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Summary 

Congenital adrenal hyperplasia (CAH) represents a group of autosomal recessives conditions 

leading to glucocorticoid deficiency. CAH is the most common cause of adrenal insufficiency 

(AI) in the paediatric population. The majority of the other forms of primary and secondary 

adrenal insufficiency are rare conditions. It is critical to establish the underlying aetiology of 

each specific condition as a wide range of additional health problems specific to the 

underlying disorder can be found. Following the introduction of life-saving glucocorticoid 

replacement sixty years ago, steroid hormone replacement regimes have been refined leading 

to significant reductions in glucocorticoid doses over the last two decades. These adjustments 

are made with the aim both of improving the current management of children and young 

persons and of reducing future health problems in adult life. However despite optimisation of 

existing glucocorticoid replacement regimens fail to mimic the physiologic circadian rhythm 

of glucocorticoid secretion, current efforts therefore focus on optimising replacement 

strategies. In addition, in recent years novel experimental therapies been developed which 

target adrenal sex steroid synthesis in patients with CAH aiming to reduce co-morbidities 

associated with sex steroid excess. These developments will hopefully improve the health 

status and long-term outcomes in patients with congenital adrenal hyperplasia and adrenal 

insufficiency. 
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Adrenal steroidogenesis 

The cells forming the adrenal cortex originate from the intermediate mesoderm and 

differentiate under the influence of various transcription factors during pregnancy and 

postnatal life. During foetal life and up to 12 months of age, two distinct zones are evident, an 

inner prominent foetal zone and an outer definitive zone that differentiates into the adult 

adrenal gland. After birth, the fetal zone regresses and the definitive zone, which contains an 

inner zona fasciculata and an outer zona glomerulosa, proliferates. The innermost zone, the 

zona reticularis, becomes evident after 2 years of life. These form three major functionally 

distinct parts of the adrenal cortex: the outer zona glomerulosa synthesizes 

mineralocorticoids, the middle zona fasciculata produces glucocorticoids, and the inner zona 

reticularis synthesises the androgen precursors dehydroepiandrosterone (DHEA) and 

androstenedione. 

Glucocorticoid synthesis is negatively controlled by a feedback loop via the hypothalamus-

pituitary-adrenal axis. A variety of central stimuli lead to the circadian and stress related 

secretion of corticotropin-releasing hormone stimulating the cleavage of polypeptide 

proopiomelanocortin (POMC) by prohormone convertase. This results in adrenocorticotropic 

hormone (ACTH) release from corticotroph cells of the anterior pituitary. ACTH is the key 

regulator of cortisol synthesis and has additional short-term effects on mineralocorticoid and 

adrenal androgen synthesis (1).  

ACTH binds to its adrenal receptor (melanocortin receptor 2, MC2R) and stimulates the rapid 

import of cholesterol into the mitochondrion by steroidogenic acute regulatory protein 

(StAR). In parallel, the transcription of steroidogenic genes (CYP11A1, HSD3B2, CYP17A1, 

CYP21A2, CYP11B1) and co-factors relevant to glucocorticoid synthesis increases. 

Corticotropin-releasing hormone and subsequently ACTH are released in a pulsatile fashion. 

Following the pattern of ACTH secretion, adrenal cortisol secretion exhibits a distinct 
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circadian rhythm, with peak concentrations in the morning and low concentrations in the late 

evening hours (2).  

Mineralocorticoid synthesis is mainly controlled by the renin-angiotensin-system and a 

potassium feedback loop. Renin secretion from the renal juxtaglomerular cells are stimulated 

by a variety of factors with renal arterial perfusion (closely correlating with renal arterial 

pressure) being the most important regulator. Non-endocrine conditions affecting renal blood 

flow have significant pathophysiologic consequences on the renin-angiotensin-system. The 

rate limiting step of the renin-angiotensin-system is the secretion of renin. Angiotensinogen is 

converted by renin to angiotensin I, which itself is converted by angiotensin converting 

enzyme to Angiotensin II, a potent stimulator of aldosterone synthesis and secretion (2). 

The distinct regulation of glucocorticoid and mineralocorticoid biosynthesis has important 

clinical consequences for the differential diagnosis and management of adrenal insufficiency 

(AI). Secondary AI manifests with isolated glucocorticoid deficiency, whereas most classic 

forms of primary adrenal insufficiency (PAI) have signs and symptoms of combined 

glucocorticoid and mineralocorticoid deficiency. Classic familial glucocorticoid deficiency 

characterised by unresponsiveness of the adrenal to ACTH leading to isolated glucocorticoid 

deficiency represents an exception. 

