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Abstract: Time-series features are the characteristics of data periodically collected over time. The
calculation of time-series features helps in understanding the underlying patterns and structure
of the data, as well as in visualizing the data. The manual calculation and selection of time-series
feature from a large temporal dataset are time-consuming. It requires researchers to consider several
signal-processing algorithms and time-series analysis methods to identify and extract meaningful
features from the given time-series data. These features are the core of a machine learning-based
predictive model and are designed to describe the informative characteristics of the time-series
signal. For accurate stress monitoring, it is essential that these features are not only informative
but also well-distinguishable and interpretable by the classification models. Recently, a lot of work
has been carried out on automating the extraction and selection of times-series features. In this
paper, a correlation-based time-series feature selection algorithm is proposed and evaluated on the
stress-predict dataset. The algorithm calculates a list of 1578 features of heart rate and respiratory rate
signals (combined) using the tsfresh library. These features are then shortlisted to the more specific
time-series features using Principal Component Analysis (PCA) and Pearson, Kendall, and Spearman
correlation ranking techniques. A comparative study of conventional statistical features (like, mean,
standard deviation, median, and mean absolute deviation) versus correlation-based selected features
is performed using linear (logistic regression), ensemble (random forest), and clustering (k-nearest
neighbours) predictive models. The correlation-based selected features achieved higher classification
performance with an accuracy of 98.6% as compared to the conventional statistical feature’s 67.4%.
The outcome of the proposed study suggests that it is vital to have better analytical features rather
than conventional statistical features for accurate stress classification.

Keywords: time-series; distinctive features; respiratory rate; heart rate; feature engineering;
stress; classification

1. Introduction

In recent years, sensor technologies have been significantly developed to help generate
large data at a relatively low cost [1]. The fields of the Internet of Things (IoT) [2], precision
medicine [3], and industry 4.0 [4] produce advanced, large temporally annotated data.
The analysis of this large temporal data, as it is, is a dilemma for researchers and data
scientists. Thus, it encourages the reduction of large time-series data into smaller series
and captures ample characteristics of primary data to improve the analysis. The resulting
time series is the basis of machine learning applications, such as analysis of heartbeat [5]
and respiratory rate [6], identification of high-risk patients who are at increased risk of
infection [7], optimization of a production line [8], or incident detection over cloud [9]. The
reduction of large data to feature-based representation is crucial, as the implementation of
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the machine learning algorithm is straightforward, but the selection of well-discriminating
features is a challenging task [10].

Time-series data are a sequence of measurements/observations sequentially taken in
time [11]. In the context of stress, time-series data are referred to as a collection of data
points over a period that measures the psychological or physiological responses of an
individual to any applied stressor. These data points are collected at regular intervals (per
second, per minute, or hour) and include measurements of respiratory rate, heart rate,
cortisol levels, blood pressure, or a self-reporting stress level. The time-series data are
analysed to understand the stress patterns over time, which provides better insights into
how an individual’s stress levels change in response to different stressors and interventions.
The learnings can be then used to develop algorithms or classification models to predict
individuals’ stress conditions based on their response to stress.

Considering T as a set of time-series data, where T = {Fi}n
i=1. To use T set as an

input to supervised or unsupervised classification algorithms, each time-series Fi must be

mapped to a well-defined feature vector with X dimensions (
→
Fi = (Fi,1, Fi,2, . . . , Fi,X)) [12].

The most efficient and effective way of feature extraction is to characterize the time-series
data into a distribution of data, stationarity, correlation properties, entropy, and non-linear
time-series analysis [13–16]. The extraction of only significant features is vital for both
regression and classification tasks, as the irrelevant features will weaken the algorithm’s
ability to generalize beyond the training set and causes overfitting [17].

Stress can be defined as a disturbance in the homeostatic balance of the body. Ac-
tivation of the stress response triggers the sympathetic nervous system and inhibition
of the parasympathetic system, which causes the release of stress hormones. These hor-
mones change the heart rate, blood supply to muscles, and respiratory rate and increase
cognitive activities to cope with stressors. These stress-specific responses are commonly
used to quantitively assess or monitor stress [18–21]. The statistical analysis of different
physiological parameters including muscle activation, skin conductance, skin temperature,
brain signals, respiratory rate, heart rate, and their variations, and classification analysis
leading to shortlisting of respiratory rate and heart rate was illustrated in [22] and also
used by [23,24].

