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Abstract

Motivation: To predict drug targets, graph-based machine-learning methods have been widely used to capture the
relationships between drug, target and disease entities in drug–disease–target (DDT) networks. However, many
methods cannot explicitly consider disease types at inference time and so will predict the same target for a given
drug under any disease condition. Meanwhile, DDT networks are usually organized hierarchically carrying inter-
active relationships between involved entities, but these methods, especially those based on Euclidean embedding
cannot fully utilize such topological information, which might lead to sub-optimal results. We hypothesized that, by
importing hyperbolic embedding specifically for modeling hierarchical DDT networks, graph-based algorithms could
better capture relationships between aforementioned entities, which ultimately improves target prediction
performance.

Results: We formulated the target prediction problem as a knowledge graph completion task explicitly considering
disease types. We proposed FLONE, a hyperbolic embedding-based method based on capturing hierarchical topo-
logical information in DDT networks. The experimental results on two DDT networks showed that by introducing
hyperbolic space, FLONE generates more accurate target predictions than its Euclidean counterparts, which sup-
ports our hypothesis. We also devised hyperbolic encoders to fuse external domain knowledge, to make FLONE en-
able handling samples corresponding to previously unseen drugs and targets for more practical scenarios.

Availability and implementation: Source code and dataset information are at: https://github.com/arantir123/DDT_tri
ple_prediction.

Contact: s.he@cs.bham.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Inferring novel drug targets based on computational methods has
attracted more attention recently, because it can effectively reduce
the time cost in the early stages of drug development (Oprea et al.,
2011). An important systematic strategy for inferring drug targets is
based on analyzing known relationships between drug, target and
disease entities in biomedical databases, e.g. DrugBank (Wishart
et al., 2006) and Pharos (Nguyen et al., 2017). The known relation-
ships in these databases are usually constructed as knowledge graphs
(KGs) or heterogeneous biological networks and then are analyzed
by graph learning algorithms (Bordes et al., 2013; Grover and
Leskovec, 2016). For example, Luo et al. compiled their dataset
DTINet containing drug–disease–target (DDT) relationships from
DrugBank, CTD (Davis et al., 2019), HPRD (Keshava Prasad et al.,

2009) and SIDER (Kuhn et al., 2010) databases, and the network
diffusion algorithm and inductive matrix completion strategy were
further utilized to infer novel drug–target interactions (DTIs) (Luo
et al., 2017). Other than the network diffusion-based algorithms,
many message passing frameworks based on various information ag-
gregation mechanisms [e.g. attention mechanism (Yu et al., 2021)]
have been proposed, to learn the multiple topological characteristics
of DDT related networks for interaction predictions between drugs
and targets (Chu et al., 2022; Peng et al., 2021; Wan et al., 2019;
Wang et al., 2022). In addition, Ye et al. generated low-dimensional
representations of drugs and targets by integrating their heteroge-
neous information, extracted from a KG learning method, and their
structural information. The final DTIs were predicted by different
predictors trained on the produced representations (Ye et al., 2021).
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However, many methods usually predict putative associations
between drugs and targets (i.e. plain drug–target association predic-
tions), ignoring inferring the relationships between diseases and
drugs and between diseases and targets. For example, in the entire
DTINet, only 530 out of 5603 diseases have modulation relation-
ships with the target ADRA1A (P35348) of drug Clozapine
(DB00363). In other words, the target and corresponding given
drug could be associated with specific diseases. In this case, explicit-
ly considering disease types when inferring drug targets (i.e. DDT
association predictions) could bring finer scale virtual screening
compared with plain drug–target or drug–disease association predic-
tions, allowing models to predict drug targets under particular dis-
ease types directly. Furthermore, we aimed to examine the model
performance in a more realistic application scenario. Specifically, if
the users want to discover potential targets for the given drug, they
usually need to send every DTI combination corresponding to this
drug into the trained model, and rank these DTI combinations
according to the scores assigned by the trained model, then the top-
ranked DTIs can be selected for further validation experiments (e.g.
wet experiments). In this case, the model needs to effectively assign
higher ranking scores to the positive target for the given drug and as-
sign relatively lower ranking scores to all other candidate targets for
the given drug simultaneously, which is natural to be formulated as
a ranking task.

To address these problems, Moon et al. (2021) formulated the
target prediction as a recommendation system ranking task. The
ranking task aims to directly assign each candidate target of interest
an interaction score for the given drug and disease. The scores
should allow positive targets to rank higher than other negative can-
didate targets. This ranking task formulation better evaluates the
model’s capability to identify positive target samples from all candi-
date targets, which better reflects true model performance in actual
DTI virtual screening. In addition, based on the similar evaluation
idea, Chen et al. adopted the ranking task to quantify their model
capability on predicting drug–target–disease interactions (Chen and
Li, 2019; Chen and Li, 2020).

However, the DDTE method proposed in Moon et al. could be
further improved by capturing the intrinsic hierarchical structure in
DDT networks. As shown in Figure 1, the entity inter-relationships
in a DDT network are hierarchically organized. For example, for a
drug node DB00050 in DTINet, which can be seen as a root node,
we know it binds to two target nodes P30968 and P22888 directly,
with which associate 110 different disease nodes based on the drug–
disease and disease–target edges. These DDT relationships essential-
ly form a hierarchical structure, which provides extra topological in-
formation about the interactive relationships in the DDT network
(Corominas-Murtra et al., 2013). Meanwhile, due to the intercon-
nected triangular relationships between drug, target and disease
within the network (i.e. the edges can be constructed between these
three types of nodes at the same time) (Walsh et al., 2020), such
hierarchical structures can also be viewed by treating the target or
disease nodes as the root node, while treating the other types of
associated nodes as its children nodes. Capturing this hierarchical
structural property of the DDT network could be helpful to generate
more accurate predictions.

