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Abstract. We consider fluxes and forces in Markov chains. In physics, the concept of so-called
iso-surfaces has recently been introduced. In generic cases, there are infinitely many associated
iso-dissipation forces. We first show that this is due to different notions of duality, each giving
rise to dual force. We then study Hamiltonians associated to variational formulations of Markov
processes, and develop different decompositions for them.

1. Introduction
Many processes in nature are directional in time, with diffusion being a simple but prominent
example. In this article, we call these processes non-reversible, for reasons explained below.
Further examples of non-reversible processes are drift-diffusion processes,

∂tρ = −div(fρ) + ∆ρ, (1)

where ρ is a density and f is a field. Here the nature of the field f matters: if f = ∇V for
some potential V , then the evolution can be understood in terms of an underlying free energy.
If f is not a gradient vector field, i.e., no such V exists, then significant qualitative changes
occur. These changes can have practical applications. For example, a system governed by a
free energy converges under suitable conditions to equilibrium. Non-gradient terms change the
rate of convergence, and can be used to accelerate the convergence (see, e.g., [1] for an analysis
on the level of Markov chains). This is sometimes visualised with milk being dropped in a cup
of coffee: The milk will diffuse, and the mixture which will eventually reach equilibrium (the
homogeneous mixture of milk and coffee) without interference, but will reach equilibrium much
faster if stirred by a spoon.

This analogy can only lead so far. A more careful analysis reveals that processes can often
be decomposed in different components, which often satisfy suitable orthogonality relations.
The understanding of such splits help to understand acceleration of convergence to equilibrium.
For example, one can think of convergence to equilibrium as decreasing the free energy, thus
undergoing a suitable gradient descent. If this takes place in a shallow part of the energy
landscape, then the convergence will be slow. If there is an additional drift “orthogonal” to
the gradient descent, then this can lead to steeper regions being reached, where convergence is
faster.

The situation gets even more complicated in processes out of equilibrium. One can think
of a one-dimensional bar with both ends held at different systems. Then a cost is required to
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maintain the steady state, unlike the maintenance of the steady state in equilibrium. This cost
is sometimes called housekeeping heat. The analysis of such phenomena is a very active field in
stochastic thermodynamics. An example is recent work by Dechant, Sasa and Ito [2, 3] on the
geometric decomposition of entropy production in housekeeping, excess and coupling.

There are various levels on which non-reversible processes can be looked at – on the continuum
scale in form of a partial differential equation as in (1), or on the scale of underlying Markov
processes. We will largely focus on Markov processes. One reason is that their structure is
remarkable in the following sense: The evolution can be described in terms of forces F and
fluxes j, and the relation between them is always the same (equation (3) below); the rates,
which differentiate different Markov processes, enter through the mobility (equation (4) below).
The price to pay is that the force-flux relations on the level of Markov chains are necessarily
nonlinear. Section 2 summarises these classic results. The focus on Markov chains also explains
the slightly unusual terminology “non-reversible”: This is to avoid the term “irreversible”, which
has a different meaning for Markov processes.

1.1. Outline of the paper
The paper combines two thrusts of investigation presented in Section 2 and Section 3. In
both sections, we use the knowledge that the most likely evolution of a Markov chain can (in
suitable situations) be described by a variational principle, a so-called large deviation principle.
There, the pathwise evolution appears as minimiser of a functional. The functional is called rate
functional and the integrand is here denoted as Lagrangian. It is the Lagrangian functional that
plays a central role in both sections.

In Section 2, we first summarise some key notions for the description of Markov processes in
terms of forces and fluxes. We then explain the non-uniqueness of the so-called iso-dissipation
force recently introduced in the physics literature [4] in a mathematical way. The iso-dissipation
force is related to the force of the system through an equation involving a dissipation potential
of the Lagrangian functional, see (10) below. This characterisation allows us to identify an
iso-dissipation force to a dual force and, using this relation, to show its non-uniqueness.

In Section 3, we consider the Legendre dual of the Lagrangian, thus a Hamiltonian. The
central results of this section are various decompositions of the Hamiltonian into reversible and
irreversible components. We also discuss an application of these splittings to diffusive processes
in terms of the Fokker-Planck equation. Here we start from a general decomposition of the
Hamiltonian into two Hamiltonians and obtain a general decomposition for the Lagrangian
valuated at 0, see Proposition 3.3. The decomposition may come from different ways that have
been studied in the literature, such as from a decomposition of fluxes and forces [5, 6, 7, 8],
hydrodynamic limits of many-particle systems [9] (which often impose some specific structures
on the functionals) or from a symmetric-antisymmetric decomposition of the generator [10].