 

Clinical Presentation 

The epidemiology of AI in children and adolescents is different to the situation during 

adulthood. The majority of cases in paediatrics are either due to genetic causes, most 

commonly due to congenital adrenal hyperplasia (CAH), a group of recessively inherited 

disorders of adrenal steroid biosynthesis leading to variable degree of glucocorticoid 

deficiency or caused by iatrogenic treatment. Secondary AI is most frequently due to 

discontinuation of glucocorticoids or to stress during treatment with suppressive doses of 
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glucocorticoids for a variety of disorders. Autoimmune adrenalitis as commonly seen in 

adults is rare in childhood, with the prevalence only increasing during the second half of the 

second decade of life (3).  

The clinical presentation of AI is non-specific often leading to a delay in establishing the 

diagnosis. The onset and severity of AI is variable and age dependent according to the 

underlying diagnosis. Clinical signs and symptoms of primary AI are characterised by the 

loss of both glucocorticoid and mineralocorticoid synthesis whereas secondary AI manifests 

with isolated glucocorticoid deficiency as the adrenal itself is intact and mineralocorticoid 

synthesis and regulation is therefore unaffected (Table 1). 

The main cause of primary AI in childhood is CAH, which occurs with an incidence of about 

1:10,000 to 1:15,000 live births in most populations (4). Depending on the deficiency within 

the steroidogenic pathway different constellations of additional steroid hormone deficiencies 

and excess can be observed (Table 2). Variants of CAH in which androgen excess is a key 

feature, include 21-hydroxylase (CYP21A2), 11β-hydroxylase (CYP11B1) and 3β-

hydroxysteroid dehydrogenase type 2 (HSD3B2) deficiencies. Types of CAH associated with 

sex steroid deficiency and AI, include deficiencies of steroidogenic acute regulatory protein 

(StaR), P450 side-chain cleavage enzyme (CYP11A1), 3β-hydroxysteroid dehydrogenase 

type 2 (HSD3B2), 17α-hydroxylase (CYP17A1), and P450 oxidoreductase (POR). When 

making the diagnosis of CAH knowing the genetic aetiology enables the physician to tailor 

treatment accordingly. The most common CAH form is (21OHD) caused by mutations in the 

CYP21A2 gene. Thus, the principle focus of this review is therefore the management of 

patients with 21OHD.  

Steroid 21-hydroxylase facilitates the conversion of 17-hydroxyprogesterone to 11-

deoxycortisol, and progesterone to deoxycorticosterone, respective precursors for cortisol and 
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aldosterone (5). Approximately 75% of cases of 21OHD are unable to synthesize sufficient 

aldosterone and suffer from clinically apparent renal salt loss (6). Impaired cortisol 

biosynthesis leads to reduced negative feedback towards the hypothalamus and pituitary and 

results in increased corticotropin releasing hormone (CRH) and adrenocorticotrophic 

hormone (ACTH) secretion. Elevated CRH and ACTH concentrations stimulate adrenal 

hyperplasia and a rise in adrenal androgen production (6). The clinical consequences of CAH 

therefore result from cortisol and aldosterone insufficiency and from sex steroid excess.  

Medical treatment aims to replace the deficient hormones and to limit exposure to androgen 

excess. Individuals affected by CAH require lifelong care. During childhood the aims of 

treatment are to prevent adrenal crisis, support the family with decisions regarding gender 

assignment, optimise linear growth, body composition, cardiovascular and bone health and 

ensure normal progression through puberty. 

 

Diagnosis 

The most appropriate diagnostic workup in a child presenting with symptoms suggestive of a 

diagnosis of AI in childhood will be dictated by the age of the child and their clinical 

presentation. CAH is the commonest form of primary adrenal insufficiency in infants and 

children, being identified most commonly in the neonatal period. From school age onwards 

AI due to X-linked adrenoleukodystrophy becomes more common with autoimmune 

adrenalitis presenting towards the end of the second decade of life. There is, however, no 

clear age limit and non-classic and late-onset forms of congenital conditions might have to be 

considered throughout life in unexplained cases. A thorough clinical assessment is required in 

all children and adolescents presenting with signs and symptoms suggestive of AI, as other 

endocrine systems including the hypothalamus, pituitary and gonad as well as other organ 
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systems might be affected. It is important to recognize that AI represents one component of a 

specific condition, the underlying aetiology of which is important to identify as it can be  

associated with other significant health problems. It is key in the diagnostic work-up to 

establish if the adrenal insufficiency is of primary (Table 3) or secondary origin (Table 4) 

 

Congenital Adrenal Hyperplasia diagnostic pathway 

A wide range of clinical manifestations of 21-hydroxylase deficiency exists and these can be 

described as a disease continuum. About two-thirds of patients with 21OHD have clinically 

significant aldosterone deficiency leading to renal salt loss in addition to cortisol deficiency. 