Nevertheless, despite the importance, most graph learning meth-
ods including DDTE could not effectively capture this hierarchical
information because they work in Euclidean space. It is known that
Euclidean space grows polynomially, limiting its capacity to repre-
sent hierarchical networks in which the volume of the hierarchies
increases exponentially in proportion to its radius (Yang et al.,
2022). In contrast, hyperbolic space, which can be seen as a continu-
ous tree space, is a better alternative than Euclidean space since it
can fit hierarchies with its exponentially increasing capacity and
smaller distortion (Chen et al., 2021). Based on this, we hypothe-
sized that, by properly introducing hyperbolic space, graph
machine-learning algorithms could better capture the implicit hier-
archies in DDT networks, generating more accurate predictions for
each candidate target. To test this hypothesis, we formulated the
drug–target prediction as a hyperbolic knowledge graph completion
(KGC) task explicitly considering disease types, in which drugs and

diseases are subjects and predicates/relations separately, and targets
are the objects to be completed (predicted). In this way, KGC can be
treated as a (drug, disease, target) triple completion problem, where
the drug and disease are given and the target must be inferred.

To solve this problem, we proposed a novel framework, called
fully Lorentz network embedding (FLONE), to identify novel targets
associated with the given drug and disease, based on utilizing hyper-
bolic Lorentzian embeddings to learn implicit structural hierarchies
of DDT networks. The main component of FLONE is a hyperbolic
similarity calculation module based on a fully Lorentz linear trans-
formation (FuLLiT) (Chen et al., 2021). FuLLiT calculates the
Lorentzian distance-based similarity probability score between the
hyperbolic embeddings of candidate targets and hyperbolic repre-
sentation of a given drug under a given disease, which is then used
to infer a novel target for the drug–disease combination. Another
contribution of our work is that, when identifying the DDT triples,
the capability to handle previously unseen drug and target entities,
which are not included by the seen DDT network, is critical in ac-
tual application as not every entity at inference time could be linked
with known network structures. To extend FLONE to enable proc-
essing such types of entities on the hyperbolic space, we devised our
hyperbolic drug and target encoders based on the fully Lorentz lin-
ear, linking these unseen entities with the seen entities using drug
and target similarity information.

Within the scope of the aforementioned practical application
scenario (i.e. testing the model ranking capability based on identify-
ing positive targets from all candidate targets for the given drug and
disease), we conducted extensive experiments on FLONE to test our
hypothesis. Our study showed that the DDT scoring/ranking bene-
fits from the Lorentz space, which supports our hypothesis. In add-
ition to supporting this hypothesis, our results also showed that by
fusing the drug structure and target sequence similarity (as extra do-
main knowledge), FLONE not only achieved better predictions on
DDT triples related to previously seen drugs and targets, but also
could provide accurate predictions on the unseen drugs and targets
as well.

2 Materials and methods

2.1 Datasets
To construct the heterogeneous DDT networks based on the
DTINet (Luo et al., 2017) and BioKG (Walsh et al., 2020) datasets,
we first defined the extraction rule of the DDT triple set. By learning
these triples, KGC models can capture the structural property of ori-
ginal DDT networks. We extracted a triple ðdrugi;diseasek; targetjÞ
[abbreviated as ðDi;D

0
k;Tj)] if all three of the following edges exist

in the original dataset: ðDi;D
0
k), ðDi;Tj) and ðD0k;Tj).

However, in KGC tasks, there could be implicit data leakage caused
by very similar predicates, e.g. for two ðsubject; predicate; objectÞ tri-
ples, ð‘Birmingham’; ‘is in’; ‘UK’Þ and ð‘Birmingham’; ‘is located in’;
‘UK’Þ, because the predicates 0is in0 and 0is located in0 have very similar

semantic meaning, thus they correspond to very similar subject–object
pairs, which causes over-idealistic results when predicting triples related
to 0is in0 or 0is located in0. To avoid this problem, we removed diseases
that had >60% drug–target pair similarity with other diseases based on
the Jaccard similarity coefficient that can measure the similarity of differ-
ent (drug–target pair) sets (detailed in Supplementary Section S1). After
the screening, 171 597 positive triples consisting of 535 drugs, 417 tar-
gets and 1160 diseases from DTINet as well as 9699 positive triples con-
sisting of 1128 drugs, 723 targets and 529 diseases from BioKG
remained. However, inappropriate data splitting for model evaluation
will lead to another type of data leakage, which is detailed in Section
3.2. In addition, the detailed description of used drug and target similar-
ity information for handling network learning unseen drugs and targets
are provided in Section 2.5.

2.2 The basic definition of the Lorentz model
The hyperbolic space is defined as a smooth Riemannian manifold
equipped with the constant negative curvature and positive-definite
inner product on the tangent space at every point (Yang et al.,

2 Y.Yue et al.
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2022). There are several isomorphic geometric models of the hyper-
bolic space: Lorentz model, Poincaré disk model, Poincaré
half-plane model and Klein model. In this article, we used the
Lorentz model, which is one of the widely used models because of
its numerical stability and closed-form computation of geodesics
(Chen et al., 2021; McDonald and He, 2022; Sun et al., 2021; Wu
et al., 2021; Yu et al., 2020).

The n-dimensional Lorentz model with curvature c (�1 in our
study) is defined as L

n
c ¼ ðLn; gc

xÞ, gc
x ¼ g is the Riemannian metric

tensor satisfying g ¼ I [I is the ðnþ 1Þ-dimension diagonal matrix]
except g0;0 ¼ �1, and Ln represents the manifold defined by the
point set in L

n
c :

Ln :¼ x 2 R
nþ1 : x; xh iL ¼

1

c
; xt > 0

� �
; (1)

x; yh iL :¼ xTgc
xy ¼ �xtyt þ xT

s ys; (2)

where . . . ; . . .h iL is the Lorentzian inner product. Each point x in L
n
c

is expressed as a concatenation xt; xs½ �, where xt 2 R (referred as
the time dimension), xs 2 R

n (referred as the spatial dimension) and
the origin O of the Lorentz model is defined as ð

ffiffiffiffiffiffiffiffiffiffiffi
�1=c

p
; 0; . . . ; 0Þ. In

other words, x represents the space coordinate point in the defined
n-dimensional Lorentz space, all drugs and targets will be embedded
into this Lorentz space, and the allocated coordinate points/posi-
tions of drugs and targets can be seen as their feature embeddings.
The n-dimensional Lorentz space consists one temporal dimension
and n spatial dimensions, which are used to depict the coordinate
position/embedding feature on each dimension here. For further
understanding, we suggested referring (Yang et al., 2022) for a more
detailed description.