2. Orthogonality of forces and decomposition of the entropy production
In this paper, we consider an ergodic Markov process (Xt)t≥0 with generator L and a unique
invariant measure π. The time evolution of the probability density ρt of Xt can be written in
terms of the master equation (also called Fokker-Planck or forward Kolmogorov equation),

ρ̇t = L′(ρt) (2a)

= −div[j(ρt)] (2b)

= −div[a(ρt)ϕ(F (ρt))], (2c)

where L′ denotes the adjoint (with respect to the L2 inner product) generator of L, j is the flux
(current), a is the mobility and F is the force.
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In (2b) and (2c) we use a, possibly nonlinear, relation between forces and fluxes

j(ρ) = a(ρ)ϕ(F (ρ)),

for some function ϕ. For instance, for the spatially continuous setting of diffusion processes, j
is linearly dependent on F ,

j(ρ) = a(ρ)F (ρ),

while for spatially discrete Markov chains, the relation between j and F may be non-linear, and
specifically of the form

jxy(ρ) = axy(ρ) sinh
(1
2
Fxy(ρ)

)
, (3)

where

axy(ρ) = 2
√
ρ(x)rxyρ(y)ryx, and Fxy(ρ) = log

ρ(x)rxy
ρ(y)ryx

, (4)

with rxy being the transition rate for jumps from state x to state y. This result goes back
to Schnakenberg [11], see also [5]. We mention that for discrete Markov chains, the force-flux
relation may also be linear [12, 13, 14].

The formulations (2a), (2b) and (2c) give rise to different ways of decomposing a non-
reversible dynamics into symmetric and anti-symmetric parts studied in recent years:

(i) A decomposition of the generator [15, 10]: L = LS + LA (and thus of the dual operator
L′),

(ii) A decomposition of the fluxes [5]: j = jS + jA,

(iii) A decomposition of the forces [5, 6, 7]: F = FS + FA.

In this paper, we complement these decompositions by developing different splittings for
Hamiltonians, that is, duals of Lagrangians appearing in a variational formulation of the Markov
process. We now sketch this setting.

We now consider the process run N times and write ρ̂N
t for the associated density and , ȷ̂N

for the associated flux. Here t ∈ [0, T ] parametrises the path. Then under suitable technical
assumptions a large deviation principle exists, see , e,.g., [5],

Prob
(
(ρ̂N

t , ȷ̂Nt )t∈[0,T ] ≈ (ρt, jt)t∈[0,T ]

)
≍ exp

{
−N I[0,T ]

(
(ρt, jt)t∈[0,T ]

)}
, (5)

with rate function of the form

I[0,T ]

(
(ρt, jt)t∈[0,T ]

)
= I0(ρ0) +

1

2

∫ T

0
Φ(ρt, jt, F (ρt))dt, (6)

where
Φ(ρ, j, f) := Ψ(ρ, j)− ⟨j, f⟩+Ψ∗(ρ, f), (7)

in which Ψ is a convex functional, Ψ∗ is its Legendre dual, and ⟨j, f⟩ is a dual pairing between
a current j and a force f . Here Ψ and hence Ψ∗ depend on the process, in particular on the
rates. While Φ is a function of density ρ, flux j and force f , the force in the physical system
is given as a function of ρ, which we write as uppercase symbol F (ρt). For ease of notation,
we will only write the second argument in the functionals Ψ and Ψ∗ if no confusion can arise.
In this paper, N can be interpreted, for example, as the number of realisations of a stochastic
process described by a Markov chain.

The dual pairing in the rate functional has a special meaning. Given a Markov process with
flux j and a force F , the entropy production rate associated with the process is given by

e := 2⟨j, F ⟩ (8)
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(the reason for calling this term entropy production rate is that an expansion of the rate
functional yields for example for Brownian particles the entropy difference).