In utero cortisol deficiency stimulates ACTH production, which leads to accumulation of 

steroid precursors and adrenal androgens. Whilst female infants with a severe enzymatic 

defect therefore frequently present early in the neonatal period with ambiguous genitalia, 

male infants appear normal and are thus more difficult to diagnose. Many countries have 

therefore implemented newborn screening programs aiming to reduce the morbidity and 

mortality associated with a delayed diagnosis of CAH. Screening programs measure 17-

hydroxyprogesterone (17OHP) in filter paper blood spots obtained by a heel puncture 

between 2 and 4 days after birth (7). However due to concerns regarding the high false 

positive rate associated with the existing screening test not all countries have added 17OHP 

into their screening programs, and in these regions the diagnosis needs to be pursued in all 

infants in whom there are clinical concerns.  

The diagnostic pathway for virilised females, most commonly identified soon after birth 

before life-threatening salt-loss manifests, is outlined in the Chicago consensus statement (8). 

In all children presenting with ambiguous genitalia aged less than 3 days of life rapid 

fluorescence in-situ hybridisation for sex-determining region of the Y chromosome (SRY) 
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should be performed. The diagnosis in boys is usually only established once the patient 

clinically presents with salt-loss. Salt-wasting should be suspected in infants presenting with 

poor feeding, vomiting, failure to thrive, lethargy and sepsis like symptoms. The crisis can 

quickly deteriorate and lead to life-threatening hypovolaemic shock and consequently death. 

In all children presenting clinically with features suggestive of a diagnosis of CAH after day 

3 of life plasma 17OHP, 11-deoxycortisol, and androstenedione concentrations should be 

measured (9). Urinary steroid profile analysis is also an extremely helpful non-invasive test. 

A urine steroid profile can be performed on a spot urine sample and provides additional 

diagnostic evidence for CAH and helps to differentiate between the different forms of CAH 

(10,11). Children without significant salt-loss may present later in life with signs of 

precocious pseudo-puberty including premature adrenarche/ pubarche, acne, genital 

hyperpigmentation, growth acceleration, and advanced bone age. Most males have a 

testicular volume in the pre-pubertal range. However, CAH should be ruled out during the 

baseline assessment of patients with larger testicular volumes as secondary central precocious 

puberty might have already developed. In later life acne, hirsutism, amenorrhea, 

oligomenorrhea and infertility are frequent features. Non-classic 21OHD is the most common 

specific cause in women presenting with androgen excess (12). The percentage of 

undiagnosed patients, in particular males, remains unknown and individuals are regularly 

diagnosed during family studies. A short synacthen test can be helpful to identify patients 

non-classic with borderline 17OHP concentrations. As some patients with non-classic CAH 

are at risk to have partial glucocorticoid deficiency the SST is useful to assess the stress 

response in patients with non-classic CAH (13). 

Once a biochemical diagnosis of CAH has been established this should be confirmed by 

molecular genetic analysis in a certified laboratory. As the data regarding genotype-

phenotype correlations increases (14) the argument that genotyping should be performed 
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early as part of routine clinical care strengthens. This provides information on severity of 

clinical disease expression and aids possible subsequent discussion on future antenatal 

diagnosis, treatment and family planning (15). Remarkably, in adults with CAH health 

outcomes might not be associated with the genotype suggesting that potential health problems 

are acquired rather than genetically determined (16). 

Psychology support is often required to help the family adjust to the diagnosis. Input from 

paediatric urologists and/or gynaecologists experienced in the management of patients with 

CAH may also be required in cases where there is significant virilisation of the external 

genitalia. Decision making around surgical procedures and their timing should be between 

the multi-disciplinary team and the family (17). Gender assignment is not regarded a common 

issue in patients with CAH. 

 

Primary Adrenal Insufficiency due to other causes: diagnostic pathway 

Primary AI due to autoimmune adrenalitis or Addison’s disease usually presents later in 

childhood in children with nonspecific symptoms including; fatigue, weight loss and 

hypotension. Importantly whilst 80% of patients with primary AI are hyponatraemic at 

diagnosis only 40% might have hyperkalaemia. Hyperpigmentation is also not consistently 

associated with a diagnosis of Addisons disease in children (18). Other rarer syndromes 

associated with primary adrenal failure in children include adrenoleukodystrophy, Wolman 

disease, Triple A syndrome and Zellweger disease (19). In children the short synacthen test is 

used to diagnose glucocorticoid deficiency, with random cortisol measurements being of little 