Besides, for every point x 2 L
n
c , it is equipped with an orthogonal

space (i.e. tangent space) of L
n
c (at x), which is the first-order ap-

proximation of Ln around x (Yang et al., 2022), and is formally

defined as T xL
n
c :¼ fz 2 R

nþ1 : z; xh iL ¼ 0g, where z is the point set
of this tangent space.

2.3 Description of the FLONE method
Based on the defined Lorentz model, we proposed FLONE to solve
the DDT triple target entity completion problem. Specifically, for
each DDT triple in the extracted triple set, FLONE treats the drug,
disease and target as the subject, predicate/relation and object, re-
spectively. The task is, given a drug–disease combination, FLONE
will assign a similarity score to every candidate target (i.e. object en-
tity) in the DDT network, which indicates the distance-based simi-
larity between the target and given drug and disease. FLONE then
uses the similarity scores to rank these targets, for identifying high-
confidence targets for the drug–disease combination.

A high-quality model would assign high similarity scores to all of
the defined DDT triples that have been extracted from the DDT net-
work, and low similarities for all other DDT combinations. A re-
searcher investigating drug repurposing would provide the drug and
disease of interest and will have a ranked list of targets returned for
further investigation.

The illustration of FLONE is shown in Figure 2. After the extraction
of triples from the heterogeneous DDT network, we presented FLONE
as an end-to-end framework consisting of three major components:

1. FuLLiT, a feed-forward neural network operating within

Lorentzian space, which was proposed to increase the perform-

ance of the Euclidean translation-based KGC method in our

task. FuLLiT treats a (disease) predicate/relation as a trainable

translation offset from the (drug) subject to the (target) object

entity embeddings. It can take two n-dimensional Lorentzian

vectors, representing a drug embedding and a target embedding,

along with a disease index as inputs, and outputs a similarity

score for the DDT. FuLLiT is detailed in Section 2.4.

Fig. 1. Illustration of the hierarchies in the DDT network. Taking drug node DB00050 in DTINet as an example, it can bind to two target nodes P30968 and P22888 directly,

it can also associate with these two targets through 110 different disease nodes based on the drug–disease and disease–target edges (the labels of disease nodes are disease ids

used in FLONE). Thus, starting from DB00050, a local hierarchy can be formed (this hierarchy can also be formed starting from the target or disease nodes because these three

types of nodes are triangularly interconnected), and such structure can be generalized to other root nodes (in the above example, the root nodes refer to other drugs), forming

more complicated implicit hierarchies that reveal the interactive relationships of DDT networks

Inferring drug targets using Lorentz embedding 3
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2. Hyperbolic drug encoder, which is responsible for taking drug

chemical features to produce a hyperbolic Lorentzian embedding

for a drug. It can inject drug domain knowledge into FuLLiT for

handling previously unseen drugs at inference time (explained in

more detail in Section 2.5).

3. Hyperbolic target encoder, which, likewise, produces hyperbolic

Lorentzian embeddings for all candidate targets, to fuse target

domain knowledge into FuLLiT for handling unseen targets

(detailed in Section 2.5).

In addition, all important hyperbolic computation operations of
FLONE are fully Lorentzian instead of a hybrid mode (Chen et al.,

2021). This has the advantage that there is no need to expensively
map between the Lorentz space and its tangent space (McDonald
and He, 2022).

2.4 Description of FuLLiT
Based on the fully Lorentz linear layer, FuLLiT was developed, which
includes three components: (i) a hyperbolic triple decoder, (ii) a self-
contained drug embedding look-up table and (iii) a self-contained tar-
get embedding look-up table. The first component is to calculate the
similarity score between the target and given drug and disease for each
DDT triple, and the latter two are for providing corresponding hyper-
bolic embeddings without drug/target similarity information (i.e. only
utilizing structural information of DDT networks). These three

Fig. 2. Illustration of FLONE. (A) Construct a heterogeneous DDT network. (B) Decompose this network to extract the DDT triple set. (C) Input the Euclidean drug and target

(similarity) domain knowledge into the hyperbolic drug and target encoders, respectively, to generate hyperbolic (Lorentzian) drug and target embeddings (or using self-con-

tained drug and target embeddings in FuLLiT directly). Next, the hyperbolic drug and target embeddings are used by FuLLiT, in which hyperbolic drug embeddings are trans-

formed by the disease translation representations, and then the Lorentzian distance-based similarity between the transformed drug embeddings and hyperbolic target

embeddings are calculated. After training, FLONE is able to rank every candidate target entity for the given drug and disease

4 Y.Yue et al.
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components form the backbone of FLONE that can deal with cases
where external domain knowledge is unavailable.