It is of significant current interest in physics to understand the roles of entropy and entropy
production, in particular in processes out of equilibrium. For example, recently a connection
between the response of a physical observable and the relative entropy has been established [16].
A natural way to understand entropy (production) is to split it in components. In [4], the
authors introduce a decomposition of the force as F = FS + FA where

FS =
F + Fiso

2
, and FA =

F − Fiso

2
. (9)

In the formula above, Fiso, which is called an iso-dissipation force, is defined such that the
identity

Ψ∗(F ) = Ψ∗(Fiso) (10)

holds. Obviously this does not define Fiso uniquely, except for degenerate situations. In
particular, if Ψ∗ is continuous, convex and coercive, then {r

∣∣ Ψ∗(r) = Ψ∗(F )} is simply the
boundary of the convex sublevel set. In this section, we provide another interpretation for
iso-dissipation forces and its non-uniqueness, relating them to dual forces of dual processes.

The decomposition of the force (9) gives rise to a nonnegative decomposition of the entropy
production [4, Section II C]

e = 2⟨j, f⟩ = 2⟨j, FS⟩+ 2⟨j, FA⟩
= D[j∥ − jiso] +D[j∥jiso], (11)

where jiso is the Legendre transform of Fiso (in suitable function spaces) and given two fluxes
j1, j2, D[j1∥j2] is the Bregman divergence between them,

D[j1∥j2] := Ψ(j1)−Ψ(j2)− ⟨j1 − j2, ∂j1Ψ(j2)⟩ ≥ 0.

In addition, according to [4] there are infinitely many decompositions of the force (9) (and
thus of the entropy production (11)), originating from different choices of iso-dissipation forces
according to (10).

In the rest of this section, combining results from [17] and an adaption of arguments in [5],
we provide a mathematical interpretation of iso-dissipation forces. The key idea is to link them
to the dual force (associated to a dual process of the original one).

As in [17], we now consider the time-reversed path (ρ∗t , j
∗
t )t∈[0,T ] = (ρT−t,−jT−t)t∈[0,T ], which

defines an adjoint process. Then in the framework discussed in [5], the associated rate functional
with adjoint force F ∗(ρ) is

I∗[0,T ]

(
(ρt, jt)t∈[0,T ]

)
= I0(ρ0) +

1

2

∫ T

0
Φ(ρt, jt, F

∗(ρt))dt, (12)

see [5]. Here, I0 is the rate function associated with fluctuations of the density ρ, for a system
in its steady state. That is, within the steady state, Prob(ρ̂N ≈ ρ) ≍ exp(−N I0(ρ)).

Then by [5, Proposition 3] we have

Ψ∗(ρ, F (ρ)
)
= Ψ∗(ρ, F ∗(ρ)

)
. (13)

It follows from (13) and (10) that one can identify an iso-dissipation force with a dual force
Fiso = F ∗.

We now show that mathematically there are infinitely many representations for the dual force
F ∗. Therefore, there are indeed infinitely many choices for an iso-dissipation force.
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We define a time-reversal operation T0 which reverses time but does not change any
coordinates or momenta. That is, for paths X on the time interval [0, τ ], we take (T0X)t =
(X)τ−t. Now define an adjoint dynamics [18] for which the path measure is P∗, with

dP∗(X) = dP (T0X) . (14)

Let W∗ be the corresponding operator for the adjoint process. Then W∗ satisfies

(W)y,xπ(x) = (W∗)x,yπ(y). (15)

Let µ be a measure which is absolutely continuous with respect to the invariant measure π.
We denote by h = dµ

dπ the corresponding Radon-Nikodym derivative. The following argument is
adapted from [17]. Let W+

µ be the adjoint of W with respect to µ−1, that is∫
f(y)(Wg)(y)µ−1(y)dy =

∫
g(x)(W+

µ f)(x)µ
−1(x)dx.

The above equality can be rewritten as∫ ∫
f(y)(W)y,xg(x)µ

−1(y)dxdy =

∫ ∫
g(x)(W+

µ )x,yf(y)µ
−1(x)dxdy,

which implies that
(W)y,xµ

−1(y) = (W+
µ )x,yµ

−1(x). (16)

From (15) and (16) we deduce that

(W∗)x,y = (W)y,x
π(x)

π(y)
=

π(x)

µ(x)
(W+

µ )x,y
µ(y)

π(y)
.

