-
posite order with a difference in Eads for the Pd(100) four-fold
and Pd(111) fcc sites of -0.7 eV. This again correlates with the
hydrogen’s preference for the (111) fcc sites on the Pd TO.

Ir38 Pd4Ir34 Pd8Ir30

Pd20Ir18 Pd38

Figure 5: Lowest energy hydrogen chemisorption site for all compositions, each
with dissociated hydrogen shown in pink.

4. Conclusions

In real world catalytic processes Pd-Ir NAs are exposed to
multiple reactants. Understanding the chemisorption properties
of Pd, Ir and Pd-Ir clusters can aid in the full description of
their catalytic properties in these complex environments. It is
thought that the combination of Pd and Ir promotes PROX cat-
alytic performance by preventing poisoning through hydrogen
sorption.

3
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In this study, significant nanosize effects are seen in the ad-
sorption of hydrogen. Hydrogen is found to dissociate and
chemisorb most strongly on pure Ir and Ir-rich clusters. On Pd
and Pd-rich clusters hydrogen is often found to chemisorb asso-
ciatively. The effect of composition on chemisorption is more
pronounced for hydrogen than for benzene, with a greater vari-
ety of energies and differing site preferences for pure hydrogen
adsorption on Pd and Ir.

The strongly segregating Pd-Ir clusters display a wide variety
of sites on their surfaces. In tetralin hydroconversion in the
presence of H2S, it could be the case that iridium provides the
strongest chemisorption sites for the aromatic ring, whilst the
presence of Pd helps to prevent the poisoning of the catalyst
because of its weaker interaction with sulphur.[39]

Future studies will include the development of automatic
search techniques for the global optimisation of NAs in the
presence of ligands. Theoretical work could be extended to
the benzene+hydrogen reaction. It is hoped that this and fu-
ture work can be used to aid in the explanation of experimental
work on the Pd-Ir system.

The nanosize effects seen in Pd and Ir clusters will be further
investigated. Studies will include calculating the energy bar-
riers to hydrogen dissociation and investigating the adsorption
properties of the bulk materials and clusters of a greater variety
of size, shape and composition.
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[13] Y. M. López-De Jesús, C. E. Johnson, J. R. Monnier, C. T. Williams,
Selective Hydrogenation of Benzonitrile by Alumina-Supported Ir-
Pd Catalysts, Topics in Catalysis 53 (15-18) (2010) 1132–1137.
doi:10.1007/s11244-010-9546-0.
URL http://www.springerlink.com/index/10.1007/s11244-010-9546-0

[14] L. Piccolo, S. Nassreddine, M. Aouine, C. Ulhaq, C. Geantet, Supported
Ir-Pd Nanoalloys: Size-Composition Correlation and Consequences on
Tetralin Hydroconversion Properties, Journal of Catalysis 292 (2012)
173–180. doi:10.1016/j.jcat.2012.05.010.
URL http://linkinghub.elsevier.com/retrieve/pii/S0021951712001509

[15] F. Morfin, S. Nassreddine, J. L. Rousset, L. Piccolo, Nanoalloying Effect
in the Preferential Oxidation of CO over Ir-Pd Catalysts, ACS Catalysis
2 (10) (2012) 2161–2168. doi:10.1021/cs3003325.
URL http://pubs.acs.org/doi/abs/10.1021/cs3003325

[16] C. Zlotea, F. Morfin, T. S. Nguyen, N. T. Nguyen, J. Nelayah, C. Ricol-
leau, M. Latroche, L. Piccolo, Nanoalloying bulk-immiscible iridium
and palladium inhibits hydride formation and promotes catalytic perfor-
mances, Nanoscale 6 (2014) 9955–9959. doi:10.1039/C4NR02836H.
URL http://pubs.rsc.org/en/content/articlepdf/2014/nr/c4nr02836h

http://pubs.rsc.org/en/content/articlehtml/2014/nr/c4nr02836h

[17] L. Piccolo, S. Nassreddine, G. Toussaint, C. Geantet, Mechanism of
Tetralin Ring Opening and Contraction over Bifunctional Ir/SiO2-Al2O3
Catalysts, ChemSusChem 5 (9) (2012) 1717–1723.

[18] D. N. Jewett, A. C. Makrides, Diffusion of hydrogen through palladium
and palladium-silver alloys (1965). doi:10.1039/tf9656100932.
URL http://xlink.rsc.org/?DOI=tf9656100932

[19] T. B. Flanagan, W. A. Oates, The Palladium-Hydrogen System, Annual
Review of Materials Research 21 (1991) 269–304.

[20] A. Pundt, R. Kirchheim, HYDROGEN IN METALS: Microstructural
Aspects, Annual Review of Materials Research 36 (1) (2006) 555–608.
doi:10.1146/annurev.matsci.36.090804.094451.
URL http://www.annualreviews.org/doi/abs/10.1146/annurev.matsci.36.090804.094451

[21] C. Langhammer, V. P. Zhdanov, I. Zorić, B. Kasemo, Size-
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•  
• A random search at the density functional level of theory is used to determine the 

site preference for the adsorption of benzene and hydrogen on a variety of 
Pd-Ir nanoalloys.  

• Significant nanosize effects are seen in the chemisorption of hydrogen. 
• The site preferences for both benzene and hydrogen are found to correlate with 

their preference on the analogous bulk surfaces. 
 
 