1.1. Related Work

Many existing stress classification studies have used trivial feature extraction and
selection methods. These studies use either raw data (data collected through the sen-
sors) [25,26] or common features of the collected data [27–29], such as rate of change, mean,
standard deviation, variance, mean absolute deviation, and skewness. This set of features
does not fully describe the characteristics of the dataset and is also unable to be generalised
to another time-series dataset. This is because the underlying patterns and characteristics
of a particular dataset are specific to itself and cannot be applied to another dataset. Fur-
thermore, the abovementioned features are also affected by the conditions under which
data are collected and the pre-processing steps performed on them.

Christ et al. [12] proposed tsfresh, a machine-learning time-series feature extraction
library that has been used in several studies. The library uses a method called AutoTS
(Automatic Time-Series Feature Extraction) and is based on some pre-defined feature es-
timation algorithms. It estimates the trends, seasonality, periodicity, and volatility of the
time-series data and applies the feature selection method to select the most relevant features
for further modelling or analysis. Several studies have used the tsfresh library for feature
engineering. Ouyang et al. [30] used the tsfresh feature extraction library to detect anoma-
lous power consumption by users. They extracted 794 features that were used as input to
the supervised binary classification (to detect abnormalities). However, the authors did
not perform any feature selection, which makes their approach computationally expensive
and not feasible to be implemented in real-time. Zhang et al. [31] proposed unsupervised
anomaly detection using DBSCAN and feature engineering. The authors used the tsfresh
library in their feature engineering process. They performed features selected based on
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Maximum-Relevance Minimum-redundancy and variance technique along with Maximal
Information Coefficient. However, the proposed approach works best with historical data
(as the calculation of relevance, redundancy, and information coefficients is performed
on complete data) and cannot be applied to real-world or streaming data. In the field of
healthcare, Liu et al. [32] recommended a solution for the classification of flawed sensors
using tsfresh feature extraction and selection. The algorithm automatically calculated
and selected features using univariate hypothesis tests with a controlled false discovery
rate [33]. The selected features were fed into a Long-Short-Term Memory (LSTM) model
for classification. However, the extracted features were still over hundreds of features.

Thus, further research is required to obtain a well-generalizable feature engineering
algorithm that can calculate and provide well-distinguishable features from large time-
series data for an accurate and efficient classification (monitoring) system.

1.2. Motivation and Contribution

For extremely large data, the current automated feature estimation algorithms are
not able to capture sufficient valuable information about the feature dynamics [34]. The
research aims of this study are to implement and explore the efficacy of the heart rate and
respiratory rate signal-based (time-series) features extraction algorithm for accurate stress
classification, using a stress-predict dataset [35]. The study also determines the best (well-
distinguishable) time-series feature from respiratory and heart rate signals for accurate
stress monitoring. The algorithm calculates several time-series features using the tsfresh
library and then performs anomaly detection (leading to feature reduction) using principal
component analysis (PCA) and correlation co-efficient analysis (Pearson, Spearman, and
Kendall) to shortlist the most discriminative features.

For validation of the proposed method, a combination of different extracted features
is fed into supervised linear, ensemble, and clustering classifiers. The proposed method of
time-series features estimation/extraction and feature selection, due to its fast computa-
tion and selection of well-distinguishable stress features, can potentially be deployed on
photoplethysmography (PPG) sensor-based watches and can detect the anomalies (stress)
in real-time.

The rest of the paper is organised as follows. Section 2 discusses the stress-predict
dataset and methods implemented for time-series features extraction and selection;
Section 3 reports the detailed analysis and results of supervised machine learning classi-
fication and provides discussion around the results; Section 4 concludes the paper and
provides future direction towards the development of the reliable stress-monitoring device.

2. Material and Methods
2.1. Stress-Predict Dataset

The stress-predict dataset consisted of a BVP signal, inter-beat-intervals, heart rate,
respiratory rate, and accelerometer data collected from 35 healthy volunteers who per-
formed three stress-inducing tasks (i.e., Stroop colour word test, an interview session, and
hyperventilation period) with baseline/normal period. Empatica E4 was used to collect
all the information, while the overall study lasted for 60 min per participant [35]. A brief
introduction to the dataset is presented as follows.