Thus
W∗ = W∗

µ = h−1 ◦W+
µ ◦ h. (17)

Hence for each µ, (17) provides a representation of W∗, which in turn gives rise to a dual force
F ∗ = F ∗

µ . As a consequence, using the identification between an iso-dissipation force and a dual
force discussed after (13), it follows that there are infinitely many iso-dissipation forces (and
thus infinitely many different ways of decomposing the entropy production).

Example 2.1. Consider the following non-reversible diffusion process

dXt = f(Xt) dt+
√
2σ dW (t). (18)

The associated Fokker-Planck equation is

∂tρ = Wρ = −div(fρ) +D∆ρ = −div(ρF (ρ)),

where D = σ2 and
F (ρ) = f −D log∇ρ.

Suppose the invariant measure is of the form dπ(x) ∝ e−U(x)dx (this is a common assumption in
physics, with the difficulty that U is in general not known). Taking µ(dx) = dx, the corresponding
adjoint process is

∂tρ = W∗ρ = −div(f∗ρ) +D∆ρ = −div(ρF ∗(ρ)),

where
f∗(ρ) = −(2D∇U + f), and F ∗(ρ) = f∗(ρ)−D log∇ρ.
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Thus a decomposition of the force is

FS(ρ) =
F (ρ) + F ∗(ρ)

2
= −D∇U −D log∇ρ

and

FA(ρ) =
F (ρ)− F ∗(ρ)

2
= f +D∇U.

While FS and FA are uniquely defined, there are infinitely many choices of Fiso giving rise to
this decomposition, via (9). It is also constructive to use (10) where, in this example, Ψ∗ is
given explicitly in Section 3.2 below (see the last equation there).

3. Hamilton formulations for Markov chains
In this section we review the Hamiltonian viewpoint of the picture described above, and introduce
splittings on the Hamiltonian level. As discussed in [5, Eq. (44)], the Hamiltonian associated
with Markov chains is

H (ρ, ξ) =
1

2
[Ψ∗(ρ, F (ρ) + 2ξ)−Ψ∗(ρ, F (ρ))] . (19)

Let L be the Legendre dual of H , that is

L (ρ, j) = sup
ξ
{⟨j, ξ⟩ − H (ρ, ξ)}.

Given the Hamiltonian H and the force F , we can also find the functional Ψ∗ from (19) by

Ψ∗(ρ, ξ) = 2
[
H (ρ,

1

2
(ξ − F (ρ)))− H (ρ,−1

2
F (ρ))

]
. (20)

Lemma 3.1. The Hamiltonian being of the form (19) is equivalent to the Lagrangian being
given by

L (ρ, j) =
1

2

[
Ψ(ρ, j)− 2⟨j, F (ρ)⟩+Ψ∗(ρ, F (ρ))

]
. (21)

We note that (21) is precisely the form of the integrand of a rate functional we have
encountered in (7), with the middle term being the entropy production rate.

Proof. This proof is adapted from [19] to be consistent with our definition (19) (in [19] the
authors use a slightly different definition where there are no factors 1/2 and 2 on the right-hand
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side of (19)). Suppose H is given as in (19). Then we get

L (ρ, j) = sup
ξ
{⟨j, ξ⟩ − H (ρ, ξ)}

= sup
ξ
{⟨j, ξ⟩ − 1

2
Ψ∗(ρ, F (ρ) + 2ξ) +

1

2
Ψ∗(ρ, F (ρ))}

= sup
ξ
{⟨j, ξ⟩ − 1

2
Ψ∗(ρ, F (ρ) + 2ξ)}+ 1

2
Ψ∗(ρ, F (ρ))

=
1

2
sup
ξ
{⟨j, 2ξ⟩ −Ψ∗(ρ, F (ρ) + 2ξ)}+ 1

2
Ψ∗(ρ, F (ρ))

=
1

2
sup
ξ
{⟨j, ξ⟩ −Ψ∗(ρ, F (ρ) + ξ)}+ 1

2
Ψ∗(ρ, F (ρ))

=
1

2
sup
ξ
{⟨j, ξ − F (ρ)⟩ −Ψ∗(ρ, ξ)}+ 1

2
Ψ∗(ρ, F (ρ))

=
1

2
sup
ξ
{⟨j, ξ⟩ −Ψ∗(ρ, ξ)} − ⟨j, F (ρ)⟩+ 1

2
Ψ∗(ρ, F (ρ))

=
1

2
Ψ(ρ, j)− ⟨j, F (ρ)⟩+ 1

2
Ψ∗(ρ, F (ρ)).