value. Whilst the exact cut-off is dependent on the local cortisol assay used, most centres use 

a cut-off for failure as below 500-550 nmol/L (18-20 µg/dL) 30 to 60 minutes after 1-24ACTH 

stimulation (3). The measurement of ACTH and renin enables differentiation between 
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primary and secondary adrenal failure. If the clinical situation permits bloods for all these 

parameters should be taken before initiation of replacement therapy. In addition, we advocate 

storage of spot urine and plasma/ serum samples to allow establishing a specific differential 

diagnosis. Adrenal autoantibodies and very long chain fatty acids (VLCFA) need to be 

included in the diagnostic work-up. With improved technologies for molecular genetic 

analysis using next generation sequencing approaches and the increasing evidence of non-

classic presentations of various forms of adrenal insufficiency, we predict an increasing use 

of these tests as part of the diagnostic pathway. 

 

Treatment 

Once the diagnosis of adrenal insufficiency has been established hydrocortisone is the 

recommended therapy for glucocorticoid replacement in childhood. During the first 6 months 

of life infants with a diagnosis of adrenal insufficiency need to have growth and development 

monitored 6-weekly. This age group is at particularly high risk of inter-current infections, and 

mortality, in the main, due to inadequate increases in hydrocortisone therapy during episodes 

of inter-current illness. Limited data on mortality suggest that mortality in the first 6 months 

of life in children with AI is 19 times that expected (20). After 6-months of age reviews 

should be performed at 3-monthly intervals until transition to adult care. Particular care to the 

dosing regimen is required during puberty to keep pace with changes in glucocorticoid needs 

(9,21). In CAH the initiation of medication and the protocol for monitoring to detect early 

salt loss are outlined below. 

 

Multi-disciplinary team  
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Adrenal insufficiency is a chronic life-long illness, which requires not only hormone 

replacement but also ongoing support to the patient and their family supporting them to 

engage with and manage their condition. Education and training about AI is an integral part 

of clinical care and the patient and the family benefits from a multi-disciplinary team around 

the patient and the child. This team should be tailored to the underlying aetiology and is 

commonly composed of paediatric endocrinologists, specialist nurses, paediatric urologists, 

psychologists, clinical geneticists and biochemists (22). 

 

Mineralocorticoid replacement 

The renin-angiotensin-aldosterone system is active by 16 weeks of gestational age (23). 

Aldosterone is synthesized in the zona glomerulosa of the adrenal cortex under the regulation 

of serum potassium and angiotensin II, with ACTH having only a short-term effect (24). 

Mineralocorticoids in children with adrenal insufficiency are replaced as fludrocortisone. In 

infancy there is a relative aldosterone resistance with the immature kidney tubular system 

being unable to adequately respond to aldosterone action to regulate water and sodium 

homeostasis (25). During the neonatal period and early infancy a higher dose of 

fludrocortisone is therefore required (25). Fludrocortisone doses during first year of life are 

commonly 150 µg/ m2/ day. Sodium supplementation is also required as milk-feeds (both 

formula and breast) only provide maintenance sodium requirements of 2 mmol/ kg/ day, 

which is not adequate to replace the sodium losses present in AI. Sodium supplements of 5-8 

mmol/ kg/ day are usually adequate, although some children may require doses of up to 10-12 

mmol/ kg per day. If hyponatraemia persists on a standard dose of fludrocortisone, (150 µg/ 

m2/ day), the dose of fludrocortisone should only be increased further after 10-12 mmol/ kg/ 

day of sodium supplements have failed to normalize serum sodium (26). If higher 
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fludrocortisone doses are necessary, close monitoring of blood pressure and renin is indicated 

to avoid iatrogenic hypertension. Commonly, sodium supplementation can safely be 

discontinued when salt intake is sufficient via food. This can be initiated from usually 8 

months of age and should be approached on an individualised basis taking growth, 

development and compliance into account. Some centres have abandoned the use of NaCl 

supplementation and titrate fludrocortisone according to renin concentrations and blood 

pressure. Clinical studies comparing the outcome of these two strategies have a high clinical 

research priority. 

In all forms of CAH a degree and spectrum of aldosterone deficiency and salt-loss is present 

(27,28). Therefore the traditional labelling of patients with CAH as “salt wasting” or “simple 

virilising” is misleading as in reality a continuous spectrum exists between severe and mild 

disease (29). Thus, in our clinical practice we have abandoned using these terms. The 

majority of patients with CAH and aldosterone deficiency present during weeks two to three 

of life with salt loss, which can be life threatening if not recognized and treated early. In girls 

where ambiguous genitalia have been identified at birth daily monitoring of serum 

electrolytes should be performed in the neonatal period until the diagnosis is confirmed. 