The general form of the fully Lorentz linear layer FLLinearn;mðxÞ
(contained in FuLLiT) is defined as (3), which could ensure a linear
transformation to map x 2 L

n
c (x 2 R

nþ1) to y 2 L
m
c (y 2 R

mþ1) (i.e.
the coordinates of input x and output y of the transformation are
guaranteed to stay in the respective Lorentz space):

y ¼ FLLinearn;mðxÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr vTxþ bð Þ þ �ð Þ2 þ 1

c

q
kW dropout xð Þ

� �
k

W dropout xð Þ
� �

; (3)

where k is a fixed hyper-parameter to control the numerical scale of

the time dimension, r is the sigmoid function, v 2 R
nþ1 and W 2

R
m�ðnþ1Þ are trainable weights of the overall linear transformation

matrix M ¼ ½vT=W� (½. . . = . . .� represents the tensor concatenation)
in this linear layer. Besides, b is the trainable bias, � is a fixed value

larger than
ffiffiffiffiffiffiffiffiffiffiffi
�1=c

p
to ensure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkr vTxþ bð Þ þ �Þ2 þ 1=c

q
larger than

0. In FLONE, we adopted the same dimension for all embeddings,
in this case, n is equal to m in every intermediate FLLinearn;mðxÞ
layer.

For the hyperbolic triple decoder of FuLLiT, assuming embed-
ding all entities into a n-dimensional Lorentz space, the following
steps are included to calculate the similarity scores (from 0 to 1).
Take an example of predicting the score for Tj under ðDi;D

0
kÞ, five

sets of parameters are needed, including corresponding drug and tar-
get embeddings, disease type-specific translation offset (for D0k) and
real-value drug and target biases. Specifically, we first obtained the
hyperbolic embedding xDi

2 L
n
c and xTj

2 L
n
c of Di and Tj from the

self-contained embedding look-up tables (i.e. the tables that store
the corresponding type of embeddings through entity indices). Then,
xDi
2 L

n
c was transformed by the disease type-specific translation

offset FLLinearn;n xð Þ (for D0k), to obtain the translation xDi�D0
k
2 L

n
c .

Then the similarity score p can be calculated as (Balazevic et al.,
2019; Chen et al., 2021):

p Di;D
0
k;Tj

� �
¼ r �d2

L xDi�D0
k
; xTjð Þ þ bDi

þ bTj
þ u

� �
; (4)

d2
L xDi�D0

k
;xTjð Þ ¼

2

c
� 2 xDi�D0

k
; xTjh iL; (5)

where d2
L xDi�D

0
k
;xTj

� � represents the squared Lorentzian distance

measuring the similarity between the given drug–disease combin-
ation and corresponding target (Law et al., 2019; Ratcliffe, 2006),
bDi

and bTj
are the drug and target type-specific biases, respectively.

u is the margin hyper-parameter, and r is the sigmoid function.
As for the above self-contained drug and target embedding look-

up tables, they are essentially trainable matrices formally defined as
drug lookup and target lookup with the shapes of drug number; nð Þ
and target number; nð Þ, in which n is the overall feature dimension
of the Lorentz model, drug number and target number are the num-
ber of all drugs of interest and all candidate targets, respectively:

xDi
2 L

n
c  drug lookupðDiÞ

xTj
2 L

n
c  target lookupðTjÞ: (6)

Specifically, the shape of the look-up tables is determined based
on the number of drugs and targets under which we would like to
explore the potential drug targets. They can be trained together with
other sets of parameters, to produce the required hyperbolic embed-
dings based on learning topological structural information of DDT
networks. Besides, the look-up tables can also be created by hyper-
bolic drug and target encoders (detailed in the next section) in an
end-to-end way (all sets of parameters are learnt simultaneously
based on known triples extracted from DDT networks), for injecting
external domain knowledge to handle the unseen drugs and targets.

As a comparison, the Euclidean translation-based method DDTE
(Moon et al., 2021) mentioned in Introduction, uses vectors as the

disease translation offsets. Specifically, it used vector-based disease
offset VD0

k
to calculate the translated drug embedding under the

given disease (i.e. eDi
þ VD0

k
, eDi

is the Euclidean drug embedding).
While for FuLLiT, it was calculated based on the matrix-based off-
set FLLinearn;n xDið Þ. Except for specialized hyperbolic operations,
another two main differences between DDTE and FuLLiT/FLONE
are that compared with FLONE, when calculating the similarity
score, there are no drug and target-specific biases in Equation (4) for
DDTE, and DDTE cannot consider external domain knowledge (i.e.
only providing Euclidean self-contained drug and target look-up
tables).

2.5 The hyperbolic encoders for fusing drug and target

similarity information
To investigate whether the triple target entity completion benefits
from the fusion of domain knowledge, we extended the FuLLiT, by
replacing the self-contained drug and target embedding look-up
tables with the tables generated by corresponding hyperbolic
encoders, for encoding and injecting external domain knowledge
into embeddings, and the size of these embeddings is same as that in
the self-contained look-up tables.

Specifically, we tried to fuse different domain knowledge of
drug–drug and target–target similarities by utilizing hyperbolic drug
and target encoders. Intuitively, this could bring similar hyperbolic
embeddings for involved similar drugs/targets. Based on the assump-
tion ‘similar drugs may share similar targets and vice versa’ (Luo
et al., 2017), this enables the further predictive performance im-
provement of FLONE.

For the drugs of interest, we computed Extended Connectivity
Fingerprints of diameter 6 (ECFP6), a circular topological finger-
print commonly used in drug discovery (Rogers and Hahn, 2010), as
the input of the hyperbolic drug encoder. For the involved targets,
we provided target sequence similarity (i.e. protein similarity scores
based on primary sequences of target proteins after 0–1 normaliza-
tion) (Luo et al., 2017), for the hyperbolic target encoder.

Since all numerical operations in FLONE are defined on Lorentz
space, these (Euclidean) drug and target features must first be

mapped to vectors on the Lorentzian manifold Ln :¼ fx 2 R
nþ1 :

x; xh iL ¼ 1=c;xt > 0g. To this end, the tangent space of Lorentz

space T xL
n
c :¼ fz 2 R

nþ1 : z; xh iL ¼ 0g is needed for the mapping.