Similarly suppose L is given in (21) then one obtains (19).

3.1. Splittings of Hamiltonians
The question addressed in this section is: Given an evolution of a Markov process governed
by a Lagrangian of the form (21), can this variational formulation be split in symmetric and
asymmetric parts? For example, assume we consider a process with a given rate functional (21)
and construct a second process with the same minimiser of the rate functional, where the rate
functional is equal or higher than the one of the first process. This can be interpreted as
acceleration of convergence to equilibrium: The equilibrium (minimiser) has not changed, but
the steeper nature of the second functional can lead to faster convergence. For example, it
is illuminating if a contribution due to an asymmetric term can be shown to increase the
Lagrangian. If the functionals were quadratic, polarisation identities could be easily used.
The situation with nonquadratic functionals Ψ⋆ is more complex (also on the level of the
associated evolution equation, which is then nonlinear). We develop here splittings in the dual
(Hamiltonian) picture, where information of this kind can be read off. While the splittings
appear technical at first sight, we illustrate them with an example in Subsection 3.2.

We consider a general decomposition of the Hamiltonian H as a sum of two Hamiltonians
and study its implications. The computations are formal, as we assume sufficient regularity
and convexity conditions to ensure the existence of derivatives of the relevant functionals and
to guarantee the existence of maximisers (minimisers) in the relevant suprema (infima). We
first characterise the minimiser of H . The following lemma is elementary and well-known. We
include the proof for completeness.

Lemma 3.2. Let L ,H be Legendre duals. Then min
ξ

H (ρ, ξ) = −L (ρ, 0) is achieved at

ξ∗ = ∂jL (ρ, 0).

Proof. By definition of H , we have

H (ρ, ξ) = ⟨ξ, sξ⟩ − L (ρ, sξ), (22)



International Workshop on Mathematical Modeling and Scientific Computing 2022
Journal of Physics: Conference Series 2514 (2023) 012007

IOP Publishing
doi:10.1088/1742-6596/2514/1/012007

8

where sξ satisfies
ξ = ∂jL (ρ, sξ). (23)

The optimal ξopt is thus found through

ξopt = ∂jL (ρ, sξopt), (24)

and

0 = ∂ξH (ρ, ξopt)

= sξopt + ξopt∂ξoptsξopt − ∂jL (ρ, sξopt)∂ξoptsξopt

= sξopt + (ξopt − ∂jL (z, sξopt))∂ξoptsξopt

= sξopt .

Hence ξopt = ∂jL (ρ, 0) and min
ξ

H (ρ, ξ) = H (ρ, ξopt) = −L (ρ, 0) as claimed.

We now give different decompositions of Hamiltonian H . The first result provides a
decomposition of the Hamiltonian H = H1 + H2. The key idea is to relate the Legendre
duality of the sum of two operators with the duality of each of them, which was studied for
instance in [20]. We will apply this general result to the cases where H1 and H2 are constructed
respectively from the reversible and irreversible parts of the underlying process.

Proposition 3.3. Suppose that the Hamiltonian H can be decomposed as a sum of two
Hamiltonians H1 and H2,

H (ρ, ξ) = H1(ρ, ξ) + H2(ρ, ξ), (25)

where H1(ρ, 0) = H2(ρ, 0) = 0. Let L1, L2 and L be the Legendre transformation of H1, H2

and H . Then we have

L (ρ, j) = L1(ρ, ∂ξH1(ρ, ξ
′)) + L2(ρ, ∂ξH2(ρ, ξ

′)), (26)

where each term on the right-hand side is non-negative and ξ′ satisfies

∂ξH (ρ, ξ′) = j. (27)

As a consequence, we have the following decomposition

L (ρ, 0) = L1(ρ, ∂ξH1(ρ, ξ
∗)) + L2(ρ, ∂ξH2(ρ, ξ

∗)), (28)

where ξ∗ = ∂jL (ρ, 0), which is a solution of

∂ξH (ρ, ξ∗) = 0. (29)

Note that L (ρ, 0) depends implicitly on ξ∗, which solves (29), via ∂ξH1(ρ, ξ
∗) and

∂ξH2(ρ, ξ
∗).