Bloods should be drawn for measurement of aldosterone and plasma renin. The ratio of 

aldosterone to plasma renin activity is reduced with increasing disease severity and has been 

suggested to represent a better marker of disease severity than measurement of renin or 

aldosterone alone (26). Aldosterone, however, remains a challenging analyte in the low 

concentration range even by employing liquid chromatography tandem mass spectrometry 

methods. All patients with an elevated PRA or aldosterone to PRA ratio require 

fludrocortisone therapy and adequate dietary sodium, which includes almost all children with 

classic CAH. Since the physiologic mineralocorticoid resistance improves with age, the 
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requirement for continuing fludrocortisone replacement should be regularly reassessed by 

measuring blood pressure and renin concentrations. 

 

Monitoring fludrocortisone replacement 

Sensitivity to mineralocorticoid increases with age. Thus blood pressure, plasma electrolytes 

and plasma renin activity should be monitored every 2-3 months during the first 18 months of 

life, using age, sex and height-adjusted references, to avoid over treatment, which presents 

with hypertension and hypokalaemia (26). Suppressed plasma renin concentrations indicate 

overtreatment. The challenge in infancy is in determining the appropriate fludrocortisone 

dose to avoid life-threatening salt-wasting crises, whilst, limiting overexposure to 

fludrocortisone. A recent study identified a high prevalence of transient fludrocortisone 

induced hypertension in young children aged 0-4 years with classic CAH (30) despite 

following the Endocrine Society guidelines on CAH (31). They highlighted the 12-18 month 

age group as being particularly at risk and recommend close monitoring of BP in association 

with reductions in fludrocortisone dosage between 12-18 months of life to avoid potential 

harm to the renal and cardiovascular systems from fludrocortisone induced hypertension. 

After infancy the relative fludrocortisone dose in relation to body surface area decreases and 

this trend continues throughout childhood and adolescence. After 18 months of life 

monitoring of treatment adequacy can be performed 3 monthly. Fludrocortisone doses of 100 

µg/ m2/ day after the first two years of life are commonly sufficient to maintain a normal 

blood pressure and renin concentration. However, these requirements have to be 

individualised as occasionally patients require significantly higher doses. Commonly, this 

requirement drops further with adolescents and adults are usually sufficiently supplemented 

with a total daily dose of 100 to 200 µg (50 to 100 µg/ m2 per day) (9). Fludrocortisone is 
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usually administered once daily, although twice daily therapy with two equally divided doses 

can be helpful. For example, in a situation of increased physiological fluid and electrolyte 

loss, such as a hot climate the patient may benefit from higher more frequent doses of 

fludrocortisone (32). 

At present it remains unclear as to whether additional mineralocorticoid replacement is 

required during stress and for elective surgical procedures. Where oral intake is possible 

fludrocortisone should be administered. If oral intake is not possible, recommended 

replacement doses of intravenous hydrocortisone (Table 5) circumvent the need for 

fludrocortisone as 40 mg hydrocortisone exerts equivalent mineralocorticoid activity to 100 

µg fludrocortisone. Of note, prednisolone has only reduced and dexamethasone has no 

mineralocorticoid activity (33). During stressful circumstances, e.g. febrile illness (>38.5oC) 

and gastroenteritis associated with inability to tolerate oral fluids, major trauma and surgery 

for which general anaesthesia is required, regular measurement of serum and urine 

electrolytes should be performed, and sufficient replacement of sodium administered 

intravenously. 

 

Glucocorticoid replacement  

The aims of therapy in adrenal insufficiency are to prevent adrenal crisis and additionally in 

children with CAH to minimise androgen secretion and consequent virilisation, enabling 

normal growth and development. Current recommended treatment regimes, consist of 

hormone replacement with oral hydrocortisone tablets in growing patients and 

fludrocortisone therapy (15). Prednisolone and dexamethasone are not recommended for use 

in replacement regimens during childhood as they are associated with growth suppression and 

significant weight gain (34). Liquid preparations of hydrocortisone are not recommended due 
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to the uneven distribution of the drug in the liquid (35). As food intake prior to 

hydrocortisone ingestion prolongs its absorption half-life doses are currently recommended to 

be taken prior to food, although some experts have argued that administration with food may 

prolong the half-life of hydrocortisone facilitating the production of a more physiological 

cortisol profile (36). It has been suggested that fludrocortisone has not only mineralocorticoid 

but also potent glucocorticoid activity (9). This is of particular relevance in newborns and 

infants to avoid glucocorticoid over-exposure. 