Specifically, for the hyperbolic drug encoder, it takes the (Euclidean)
ECFP6 as the input. Take encoding ECFP6 of Di (termed as
ECFPDi

) as an example, first, ECFPDi
is concatenated with 0 to cre-

ate (0, ECFPDi
), to map ECFPDi

into the tangent space of origin of

Lorentz space O ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
�1=c

p
; 0; . . . ;0Þ. Because according to T xL

n
c :

¼ fz 2 R
nþ1 : z; xh iL ¼ 0g and ð0; ECFPDi

Þ; O
	 


L ¼ 0, (0,

ECFPDi
) is in the tangent space of O. Then, (0, ECFPDi

) is further
mapped into the Lorentz space through the exponential map func-
tion defined as follows, where z 2 T xL

n
c :

expc
x zð Þ ¼ cosh

ffiffiffiffiffi
cj j

p
zj jj jL

� �
xþ z

sinhð
ffiffiffiffiffi
cj j

p
zj jj jLÞffiffiffiffiffi

cj j
p

zj jj jL
; (7)

zj jj jL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z; zh iL

q
: (8)

In this way, the Lorentzian ECFP6, i.e. expc
O ð0; ECFPDi

Þ
� �

can
be generated, and then expc

O ð0; ECFPDi
Þ

� �
is sent to FLLinearm;n xð Þ

specifically for encoding Lorentzian ECFP6, to reduce its dimension
to the unified hidden dimension mentioned in Section 2.4.
Furthermore, all Lorentzian ECFP6 (after dimension reduction) of
involved drugs constitutes the hyperbolic drug embedding look-up
table (through drug entity indices). As an analogy (above procedure
can be used to map any arbitrary Euclidean vector to a Lorentzian
vector), based on the similar procedure with a FLLinearm;n xð Þ specif-
ically for target sequence similarity, the hyperbolic target encoder
can be generated.

After combining the hyperbolic encoders with FuLLiT, the
parameters to be end-to-end optimized are not the weight of self-
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contained trainable matrices anymore but different weights in fully
Lorentz layers of the encoders. The advantage of adding domain
knowledge-based encoders is that, previously unseen drugs and tar-
gets can be handled by linking them with seen entities with the help
of the injected prior similarity.

2.6 Model training and optimization
Similar to the Euclidean translation-based KGC models, negative
sampling (Bordes et al., 2013) was used to train the FLONE.
Specifically, during the training phase, for each positive/known triple
ðDi;D

0
k;TjÞ, the negative triple was sampled by randomly replacing

Tj with other Tj0 in the target entity set and ensuring that the gener-
ated negative triples were not in the extracted known DDT triple set.

The loss function used for optimizing all sets of parameters in
FLONE was the binary cross entropy loss defined as follows:

L ¼ � 1

N

XN
logp Di;D

0
k;Tj

� �
þ
XN0

log 1� p Di;D
0
k;Tj0

� �� �� �
; (9)

where N is the positive/known triple number in the training set and
N0 is the number of negative triples generated for each known triple.
Besides, we adopted the Riemannian Adam as the optimizer of
FLONE, which is the counterpart of Adam defined in Euclidean
space (Bécigneul and Ganea, 2018; Kochurov et al., 2020).

3 Results and discussion

3.1 Hyperbolicity of the DDT networks and scalability

analysis
To test whether the resulting heterogeneous DDT networks (equiva-
lent to the extracted triple sets) exhibit a hierarchical structure for
demonstrating our hypothesis, we calculated their Gromovs hyper-
bolicity d (Chami et al., 2019; Gromov, 1987), which measures how
hierarchical the network is. The lower d, the more implicit hierar-
chies the network has, and d of completely tree-like structures is 0.
Moreover, for common hierarchical benchmark datasets, e.g.
Human PPI and Airport, the d is about 1, and for the standard (non-
hierarchical) benchmark, e.g. Cora, the d is 11 (Chami et al., 2019).
While the calculated d values of the extracted DTINet and BioKG
DDT networks were both 1.5, which indicated that these networks
do possess the implicit hierarchies, making them theoretically feas-
ible for hyperbolic space embedding.

The model complexity of FLONE is Oðdne þ ne þ nrd
2Þ, in which

d, ne and nr are the embedding dimension, (drug and target) entity
number and (disease) relation number, respectively. Specifically, the
complexity of either self-contained look-up tables or hyperbolic
encoders based on FLLinearm;n xð Þ (OðdneÞ) is proportional to d and
ne and irrelevant to nr, as the matrix contained in them is independent
of disease types. Besides, as demonstrated by Chen et al. (2021), the
fully Lorentzian-based KGC algorithm can be effectively extended to
KG triple datasets with over 40 000 entity number and hundreds of
relation types (Dettmers et al., 2018; Toutanova and Chen, 2015). To
the best of our knowledge, this scale can satisfy handling most of the
precisely curated DDT triple sets.

3.2 Model evaluation settings
Except for the data leakage mentioned in Section 2.1, the common
model evaluation setting, i.e. randomly splitting the DDT triple set
into training, validation, and test sets could also cause over-
idealistic results in our task. This is because each defined known
ðDi;D

0
k;TjÞ triple not only contains the associations ðDi;D

0
kÞ and

ðD0k;TjÞ, but also includes ðDi;TjÞ (i.e. constituting a triangular
inter-node sub-structure), and ignoring ðDi;TjÞ in data splitting will
lead to extra data leakage. For example, if ðDi;D

0
k1;TjÞ and

ðDi;D
0
k2;TjÞ are allocated into training and test sets separately, after

training, when inferring the target for ðDi;D
0
k2Þ, Tj tends to be

chosen more easily, as the model ‘has already seen’ the unnecessary
implicit association information between Di and Tj [i.e. ðDi;TjÞ]
during the training phase.

To avoid this pitfall, we split these triples into training, validation
and test sets based on drug–target pairs. In other words, the known tri-
ples with the same drug–target pair were put into the same set, as such
all test targets for a given drug were not seen by the model during train-
ing. In this case, no consideration was given to ensure a complete
coverage of drugs and targets in the training set, and so it was possible
for drugs and targets to exist in either the validation or test set, but not
in the training set (the related statistics are in Supplementary Section
S4), which also increased the difficulty of target identifications.