Proof. We express L in terms of L1 and L2. We have

L (ρ, j) = sup
ξ
{⟨j, ξ⟩ − H (ρ, ξ)}

= sup
ξ
{⟨j, ξ⟩ − H1(ρ, ξ)− H2(ρ, ξ)}

= ⟨j, ξ′⟩ − H1(ρ, ξ
′)− H2(ρ, ξ

′), (30)
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where ξ′ solves for given j

j = ∂ξH1(ρ, ξ
′) + ∂ξH2(ρ, ξ

′) = ∂ξH (ρ, ξ′).

Let s1 := ∂ξH1(ρ, ξ
′), then j − s1 = ∂ξH2(ρ, ξ

′). Therefore

L1(ρ, s1) = ⟨s1, ξ′⟩ − H1(ρ, ξ
′), L2(ρ, j − s1) = ⟨j − s1, ξ

′⟩ − H2(ρ, ξ
′). (31)

From (30) and (31), it follows that

L (ρ, j) = L1(ρ, s1) + L2(ρ, j − s1) = L1(ρ, ∂ξH1(ρ, ξ
′)) + L2(ρ, ∂ξH2(ρ, ξ

′)),

which is (26). In addition, since H1(ρ, 0) = H2(ρ, 0) = 0 we have

L1(ρ, j) = sup{⟨j, ξ⟩ − H1(ρ, ξ)} ≥ ⟨0, s⟩ − H1(ρ, 0) = 0.

Similarly L2(ρ, j) ≥ 0. Hence each term on the right-hand side of (26) is non-negative.
Applying (26) to j = 0, we obtain (28), where ξ∗ solves the equation

∂ξH (ρ, ξ∗) = 0,

and according to Lemma 3.2, we get ξ∗ = ∂jL (ρ, 0).

Next we consider a number of applications of Proposition 3.3. In particular, we provide
different decompositions of L (ρ, 0) = supξ(−H (ρ, ξ)), which is of particular interest since it
gives the rate functional for the empirical occupation measures of the Markov process. The
first application is a characterisation of the (Donsker-Varadhan) rate functional of reversible
processes. Here we follow the definition of reversibility in [9], that is, given a functional S ∈ C1,
we say that the Hamiltonian H is reversible with respect to S if H (ρ, ξ) = H (ρ, dS(ρ)− ξ) for
all (ρ, ξ). In particular, when S is the relative entropy, then this is equivalent to the usual detailed
balance condition and time-reversibility [19]. According to [9], the Legendre pair of functionals
(Ψ,Ψ∗) associated to H as in (19) with F (ρ) = dS(ρ) are strictly convex, continuously
differentiable, symmetric (in the second argument) and satisfy Ψ(ρ, 0) = Ψ∗(ρ, 0) = 0 if and
only if H is reversible with respect to S.

Lemma 3.4. Suppose that H (ρ, ξ) = H2(ρ, ξ), where H2 is reversible with respect to some
functional S. Let L2 be the associated Lagrangian and Ψ∗

2 be the dissipation potential associated
to H2 and dS, that is

Ψ∗
2(ρ, ξ) = 2

[
H2(ρ,

1

2
(ξ − dS(ρ))− H2(ρ,−

1

2
dS(ρ))

]
. (32)

Then we have

L2(ρ, 0) =
1

2
Ψ∗

2(ρ, dS(ρ)).

Proof. Since H = H2 is reversible with respect to S, we have

H (ρ,
1

2
dS − ξ) = H (ρ, ξ +

1

2
dS) ∀(ρ, ξ).

Taking the derivative with respect to ξ on both sides yields

∂ξH (ρ,
1

2
dS − ξ) = −∂ξH (ρ, ξ +

1

2
dS) ∀(ρ, ξ).
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This implies that

∂ξH (ρ,
1

2
dS) = 0.

Thus ξ∗ = 1
2dS is a solution to (29). Therefore,

L2(ρ, 0) =
1

2
Ψ∗

2(ρ, dS(ρ)),

where the last equality is (21) with j = 0.

Next, we consider a special case where H2 is independent of the second argument.