The study was designed to be a cross-sectional study that collected data on exposure
and outcomes in a short time window, in a controlled laboratory setting. The study aimed
to understand the behaviour, attitudes, and prevalence to estimate health needs.

2.1.1. Study Methodology and Protocol

The study took 60 min per participant and was completely non-invasive. The protocol
followed is illustrated in Figure 1, while Table 1 enlists the inclusion and exclusion criteria
for the study. The data were only collected from healthy volunteers, who could quickly
recover from the stress state induced by the questionnaire. The age bracket selected for
the volunteers was 18 to 75 years old. Furthermore, the volunteers needed to be able to
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speak English (as all communication and consent forms were in English) and agreed (gave
consent) to participate in the study. The exclusion criteria included people who did not
consent to participate, unhealthy individuals (as stress might lead them to any acute event),
breastfeeding mothers and pregnant women (as stress might harm them and/or their child),
and colour-blind people (as one of the stressors was a Colour-Word Stroop test, where the
colour name is selected based on the colour seen on the screen).
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Figure 1. The study protocol of the stress monitoring study included three stress-inducing
tasks/sessions, two self-reporting questionnaires sessions, and in-between rest sessions.

Table 1. Selection criteria.

Inclusion Criteria Exclusion Criteria

Healthy individuals with no underlying condition Do not consent to participate

Age between 18 and 75 years Unhealthy individuals

Able to read and speak English Breastfeeding mothers and pregnant women

Gave consent Colour-blind individuals

The protocol and clinical study were approved by the Clinical Research Ethics Com-
mittee, Merlin Park Hospital, Galway, Ireland, as: “Stress levels monitoring using sensor-
derived signals from non-invasive wearable devices and dataset development (Ref: C.A.
2731)”. For sample size calculation, authors followed sensitivity analysis outcomes reported
in [22]. The data from all the participants were collected in the daytime (the precise time
for data collection was chosen by the participants). Moreover, participants arriving at the
study site were asked to sit and relax for 5 min to bring their heart rate and respiratory rate
to normal levels.

2.1.2. Data Acquisition

The study used an Empatica E4 wrist-worn watch to measure physiological changes
based on the PPG signal. Labelling of the data was performed by using tags generated by
pressing the button on the watch at the start and end of each task.

The data sheet of the stress-predict dataset illustrates that the data were gathered
from 10 males (average age: 31 ± 5.8 years) and 25 females (average age: 33 ± 10.7 years).
The majority of the subjects for the data collection were females. One of the reasons for
this is that future studies will be based on evaluating the proposed algorithm for breast
cancer patients. As breast cancer is mostly a prevalent disease among females, therefore,
the majority of the subjects for data collection were females.

Table 2 summarizes the number of data entries per participant for each signal recorded.
The total recording time reported was approximately around 50 min. The heart rate and
respiratory rate signals were generated using 10 s windows (averaged over 10 s) with a
window step (slide) of 1 s. Figure 2 shows the number of participants who reported higher
stress levels during the study based on respiratory and heart rate signal gradients. The
analysis of inter- and intra-personal variability within the data is provided in [35]. The
population-based analysis using a linear mixer model showed that participants experienced
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a 5.05 bpm higher change in HR per hour compared to during a normal state (95% CI 4.36,
5.74 bpm/hour; p < 0.001). For respiratory rate, the participants experienced a decrease in
breathing rate by 1.11 breaths per minute, a change in respiratory rate per hour compared to
during a normal state. The drop in the RR can be related to sighs (deep breaths when under
stress). Alternatively, individual participant analysis showed that 79.4% of participants
had heart rate values outside of their normal (reference) range during stress, while the
respiratory rate of over 82% of participants changed to outside their normal respiratory
rate while under stress.

Table 2. The average number of entries (per participant).

Time Series Signals Data Points Recording Time

Blood Volume Pulse (BVP) 212,234

~50 minHeart Rate (beats per min) 3308

Respiratory Rate (breaths per minute) 3308
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Figure 2. Participants with increased stress levels during each task.