Based on this setting, the DDT triples corresponding to 60%: 20%:
20% of all drug–target pair varieties were divided into training, valid-
ation and test sets, respectively. This procedure was repeated five times
independently, for each time, before splitting data, the whole DDT tri-
ple set was randomly shuffled to make different drug–target pair vari-
eties enter each set. We computed and reported the average evaluation
metrics over the five independent repeats.

To evaluate the model’s predictive performance in the scenario
of explicitly considering disease types and directly ranking all candi-
date targets, we adopted the standard evaluation metrics used in rec-
ommendation system ranking tasks, including Mean Reciprocal
Rank (MRR), Hits@1, Hits@3 and Hits@10 (Moon et al., 2021).
Among these, MRR was chosen as the main metric, because it can
better evaluate the model’s ability to assign the positive target a
ranking score that is distinguishable from other candidate targets
(under the given drug and disease). MRR is calculated as follows:

MRR ¼ 1

jNtestj
XjNtest j

i¼1

1

ranki
; (10)

where Ntest is the test sample set, and ranki is the score ranking of
the true target entity among all targets of interest for the ith test sam-
ple. Hits@K represents the percentage of the true target entities that
appear within the top K positions of overall candidate ranking dur-
ing the test phase.

3.3 Experiments without external domain knowledge

injection
The main objective of our experiments is to test whether properly
introducing hyperbolic space can improve the performance of
Euclidean translation-based KGC methods in our task. To this end,
we compared our method with the representative Euclidean
translation-based method DDTE detailed in Section 2.4 based on
the aforementioned data splitting. To eliminate the uncontrolled in-
fluence brought by different external domain knowledge for fair
comparison, we first chose FuLLiT (termed as FLONEbase, later
these two names will be used interchangeably), which only uses self-
contained drug and target embedding look-up tables (the perform-
ance of FLONE with the hyperbolic encoder under the same experi-
mental settings/data splitting was discussed in the next section). The
two additional algorithm variants were also considered. The first
variant was named as DDTEbias, in which the drug and target type-
specific biases mentioned in Equation (4) were added into DDTE.
The second variant was the fully Euclidean counterpart of
FLONEbase, termed as FEC� FLONEbase: on the top of DDTEbias,
the vector-based disease offset was replaced by the matrix-based off-
set [i.e. using ELinearn;n eDið Þ as the offset, where ELinearn;n and eDi

represent the Euclidean linear layer and Euclidean drug embedding
separately]. This controls for the internal representation of diseases
by representing diseases as translation matrices in both algorithms.

To conduct more comprehensive comparison, we also considered
two other Euclidean KGC methods ConvE (Dettmers et al., 2018)
(Convolution-based) and DistMult (bilinear product-based) (Yang
et al., 2014) as well as another hyperbolic method MuRP (Poincaré
space-based) (Balazevic et al., 2019). Further, we did experiments
based on two embedding dimensions: 16 and 128. Sixteen and one
hundred twenty-eight are commonly selected, representative dimen-
sions for hyperbolic and Euclidean embedding separately (Chen
et al., 2021; Moon et al., 2021). Theoretically, hyperbolic embed-
ding loses less information than Euclidean embedding when the
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embedding dimension is small. Besides, the Adam optimizer

(Kingma and Ba, 2014) was adopted for all Euclidean-based models.
The experimental results are in Tables 1 and 2. Both dimensions

suggest that FLONEbase achieved overall better performance com-
pared with all involved Euclidean-based models across both embed-
ding dimensions and on both the DTINet and BioKG datasets. Only

under Hits@10, the sub-optimal performance was obtained on
DTINet. Compared with the second-best model (based on the main
metric MRR), FLONEbase obtained 5.5% and 5.8% (on DTINet)

and 8.0% and 5.7% (on BioKG) performance margins on the 16-di-
mension and 128-dimension, respectively. The above clearly verified

the effectiveness of FLONE and our hypothesis. Interestingly,
MuRP did not produce very close results with our Lorentz space-
based method due to numerical instability of the Poincaré model,

suggesting our decision to use the Lorentz model.

3.4 Fusing domain knowledge for FLONE
After demonstrating our basic hypothesis, following the same ex-
perimental settings/data splitting as the last section, we investigated

the effectiveness of fusing domain knowledge for FLONE. As
described in Section 3.2, current data splitting is based on a chal-
lenging scenario where previously unseen drugs and targets exist. It
is difficult for FuLLiT and DDTE to handle the included unseen
drugs and targets because what they leverage is only known struc-
tural information of the DDT network. Intuitively, the fusion of
similarity domain knowledge of involved drugs and targets could be
helpful to improve the prediction accuracy of FuLLiT. To demon-
strate this, based on the larger and more complex DTINet DDT net-
work with complete similarity data, the FLONE variants with
different hyperbolic drug and target encoder combinations for FuLLiT
(i.e. FLONEECFP�SEQ, FLONEECFP�None and FLONENone�SEQ), were
added into performance comparison. The two suffixes (first: drugs, se-
cond: targets) of the variant name represent the use of the correspond-
ing encoders (ECFP: hyperbolic ECFP6-based drug encoder, SEQ:
hyperbolic target sequence similarity-based target encoder and None:
using the original self-contained embedding look-up table without do-
main knowledge injection). Additionally, we compared two representa-
tive network-based target prediction methods NeoDTI (Wan et al.,
2019) and KGE_RF (Ye et al., 2021), which were trained based on a
standard 1:1 sampling of positive and negative samples (the detailed
experimental setup of these two methods are in Supplementary Section
S2). Since the final embedding dimension of KGE_RF depends on the
selected drug and target structural information dimension, we adopted
their default basic hyper-parameters.