Lemma 3.5. Suppose that
H (ρ, ξ) = H1(ρ, ξ) + H2(ρ). (33)

Then the associated Lagrangian L is given by

L (ρ, 0) = L1(ρ, 0)− H2(ρ). (34)

Proof. Since H2(ρ, ξ) = H2(ρ), L2 is defined only on Dom(L2) = {0} and L2(ρ, 0) = −H2(ρ).
Since ∂ξH2(ρ, ξ) = 0, it follows that ∂ξH (ρ, ξ∗) = ∂ξH1(ρ, ξ

∗) = 0. Thus

L (ρ, 0) = L1(ρ, ∂ξH1(ρ, ξ
∗)) + L2(ρ, ∂ξH2(ρ, ξ

∗)) = L1(ρ, 0) + L2(ρ, 0)

= L1(ρ, 0)− H2(ρ).

Alternatively, this can be seen directly by

L (ρ, 0) = sup
ξ
{−H (ρ, ξ)} = sup

ξ
{−H1(ρ, ξ)− H2(ρ)} = sup

ξ
{−H1(ρ, ξ)} − H2(ρ)

= L1(ρ, 0)− H2(ρ).

An example for (33) would be [1, Equations (18)–(20)]. Next, we consider a special case
where H1 is linear with respect to the second argument and H2 is reversible. In this case, we
will be able to determine ∂ξH1(ρ, ξ

∗) and ∂ξH2(ρ, ξ
∗) in (28) explicitly.

Lemma 3.6. Suppose that

H (ρ, ξ) = ⟨W(ρ), ξ⟩+ H2(ρ, ξ), (35)

where H2(ρ, ξ) is symmetric around dS. Let L2(ρ, s) be the Legendre dual of H2(ρ, ξ) and Ψ∗
2

be the dissipation potential defined from H2 as in (32). Then we have

L (ρ, 0) = L2(ρ,−W(ρ)) =
1

2
Ψ2(ρ,−W(ρ)) +

1

2
Ψ∗

2(ρ, dS(ρ)) + ⟨W(ρ), dS(ρ)⟩. (36)

In particular, if ⟨dS(ρ),W(ρ)⟩ = 0, then

L (ρ, 0) = Ψ2(ρ,−W(ρ)) + Ψ∗
2(ρ,−

1

2
dS(ρ)).

The decomposition of the form (35) has been studied in [9]. Typical applications of
Lemma 3.6 are diffusion processes, see Section 3.2 below. We will apply this lemma to obtain
a decomposition of the so-called Donsker-Varadhan rate functional for non-reversible diffusion
processes, see Subsection 3.2.
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Proof. This lemma is an application of Proposition 3.3, where H1(ρ, ξ) = ⟨W(ρ), ξ⟩, thus
L1(ρ, ·) is defined only on Dom(L1) = {W(ρ)} and L1(ρ,W(ρ)) = 0. In addition, since
∂ξH1(ρ, ξ

∗) = W(ρ), we have ∂ξH2(ρ, ξ
∗) = −W(ρ). Thus

L (ρ, 0) = L1(ρ,W(ρ)) + L2(ρ,−W(ρ)) = L2(ρ,−W(ρ))

=
1

2

[
Ψ2(ρ,−W(ρ)) + Ψ∗

2(ρ, dS(ρ)) + 2⟨W(ρ), dS(ρ)⟩
]
,

where the last equality is (21) with j = −W(ρ) and F (ρ) = dS(ρ). We can also prove this
directly as follows.

L (ρ, 0) = sup
ξ
{−H (ρ; ξ)} = sup

ξ
{−⟨W(ρ), ξ⟩ − H2(ρ, ξ)}

= L2(ρ,−W(ρ)),

where the second equation is by (35).

3.2. Application to diffusion processes
As application, we consider general non-reversible diffusion process of the form (18), where the
diffusion matrix may depend on the position,

dXt = b(Xt) dt+
√
2σ(Xt) dW (t).

Let µ be the invariant measure of the process and Sµ(ρ) be the relative entropy between ρ and
µ, and D = σσT . Then, one has [19, 10] for the generator

Lsϕ = div(D∇ϕ) +D∇ϕ · ∇ logµ,

Laϕ = Lϕ− Lsϕ = b · ∇ϕ−D∇ϕ · ∇ logµ,

L′
sρ = div(D∇ρ)− div(ρD∇ logµ) = div

[
ρD∇

(
log(ρ/µ)

)]
= div

[
ρD∇

(
dSµ(ρ)

)]
,

L′
aρ = div(ρD∇ logµ− bρ),

and furthermore

H (ρ; ξ) =

∫
e−ξLeξρ = (ξ,L′ρ) + (D∇ξ · ∇ξ, ρ).