The average daily hydrocortisone replacement dose in AI is aligned to the daily physiological 

cortisol production, which is approximately 8 mg/ m2/ day (measured using stable isotopic 

methodology (37)) and enterohepatic cortisol circulation, together yielding an average 

hydrocortisone replacement dose of 8-10 mg/ m2/ day (9). In CAH where suppression of the 

HPA-axis is required to control androgen excess a higher dose of up to 15 mg/ m2/ day is 

recommended (9,31). Importantly, doses of more than 17 mg/ m2/ day during puberty have a 

significant deleterious effect on growth velocity and final height (38). In infancy there is 

evidence to suggest that androgen excess is not associated with increased height velocity and 

that lower hydrocortisone replacement doses can therefore be used (8-10 mg/ m2/ day) (39).  

In our clinical practice, we aim to replace half to two-thirds of the daily hydrocortisone dose 

as early as possible in the morning (ideally 3 - 5 am). This is based on circadian pattern of 

normal adrenocortical secretion, with concentrations being lowest at 00.00, rising between 

0200 and 0400h, reaching their peak at approximately 0800 h, and then falling throughout the 

day (40). Despite these efforts, current glucocorticoid replacement regimes struggle to mimic 

the physiological profile of cortisol production over 24 hours. Bioavailability of orally 

administered hydrocortisone high at close to 95%, but the half-life is short, between 60 and 

120 minutes (41,42). The serum cortisol profile following hydrocortisone administration 

therefore exhibits steep peaks followed by a rapid fall to trough concentrations with the 
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resultant pattern not paralleling physiological cortisol production (43). There is limited 

evidence to suggest that changing the timing of hydrocortisone doses in adults with AI to try 

to better replicate physiological cortisol production reduces the total daily dose of 

hydrocortisone required, potentially reducing the prevalence of associated metabolic 

complications (43). One small paediatric study in children with CAH, conducted over a four 

week period, found that whether the higher hydrocortisone dose was administered in the 

morning or the evening found no effect on disease control, measured using basal 17OHP, 

DHEAS, androstenedione, and testosterone concentrations and concluded to follow a 

replacement regime with a high-morning dose rather than a reverse circadian rhythm (44) 

Although there is significant variability in the number and timing of hydrocortisone dose 

administration internationally hydrocortisone is most commonly administered in a thrice 

daily regimen (45), aiming to mimic the circadian rhythm of cortisol secretion (31). Debate is 

ongoing whether dosing should be increased four times a day as the duration of 

hydrocortisone in the circulation is about 6 hrs. We do, however, advice against a large late 

evening dose as this will create a high cortisol concentrations during the physiological nadir 

and due to the half-life of hydrocortisone still fail to sufficiently suppress the early morning 

ACTH surge. 

An important consideration with regard to hydrocortisone dosing are patients taking 

medication that accelerates cortisol metabolism. This is mainly happening by enzyme 

induction of cytochrome P450 3A4. Thus, patient treated with drugs such as anticonvulsant 

or antiretroviral medication may require increased hydrocortisone doses to ensure adequate 

cortisol replacement (46). 

 

Stress treatment  
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Adrenal crisis due to impaired cortisol response to physical stress is a serious threat in 

adrenal insufficiency. Studies in adults during febrile illness (>38.5 C), trauma and surgery 

studies have shown that metabolites of ACTH, cortisol, urinary cortisol and urinary cortisol 

metabolites increase (47,48). During mild/moderate inter-current illness where fluids are 

tolerated steroid doses should be increased to 30 mg/m2/day divided in four 6-hourly equal 

doses. The high oral bioavailability of hydrocortisone means that if absorption from the 

gastrointestinal tract is not impaired the oral route is nearly as effective as the intravenous 

route (41). However, patients with diarrhoea and vomiting, who are unable to take their 

medication require IM hydrocortisone (100 mg/m2 per dose) and immediate review by a 

medical professional. On review blood pressure, blood glucose, urea and electrolyte 

concentrations should be measured. If any of these are abnormal the child should be admitted. 

Patients with severe illness or major surgery require ongoing IV hydrocortisone replacement 

(Table 5). To avoid peaks and troughs this is ideally given as continuous IV infusions rather 

than IV or IM bolus injections (49). Increased glucocorticoid doses should be avoided in 

mental and emotional stress, minor illness, and before physical exercise, as this would greatly 

increase the frequency of supra-physiologic dosing. 

Sodium chloride IV replacement if required during adrenal crisis, needs to be carefully 

monitored, to avoid rapid sodium chloride shifts. Fludrocortisone adjustment is commonly 

not required. In patients presenting with hyponatraemia sodium should initially be corrected 

to 120-125 mmol/L at a rate of 0.5 mmol/L/h, thereafter correction to normal values should 

continue over 48 hours.  