2.2. Feature Extraction and Selection

Recently, efforts have been made to automate time-series feature extraction methods
and calculate hundreds of different features [17,36]. However, these high dimensional
features lead to challenges when calculating, predicting, storing, and even understanding
the correlation of data with the target/outcome [37]. A common technique used for time-
series feature extraction is windowing (data are divided into smaller windows and features
are extracted for each window) [38]. Features such as mean can reduce signal noise, but
averages the overall signal. On the contrary, some features such as maximum can be unduly
affected by noise [36]. As automated feature extraction has limitations and motivates the
need for a systematic process of feature selection along with feature extraction [12], this
study implements a three-stage feature extraction and selection algorithm. Each stage is
explained in the following subsection, illustrated in Figure 3.
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shortlists the hundreds of time-series features, PCA is applied to reduce the feature dimension; to
select well-distinguishable features, correlation coefficients are calculated using the three methods.

2.2.1. tsfresh Library

Features were extracted using the Python library tsfresh [39]. The library is composed
of a combination of 63 time-series characterization techniques. The library calculates
794 features (based on estimating trends, seasonality, and periodicity of the data) by default
and shortlists the features based on automatically configured hypothesis tests [12]. The
library uses standard APIs for time-series (pandas) and machine learning (scikit-learn)
packages and provides exploratory analyses. A list of the calculated features and their
respective runtimes is documented in [40].

2.2.2. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical method that is generally used to re-
duce the dimensionality of high-dimensional data [41]. PCA projects the multidimensional
data into a new reduced linear coordinate system using Singular Value Decomposition
(SVD). The coordinates of this system represent the largest aggregate of variance within a
time-series dataset and are useful for better visualization and interpretation of complex
multivariable data. The dimensionality reduction helps to observe trends, clusters, and out-
liers within data [42,43]. In the proposed study, principal components were selected based
on the explained variance of the features. All features that had explained the proportion of
variance exceeding 85% were selected for further analysis.

2.2.3. Correlation Analysis

The tsfresh and PCA eliminate calculated time-series features based on hypothesis
testing (feature vs target significance) and explain the variance of the features. For a
classification problem, it is vital to remove the highly correlated features as they can
introduce bias in the training of the model, make the model computationally expensive (as
the model learns the same information after skimming several different correlated features),
reduce the precision of coefficient estimation, and affect the interpretability [44,45]. Thus,
this study recommends correlation analysis to ensure the selection of weakly correlated,
well-distinguishable features for an accurate, precise, and easily interpretable classification
model. The three commonly used methods for correlation analysis are described below.

Pearson Correlation Coefficient

The Pearson correlation coefficient [46,47] is a statistical test that measures the ratio
between the covariance of two features and their standard deviations. The coefficients
show the magnitude of correlation/association and the direction (positive or negative) of
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the relationship. The value of the Pearson coefficient varies between −1 and +1, and is
calculated as:

r = ∑(xi − x)(yi − y)√
∑(xi − x)2(yi − y)2

(1)

In Equation (1), r is the Pearson correlation coefficient, xi and yi is the i the value of
two features, while x and y is the mean value of the x and y features.

Spearman Ranking Correlation Coefficient

The Spearman ranking correlation [48,49] is a statistical test that measures how closely
two features fluctuate. The features are ranked based on their similarity and dissimilarity,
and then correlation/association between the features is calculated using the following
equation (Equation (2)):

ρ = 1− 6 ∑ di
2

n(n2 − 1)
(2)

where ρ is the Spearman coefficient, di is the difference between each feature rank, while
n is the total number of observations. The value of the Spearman coefficient also varies
between −1 to +1.

Kendall Ranking Correlation Coefficient

Kendall ranking correlation [50,51] analysis is a statistical method of measuring the
rank association of the two measured features. The correlation is determined based on the
concordance and discordance values, and is determined as:

τ =
2 (nc − nd)

n(n− 1)
(3)

In Equation (3), τ is the Kendall coefficient, nc is the number of concordant values
(i.e., x2 − x1 and y2 − y1 have the same sign), nd is the number of discordant values
(i.e., x2− x1 and y2− y1 have an opposite sign), while n is the total number of observations
and x,y are the two features. The correlation coefficient calculated using the Kendall method
could vary between −1 and +1.

Table 3 provides a guideline [52] on the interpretation of the correlation coefficient and
the association of features with each other. In this study, all the features with a correlation
coefficient between −0.4 to 0.4 were chosen for further analysis.

Table 3. Correlation coefficients and their interpretation.