The symmetric Hamiltonian is given by

Hs(ρ; ξ) =

∫
e−ξLse

ξρ = (ξ,L′
sρ) + (D∇ξ · ∇ξ, ρ).

The dissipation potential associated to the symmetric Hamiltonian (with F (ρ) = −dSµ(ρ)) is
given by

Ψ∗
s(ρ; ξ) = 2

[
Hs

(
ρ;

1

2
(ξ + dSµ(ρ))

)
− Hs

(
ρ;

1

2
dSµ(ρ)

)]
=

1

2
(D∇ξ · ∇ξ, ρ).

Lemma 3.7. Suppose that La satisfies a chain rule and that L′
a(µ) = 0. Let Sµ(ρ) be the relative

entropy between ρ and the invariant measure µ. Then

L (ρ, 0) = Ls(ρ,−L′
a(ρ)) =

1

2
Ψs(ρ,−L′

a(ρ)) +
1

2
Ψ∗

s(ρ, dSµ(ρ)). (37)
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Proof. Since La satisfies the chain rule, we can simplify Ha as

Ha(ρ; ξ) =
〈
e−ξLae

ξ
〉
ρ
=

〈
La(ξ)

〉
ρ
= ⟨L′

a(ρ), ξ⟩.

Since Ls is symmetric in L2
µ, Hs is symmetric around dSµ(ρ) [19, 10]. Therefore, the above

decomposition
H (ρ, ξ) = Ha(ρ; ξ) + Hs(ρ, ξ) = ⟨L′

a(ρ), ξ⟩+ Hs(ρ, ξ).

Furthermore, we have

⟨dSµ(ρ),L′
a(ρ)⟩ = ⟨log ρ

µ
,L′

a(ρ)⟩ = ⟨ρ,La

(
log

ρ

µ

)
⟩ = ⟨ρ, µ

ρ
La(

ρ

µ
)⟩

= ⟨1, µLa(
ρ

µ
)⟩ = ⟨ρ

µ
,L′

a(µ)⟩ = 0.

Hence, the above decomposition satisfies the assumptions in Lemma 3.6 with W(ρ) = L′
a(ρ),

H2 = Hs and S = Sµ; therefore, the statement of this lemma follows from Lemma 3.6.

This lemma applies to the non-reversible diffusion process described above; we obtain the
splitting

L (ρ, 0) =
1

2
Ψs(ρ,−L′

a(ρ)) +
1

2
Ψ∗

s(ρ, dSµ(ρ)) =

1

2
Ψs(ρ,−div(ρD∇ logµ− bρ)) +

1

2
Ψ∗

s(ρ, dSµ(ρ)),

where Sµ is the relative entropy. This example is chosen for illustrative purposes only; as the
dissipation potential Ψ⋆ and hence its Legendre dual are quadratic, splittings can be analysed
using polarisation identities as mentioned at the beginning of Section 3.1. Yet, although the
splittings developed in this paper are developed with nonquadratic dissipation potentials in
mind, the results apply in the quadratic case as well. The interpretation of the result above is
as follows: (37) is a statement about the stationary (equilibrium) state, j = 0. The result says
that the functional depends there only on the symmetric part Ψ⋆

s; there is no contribution from
the asymmetric part. So we see that the addition of the asymmetric part does not change the
steady state. With additional arguments, it can be shown that away from j = 0, the (Donsker-
Varadhan) rate functional associated with (37) increases when the non-reversible component is
present [21, 22]. As discussed at the beginning of Section 3.1, this can be interpreted as the
asymmetric process converging faster (or at least equally as fast) as the symmetric process.

4. Conclusion
In Section 2, we have shown that the non-uniqueness of the iso-dissipation force can be explained
through different notions of duality. In Section 3, we have introduced different splittings of
Hamiltonians associated to Markov processes through large deviation principles, and given an
application to a diffusion process on the Fokker-Planck level.

It is natural to compare these decompositions to decompositions in terms of the generator; this
is area of future research. Similar, the application of these splittings for different non-reversible
processes remains to be investigated.
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