Patients with CAH are at increased risk of hypoglycaemia due to impaired adrenomedullary 

function. In patients with CAH the adrenal medulla does not develop normally and they have 

significantly lower plasma and urinary epinephrine, and plasma total and free metanephrine 

concentrations than healthy controls (50). The degree of adrenomedullary dysfunction 
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correlates with the severity of the enzyme impairment (51). The combination of cortisol and 

adrenaline insufficiency results in dysregulation of glucose, insulin and leptin metabolism 

(52,53). Although the clinical consequences of adrenal medullary insufficiency remain 

speculative, it is hypothesized to play a role in hypoglycaemia during intercurrent illnesses in 

children with CAH and to be a risk factor in the development of insulin insensitivity (54). If 

there is loss of consciousness and/or circulatory collapse blood glucose should be measured 

hourly until normalized and stable. Hypoglycaemia should be managed appropriately 

according to local guidelines. 

All patients are advised to carry a steroid emergency card or Medic Alert Bracelet 

emphasising the diagnosis “adrenal insufficiency” emphasising the urgent requirement of 

hydrocortisone stress cover during critical illness. Patients and parents should have an 

emergency glucocorticoid injection kit and meticulous self-injection training.  

 

Major Surgery 

Elective surgery should be carefully planned in conjunction with the anaesthetic team. The 

patient should ideally be first on the surgical list in the morning. The night prior to surgery 

the normal evening dose of hydrocortisone should be administered. At 06:00 a dextrose-

saline infusion should be started and continued until oral fluids can be tolerated post-surgery. 

The required hydrocortisone morning medication can be given as IV hydrocortisone in the 

same dose as the oral medication. If the patient is on the afternoon surgical list they should 

receive their standard morning hydrocortisone dose. 

At induction an intravenous dose of hydrocortisone should be administered followed by a 

continuous hydrocortisone infusion according to the recommendation of stress dosing (Table 

5). Consideration should be taken of the surgical procedure being performed. For example, in 
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children undergoing neurosurgical procedures in whom the mineralocorticoid water retentive 

effect of hydrocortisone may be a disadvantage, dexamethasone should be used. Whilst there 

is limited data on cortisol production in healthy children in response to minor surgical 

procedure our knowledge on endogeneous cortisol production in response to major surgical 

procedures remains limited (55). 

 

Minimally invasive surgical procedures 

Minimally invasive procedures do not result in activation of the hypothalamo-pituitary axis in 

children (55). The current advice for hydrocortisone replacement in children with AI 

undergoing minimally invasive procedures is therefore no more than three times 

physiological replacement (10 mg/ m2/ day orally) in the 24 hour perioperative period. The 

daily hydrocortisone dose following minimally invasive procedures should be about 

30mg/m2/day ideally divided into four equal 6-hourly doses. Recent evidence suggests these 

guidelines for stress dosing in AI substantially exceed physiological requirements during 

minimally invasive procedures, however further research in this area is required before 

amendments are made (55). The increase in hydrocortisone dose should follow the surgical 

procedure as in the majority of healthy patients the increased cortisol production in response 

to minor procedures occurs at the time of recovery and not during the surgical procedure (56). 

 

Puberty 

Puberty is associated with changes in the metabolism of cortisol, with cortisol clearance 

being increased, especially in females (57). The half-life of cortisol during puberty can 

therefore be as low as 40 minutes, compared to 80 minutes in pre- or post-puberty (58). 
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Increased growth hormone production increases glomerular filtration and cortisol clearance, 

and oestradiol increases cortisol binding globulin concentrations. In addition, reduced activity 

of 11-beta-hydroxysteroid dehydrogenase type 1 during the pubertal growth spurt leads to 

decreased reactivation of cortisone to cortisol and, effectively, hypocortisolism (59). Thus, 

the concentrations of circulating cortisol are significantly reduced during puberty, with 

glucocorticoid dosing requiring regular assessment and amendment to maintain control of the 

hypothalamo-pituitary axis. During puberty a more frequent dosing schedule of four times 

daily is frequently required (57). 

 

Monitoring glucocorticoid replacement 

Long-term health problems in patients with adrenal insufficiency are increasingly a concern. 

They can arise from the disease process itself, for example excess androgen exposure in 

CAH, as well as from under-treatment or over-treatment, which leads to deficient or excess 

glucocorticoids. There are no clear guidelines around screening for co-morbidities in children 

and adolescents with AI, although it has been suggested that an annual review process could 

be helpful (9). 