Correlation Coefficient Value Association

+1.0 Perfect positive
+0.8 to +1.0 Very strong positive
+0.6 to +0.8 Strong positive
+0.4 to +0.6 Moderate positive
+0.2 to +0.4 Weak positive
0.0 to +0.2 Very weak positive
0.0 to −0.2 Very weak negative
−0.2 to −0.4 Weak negative
−0.4 to −0.6 Moderate negative
−0.6 to −0.8 Strong negative
−0.8 to −1.0 Very strong negative
−1.0 Perfect negative

2.3. Machine Learning Classification

Machine learning classifiers are computer-based models that can learn and adapt with-
out any explicit instructions using statistics and algorithms rules. The machine learning
classifier must be generalizable (measurement of the trained classifier’s ability to accurately
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classify the unseen data). A generalised model presents the best trade-off between bias
and variance and provides the best prediction performance [53,54]. In this study, three
commonly used supervised machine learning classifiers, i.e., logistic regression classifier,
random forest classifier, and k-nearest neighbour classifier, are implemented. Each of these
classifiers is representative of their classification categories (linear, ensemble, and cluster-
ing). The selection of these classifiers is based on their simplicity, efficiency, interpretability,
robustness, and regularization when used for binary classification of categorical-natured
data; in this case, stress versus non-stress conditions.

2.3.1. Data Split for Training and Testing

For classification analysis, the dataset needs to be divided into test and train sets.
Splitting the dataset helps to evaluate the performance of the model on unseen data. The
training set will allow the model to fit and adjust the weights of the model while the test set
evaluates the model performance on the new dataset, prevent overfitting, and ensures the
model’s generalizability. As the stress-predict dataset is imbalanced (more baseline readings
than stress readings), the standard classification techniques focus on minimizing the error
rate and ignore the minority class. Furthermore, the random split of the imbalanced
data might have negligible or no data from the minority class, thus resulting in biased
classification results. The solution to the problem is the use of a stratified k-fold classification
split. Stratified sampling ensures that splitting is randomly performed and that the same
imbalance class distribution is maintained for each subset (fold). Thus, to obtain an
unbiased model performance, stratified 10-fold cross-validation was implemented.

2.3.2. Performance Validation Methods

The performance of the classifier is validated based on accuracy, standard deviation,
precision, recall, f1-score, sensitivity, and specificity. These metrics are described in [55–57].
Accuracy is defined as the ability of the classifier to correctly predict the label of the data
point within the test dataset. Precision is the classifier’s ability to predict a data point
belonging to a certain class, while Recall is the classifier’s ability to identify all the data
points within a certain class. The F1-score is a combination of precision and recall using a
harmonic mean. The Sensitivity of a classifier is a metric that shows its ability to predict
true positives within each class, and Specificity is the evaluation metric that measures the
ability to predict true negatives with each class. Table 4 shows the confusion matrix used to
determine true positive and true negative readings.

Table 4. Confusion Matrix.

Actual Labels

Positive Negative

Predicted Labels
Positive True Positive False Positive

Negative False Negative True Negative

3. Results and Discussions

Figure 3 demonstrates the steps of feature extraction and shortlisting. For the stress-
predict dataset, the tsfresh library calculates 1578 trends, seasonality, periodicity, and
volatility-based features for heart rate (789) and respiratory rate (789) signals, combined.
The hypothesis test (p-value) is performed within the library to check the independence
between each feature and label (target variable) and selects 314 features out of 1578 features.
For further dimensionality reduction, PCA using singular value decomposition (SVD)
was performed. For comparison, PCA resulted in 37 features when implemented on a
full feature set (1578), while selecting only 19 features with the feature set obtained after
Kruskal-Wallis’s hypothesis test (314). As the selected features might still have correlated
features, a correlation analysis was performed using Pearson, Kendall, and Spearman
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methods to determine the most specific features of heart rate and respiratory rate signals to
accurately distinguish stress conditions.

3.1. Correlation Analysis

Table 5 summarises the number of calculated and selected features at each stage.

Table 5. Calculated features and correlation analysis results.

Correlation Analysis

Features Total Pearson Kendall Spearman

Full 1578 148 450 201

Filtered (p-test) 314 3 2 1

PCA on Full 37 3 2 1

PCA on filtered (through p-test) 19 3 2 1

Correlation analysis shortlisted similar features, even though they were provided with
a different number of features (Filtered, PCA on full, and PCA on filtered features). The
selected features are tabulated and described in Table 6 and detailed in [58].