Table 3 gives the predictive performance of all of the aforemen-
tioned algorithms under the experimental setting described in
Section 3.2. From the results, we first found that, compared with the
other FLONE variants, FLONEECFP�SEQ had the best performance.
Under both 16 and 128 dimensions, it obtained 24.5% and 30.2%
performance improvements on MRR compared with FLONEbase/
FuLLiT. This can demonstrate the importance of similarity domain
knowledge in current scenario where unseen drugs and targets
occur. FLONEECFP�None was better than FLONENone�SEQ, indicating
that ECFP6 could be more effective compared with the target se-
quence similarity in our task. In addition, FLONEECFP�SEQ also out-
performed the involved NeoDTI and KGE_RF algorithms, which
further demonstrated the effectiveness of our framework.
Meanwhile, we provided the experiments about fusing similarity do-
main knowledge into the Euclidean-based models in Supplementary
Section S3.

3.5 Extra ablation study
Based on the conclusion from the last section, to confirm that the
performance gain seen in FLONE having drug and target encoders
compared with the one without the encoders, is not solely due to the
later one’s inability to handle unseen drugs and targets, we devised
an extra ablation study: we still kept the same experimental settings,
to run FuLLiT/FLONEbase and FLONEECFP�SEQ again based on the

Table 1. Comparison results of involved methods under the 16

embedding dimension

DTINet MRR Hits@1 Hits@3 Hits@10

FLONEbase 0.3806 0.3301 0.3994 0.4685

FEC� FLONEbase 0.3608 0.3174 0.3680 0.4484

DDTEbias 0.3134 0.2315 0.3520 0.4651

DDTE 0.3049 0.2123 0.3518 0.4790

MuRP 0.3234 0.2463 0.3605 0.4636

ConvE 0.3160 0.2362 0.3583 0.4648

DistMult 0.3014 0.2148 0.3387 0.4739

BioKG MRR Hits@1 Hits@3 Hits@10

FLONEbase 0.4706 0.3786 0.5224 0.6452

FEC� FLONEbase 0.3594 0.3049 0.3797 0.4600

DDTEbias 0.4222 0.3302 0.4653 0.5992

DDTE 0.3545 0.2417 0.4162 0.5586

MuRP 0.4358 0.3373 0.4911 0.6146

ConvE 0.3737 0.2815 0.4182 0.5507

DistMult 0.2877 0.1986 0.3310 0.4518

Note: The bold data indicate the best result under current evaluation metric

and dataset.

Table 2. Comparison results of involved methods under the 128

embedding dimension

DTINet MRR Hits@1 Hits@3 Hits@10

FLONEbase 0.4335 0.3936 0.4428 0.5054

FEC� FLONEbase 0.4098 0.3705 0.4139 0.4907

DDTEbias 0.3893 0.3232 0.4165 0.5125

DDTE 0.3139 0.2186 0.3635 0.4997

MuRP 0.3310 0.2502 0.3699 0.4823

ConvE 0.3885 0.3389 0.4090 0.4702

DistMult 0.3555 0.3000 0.3780 0.4536

BioKG MRR Hits@1 Hits@3 Hits@10

FLONEbase 0.5027 0.4116 0.5495 0.6758

FEC� FLONEbase 0.4549 0.3790 0.4914 0.5960

DDTEbias 0.4754 0.3780 0.5215 0.6671

DDTE 0.3806 0.2549 0.4576 0.6071

MuRP 0.4750 0.3749 0.5323 0.6586

ConvE 0.4641 0.3781 0.5090 0.6296

DistMult 0.3863 0.3176 0.4198 0.5108

Note: The bold data indicate the best result under current evaluation metric

and dataset.

Table 3. Comparison results of involved methods under the 16/128

embedding dimensions based on the DTINet dataset

Methods MRR Hits@1 Hits@3 Hits@10

FLONEECFP�SEQ dim: 16 0.4740 0.4121 0.4945 0.5946

FLONEECFP�None dim: 16 0.4322 0.3750 0.4568 0.5347

FLONENone�SEQ dim: 16 0.4068 0.3461 0.4233 0.5260

FLONEbase dim: 16 0.3806 0.3301 0.3994 0.4685

NeoDTI dim: 16 0.1464 0.0539 0.1563 0.3245

FLONEECFP�SEQ dim: 128 0.5644 0.5139 0.5793 0.6564

FLONEECFP�None dim: 128 0.5033 0.4571 0.5216 0.5912

FLONENone�SEQ dim: 128 0.4820 0.4410 0.4892 0.5614

FLONEbase dim: 128 0.4335 0.3936 0.4428 0.5054

NeoDTI dim: 128 0.1981 0.1051 0.1961 0.4054

KGE_RF 0.2761 0.1859 0.3081 0.4679

Note: The bold data indicate the best result under current evaluation

metric.
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DDT network screened from the DTINet dataset. The only differ-
ence here was that we divided the original test set of each independ-
ent repeat into three parts, and computed and reported the average
evaluation metrics on each part separately. Specifically, the first part
(Part 1) includes the samples corresponding to drugs that are in the
original test set but not in the training set, and the second part (Part
2) includes the samples corresponding to targets that are in the ori-
ginal test set but not in the training set. The third part (Part 3)
includes the samples corresponding to already seen drugs and tar-
gets. The numbers of unseen drugs, unseen targets and samples for
each independent repeat are in Supplementary Section S4.

The results are provided in Table 4, we observed that
FLONEECFP�SEQ clearly out-performed FLONEbase on all three
parts. This indicated that introducing similarity-based drug and tar-
get encoders into FLONE not only improves its predictions on

triples related to seen drugs and targets, but also makes FLONE
have the capability to provide effective predictions on ones corre-
sponding to previously unseen drugs and targets. In addition, we
further demonstrated the advantages of explicitly considering dis-
ease types when inferring targets of the given drug, through an extra
experiment detailed in Supplementary Section S5.