Table 6. Description of calculated features and correlation analysis results.

Shortlisted Features Description Correlation Method

Number of peaks in baseline versus the
number of peaks in stress periods (in

respiratory signal)

This feature calculates the number of peaks
that is greater than its n neighbours (left and

right) for each period
Pearson, Kendall, Spearman

Changes in the variance with higher and lower
quantile ranges (in respiratory signal)

This feature fixes a corridor given by lower
and higher quantiles and then calculates the
variance of the absolute change of the time

series inside that corridor.

Pearson

Lag in partial correlation (in heart rate signal) This feature calculates the value of partial
autocorrelation at the given lag Pearson

Coefficient of the imaginary part after Fast
Fourier Transform (FFT) (in respiratory signal)

This feature calculates the value of the
imaginary part of the Fourier coefficient Kendall

It can be noted that all three (Pearson, Kendall, and Spearman) correlation analysis
methods resulted in shortlisting the number of peaks within the time series, specifically for
respiratory rate, as the most well-distinguishable feature for accurate stress monitoring.
This finding is perfectly correlated with the previously published literature [6,22,35] and
is true, as the breathing pattern is supposed to significantly vary during stress conditions
when compared to baseline/normal conditions.

As most of the shortlisted features belong to the respiratory rate signal, this study
also performed a univariable time-series correlation analysis on the heart rate signal (only
feeding the heart rate signal along with labels to the algorithm) to determine the most
specific heart rate-related features. The Pearson, Kendall, and Spearman correlation analysis
method determined that the ‘number_cwt_peaks_n_5′ feature (number of peaks that are at
enough of a width scale (here, five) and have high signal-to-noise ratio) is the most specific
feature of heart rate signal to distinguish stress from the baseline readings.

3.2. Machine Learning Classifications

For classification analysis, the commonly used statistical features (mean, standard
deviation, median, median absolute deviation) and the shortlisted features after correlation
analysis were used to train supervised machine learning classifiers. For supervised learning,
logistic regression, random forest, and K-nearest neighbours (KNN) were selected from
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linear, ensemble, and clustering models, respectively. The results of each classification
analysis are reported as follows.

3.2.1. Standard Statistical Features

Using standard statistical features, the highest classification performance was achieved
using the logistic regression model with an accuracy of 67.4%. Figure 4 illustrates the
accuracy, standard deviation, precision, recall, f1-score, specificity, and sensitivity of the
reported classifiers.
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3.2.2. Selected Features after Correlation Analysis

Figure 5 illustrates the classification performance of the supervised classifiers using
Pearson (Figure 5a), Kendall (Figure 5b), and Spearman (Figure 5c) selected features. The
inclusion of the shortlisted features with the standard statistical features significantly
improves the classification performance. The best classification performance is achieved
using Pearson and Spearman-based features, with a classification accuracy of 98.6% using
the KNN classifier. Moreover, the other performance matrices, such as standard deviation,
precision, recall, f1-score, sensitivity, and specificity, of the models have also drastically
improved, achieving values well above 95%.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 15 
 

 
(a) 

(b) 

 
(c) 

Figure 5. Shortlisted features-based stress versus baseline classification using logistic regression, 
random forest, and K-nearest neighbours classifiers. (a) Using Pearson shortlisted features, (b) using 
Kendall shortlisted features, and (c) using Spearman shortlisted features. 

3.3. Summary 
Automated feature extraction and selection do help in the development of a highly 

accurate classification model that could be generalizable to new, unseen time-series data. 
Time-series feature engineering is a substantial component of machine learning 
classification analytics. The irrelevant features within the training dataset make the model 
overfitted to a specific dataset and are not well generalizable. Thus, systematic time-series 

Figure 5. Cont.



Appl. Sci. 2023, 13, 2950 11 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 15 
 

 
(a) 

(b) 

 
(c) 

Figure 5. Shortlisted features-based stress versus baseline classification using logistic regression, 
random forest, and K-nearest neighbours classifiers. (a) Using Pearson shortlisted features, (b) using 
Kendall shortlisted features, and (c) using Spearman shortlisted features. 

3.3. Summary 
Automated feature extraction and selection do help in the development of a highly 

accurate classification model that could be generalizable to new, unseen time-series data. 
Time-series feature engineering is a substantial component of machine learning 
classification analytics. The irrelevant features within the training dataset make the model 
overfitted to a specific dataset and are not well generalizable. Thus, systematic time-series 

Figure 5. Shortlisted features-based stress versus baseline classification using logistic regression,
random forest, and K-nearest neighbours classifiers. (a) Using Pearson shortlisted features, (b) using
Kendall shortlisted features, and (c) using Spearman shortlisted features.

3.3. Summary

Automated feature extraction and selection do help in the development of a highly
accurate classification model that could be generalizable to new, unseen time-series data.
Time-series feature engineering is a substantial component of machine learning classifica-
tion analytics. The irrelevant features within the training dataset make the model overfitted
to a specific dataset and are not well generalizable. Thus, systematic time-series feature
engineering allows automation of the overall classification process and a reduction in the
difficulties faced during manual feature estimation and selection.

In the context of stress classification, feature engineering plays a vital role in improving
classification performance. The careful selection and estimation of the time-series features
do help in achieving higher classification accuracy with better interpretability of the classi-
fier’s decision and achieved results. The dimensionality reduction also helps the predictive
model to be computationally efficient, especially if required to run on resource-constrained
devices.

A comparison of the proposed correlation-based feature extraction algorithm with
other existing methods is shown below (Table 7).
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Table 7. Comparison of the proposed method with other existing feature extraction methods.

Algorithm Advantage Disadvantage

Correlation-based feature
extraction

Simple and easy to implement, provides
insight into pairwise relationships

Assumes linearity of relationships and may not capture
higher-order relationships

Statistical feature
extraction

Can capture various statistical properties
of the data, easy to compute

Assumes that the data follows a specific statistical
distribution, may not capture nonlinear relationships

Fourier Transform-based
feature extraction

Captures periodic patterns in the data,
efficient to compute

Assumes that the data is stationary and has a fixed
frequency, may not capture non-periodic patterns

Wavelet Transform-based
feature extraction

Captures non-stationary patterns in the
data, efficient to compute

The choice of wavelet function and level of
decomposition can be subjective and impact results

Neural Network-based
feature extraction

The choice of wavelet function and level
of decomposition can be subjective and

impact results

Requires significant computational resources, sensitive
to the choice of hyperparameters and architecture

4. Conclusions

In this study, three-fold feature extraction and selection steps are proposed. In the
first step, the tsfresh library is used to calculate 1578 time-series features of heart rate
and respiratory rate (789 features each) signals, which are then shortlisted to 314 features
after the hypothesis test. In the second stage, PCA is applied to further reduce the feature
dimensions from 314 to only 19 feature components. To detect and eliminate the most
correlated features with the estimated feature list, a correlation analysis (with a threshold
coefficient value of±0.4) is performed using three different methods. The Pearson, Kendall,
and Spearman correlation analysis determined the count of peaks within the respiratory
rate reading to be the best and well-distinguishable feature among all other heart rate
and respiratory rate-related features. For the univariate (heart rate signal) analysis, the
number of CWT peaks was the most specific feature to distinguish the stress state from the
baseline state.

Furthermore, this study also trained and validated different supervised machine-
learning classification models using the stratified 10-fold cross-validation technique. The
performance of the classification models was measured in terms of classification accuracy,
standard deviation (of the model’s accuracy), precision, recall, f1-score, sensitivity, and
specificity. The general statistical features (mean, standard deviation, median, mean ab-
solute deviation) that have been frequently used in the literature give only an accuracy
of 67.4%. The proposed correlation-based time-series feature selection algorithm resulted
in more accurate classification performance compared to conventional statistical features.
The time-series correlation analysed feature set, when used in conjunction with the sta-
tistical features, significantly improved the performance of the classifiers and resulted in
high-stress classification accuracies; the highest being 98.6% using the KNN classifier.

Future work includes the translation of the proposed algorithm as an online feature
learning system for real-time scenarios. The objective will be to update the selected features
based on the updated data received. This would eventually lead to a more robust and
accurate stress detection system. Additionally, there is a need for dynamic thresholding for
PCA, as different time-series features (like heart rate, respiratory rate, skin conductance,
muscle activation, and skin temperature) have different PCA subspaces. Thus, they require
the estimation of best-suited thresholding levels when applying PCA. Furthermore, a
comparison of other supervised and unsupervised machine learning classification models
is also the prospect of future work.
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