3.6 Visualization of the embedding spatial layout
To give some insights for showing the captured information by
hyperbolic embeddings, we investigated the difference of embedding
spatial layout between the Lorentz KGC model and its Euclidean
counterpart. Based on the 128-dimension FLONEECFP�SEQ and
FEC� FLONEECFP�SEQ (on DTINet), we projected the Lorentz
embeddings and Euclidean embeddings of all candidate target enti-
ties (i.e. the targets in the target entity set), for the given drug entity
Nitrazepam (DB01595) and disease relation leukemia, myeloid,
acute, to 2-dimension (2D) for visualization (Fig. 3). Specifically, the
original Lorentz target embeddings were finally mapped into a 2D
Poincaré disk in which the hyperbolic embedding quality can be ef-
fectively checked (Balazevic et al., 2019), and the Euclidean ones
were mapped to their 2D Euclidean space (the projection details are
in Supplementary Section S6).

For the 2D Poincaré disk, as shown in Figure 3A and B, we draw
the triangular tiling within it, these triangles had the same size in
Euclidean space with the vertices that can be treated as different fea-
ture embedding points. We can observe that, the space closer to the
boundary of the Poincaré disk can include more embedding points,
loosely speaking, there is more capacity to contain more embeddings
points and to distinguish them (for downstream tasks) (Balazevic
et al., 2019). Through capturing the hierarchical structural informa-
tion in the DDT network by learning our defined triples, we found
that the hyperbolic embeddings of the above targets (from
FLONEECFP�SEQ) were successfully pushed close to the boundary of
the 2D Poincaré disk, and after applying the translation offset of leu-
kemia, myeloid, acute, every positive target embedding was clearly
separated with all negative target embeddings. For the 2D spatial
layout of the corresponding Euclidean target embeddings generated
from the Euclidean counterpart of our Lorentz model (Fig. 3C and

Table 4. Comparison results of involved methods in the ablation

study based on the DTINet dataset

Part Methods dim: 16 Hits@10 Hits@3 Hits@1 MRR

Part 1 FLONEbase 0.0596 0.0201 0.0080 0.0313

Part 1 FLONEECFP�SEQ 0.4367 0.3352 0.2379 0.3092

Part 2 FLONEbase 0.0000 0.0000 0.0000 0.0030

Part 2 FLONEECFP�SEQ 0.1872 0.1222 0.0779 0.1167

Part 3 FLONEbase 0.6473 0.5589 0.4635 0.5291

Part 3 FLONEECFP�SEQ 0.7054 0.5978 0.5111 0.5758

Part Methods dim: 128 Hits@10 Hits@3 Hits@1 MRR

Part 1 FLONEbase 0.1088 0.0363 0.0140 0.0494

Part 1 FLONEECFP�SEQ 0.5587 0.4528 0.3415 0.4171

Part 2 FLONEbase 0.0000 0.0000 0.0000 0.0028

Part 2 FLONEECFP�SEQ 0.2016 0.1561 0.1146 0.1483

Part 3 FLONEbase 0.6890 0.6163 0.5522 0.6000

Part 3 FLONEECFP�SEQ 0.7650 0.6870 0.6260 0.6723

Note: The bold data indicate the best result under current evaluation metric

and data.

Fig. 3. Visualization of the 2D embedding spatial layout of 128-dimension FLONEECFP�SEQ and its Euclidean counterpart. These four layouts display all candidate target

embeddings (under the given drug entity Nitrazepam and disease relation leukemia, myeloid, acute) in different situations (A–D). The blue points represent all candidate target

embeddings, and the red points represent the embeddings of current positive targets in the test set under the given drug and disease (after dimension reduction). (A) The hyper-

bolic target embedding layout before applying the translation of the given disease in 2D Poincaré disk. (B) The hyperbolic target embedding layout after applying the transla-

tion of the given disease in 2D Poincaré disk. (C) The Euclidean target embedding layout before applying the translation of the given disease in 2D Euclidean space. (D) The

Euclidean target embedding layout after applying the translation of the given disease in 2D Euclidean space. Besides, the black arc in layouts (A) and (B) is the boundary of 2D

Poincaré disk
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D), we found that the Euclidean positive target embeddings were
not as clearly separated from negative ones as those hyperbolic
embeddings. This could indicate that the hyperbolic embedding is
able to better capture the DDT triples carrying hierarchical struc-
tural information in the DDT networks.

4 Conclusion

This article first hypothesizes that, because heterogeneous DDT net-
works could possess hierarchical structures, the translation-based KGC
method could benefit from properly introducing hyperbolic space,
which is natural for representing network hierarchies. Within the scope
of the more practical target prediction problem—directly ranking all
candidate targets for the given drug while explicitly considering disease
types, we formulated this problem as a hyperbolic translation-based tri-
ple target entity completion task, for testing our hypothesis. We pro-
posed FLONE and evaluated it on two hierarchical DDT networks.
Our experimental results showed that, FLONE generates more accur-
ate target predictions than its Euclidean counterparts, which supports
our hypothesis. Furthermore, we found that external domain know-
ledge, such as drug structural and target sequence similarities can be
utilized to further improve the predictive accuracy for both seen and
previously unseen triples in our framework.

Apart from heterogeneous DDT networks, FLONE could be
applied to other complex heterogeneous networks with a hierarchic-
al structure. However, it is worth mentioning that, apart from hier-
archical structures, real-world complex networks could exhibit
other types of sub-structures, e.g. the cyclic structure. In future
work, we plan to introduce more non-Euclidean space, e.g. spherical
space specifically for learning cyclic structures into our framework,
making it capable of adapting to different network sub-structures.
Additionally, FLONE is a network-based method mainly utilizing
known DDT network structures to infer unknown associations,
therefore exploring how to give a confident prediction to samples,
which are totally irrelevant to known DDT triple relationships is
also an interesting future direction.
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