 

Growth  

A dose-dependent negative effect of glucocorticoids of linear growth has been identified 

during infancy, childhood and adolescence (60). Exposure to glucocorticoid doses above 15 

mg/m2/day (38,61), or treatment with long-acting, high-potency glucocorticoids impacts 

negatively on growth (34). Infancy is the time of most rapid linear growth acquisition, and 

impaired linear growth due to excess glucocorticoid therapy during this period cannot be 
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recovered (62). Glucocorticoid exposure should therefore be limited by using the minimum 

effective dose (33). Children receiving lower doses of hydrocortisone, monitored 3 monthly 

to optimise the dose, with treatment aiming to keep height, BMI, blood pressure and bone age 

within normal limits are able to achieve a normal target height (63). Several small studies 

have assessed the potential of growth hormone in isolation, and growth hormone in 

combination with a GnRH to enhance growth in children with classic CAH (64,65). 

However, as normal final height can be achieved by carefully titrating hydrocortisone the 

additional use of expensive and experimental therapies with potential side effects does not 

seem justified. 

 

Reproductive Health 

Females with CAH usually enter puberty at the normal time. However menarche can be 

delayed in individuals with poor control and increased exposure to androgens, with an 

irregular menstrual cycle also being associated with poor overall disease control (66). It is 

thought that females with CAH are at increased risk of a polycystic ovarian-like syndrome, 

presenting clinically with oligomenorrhoea and infertility due to excess androgen exposure 

during episodes of poor control (67). However different studies have identified a variable 

association between CAH and polycystic ovaries. Studies in adult females with CAH have 

identified the prevalence of polycystic ovaries on pelvic ultrasound to be the same as the 

general population or as high as 83% (68,69). Findings from adolescent studies report 

similarly conflicting results (68,70). Abiraterone acetate, a prodrug which is metabolized to 

abiraterone, is a potent site-directed inhibitor of CYP17A1. A recently published phase 1 

study in adult females with CAH reported that abiraterone acetate therapy administered 
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alongside hydrocortisone replacement doses of 8 mg/ m2/ day enabled normalisation of 

measures of androgen excess with the potential to be used as adjunct therapy (71). 

Males with CAH are at risk of developing testicular adrenal rest tumours (TART), an 

important cause of primary gonadal failure and infertility (72). The prevalence of TARTs in 

childhood ranges from 18 - 29%, with the youngest affected patient being four years of age 

(73-75). The prevalence of TARTs increases post-puberty with some studies reporting a 

prevalence as high as 94% in adulthood (76). These benign testicular tumours compress the 

seminiferous tubules leading to obstructive azoospermia, damage to the surrounding 

testicular tissue ultimately resulting in infertility. TARTs are hypothesized to originate from 

aberrant adrenal cells descending during embryogenesis with testicular cells (77). The 

aetiology of TARTS remains incompletely understood, although they appear to be more 

prevalent in individuals with poor metabolic control (73). Interestingly in a recent paediatric 

study some of these early stage tumours were found to disappear in response to high dose 

glucocorticoid therapy (30 mg/ m2/ day) (73). Since the identification of tumours less than 2 

cm in diameter is not possible by palpation due to their location in the rete testis ultrasound 

screening for TART has been recommended every 2 years in early childhood and annually in 

the peri-pubertal period (72,73).  

 

Quality of life and cognition 

Lifelong medication and regular clinic visits are an inevitable consequence of being 

diagnosed with adrenal insufficiency. Chronic illness impacts negatively on psychosocial 

development. More specifically in CAH androgen excess may affect normal psychosocial 

development and there is evidence to suggest that excess exposure to corticosteroids also 

impacts negatively on brain development and function (78). Some studies investigating 
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quality of life and subjective health status in adults with CAH have identified impaired 

quality of life (QoL) and a tendency to psychological problems in affected individuals, whilst 

others report normal health related QoL (79). Studies to clarify these discrepancies are 

needed (33). A number of different cognitive changes have also been described in CAH 

patients including reduced intelligence, learning difficulties, impaired attention, reduced 

verbal fluency and memory (80). Whilst some cognitive effects during acute brain damage 

may be transient, others such as repeated exposure to excess glucocorticoids or androgens are 

likely to become permanent (81). Assessment of quality of life and cognitive function do not 

form a routine part of clinical care in children and adolescents with CAH at present. However 

it has been suggested that screening for psychological difficulties should be incorporated the 

care pathway with those found to have abnormal screening results offered further 

psychological evaluation and intervention (82). This appears to be of major importance as the 

impact of intrinsic factors versus external factors including health care provision on overall 

health related QoL in CAH remains unclear (33). 

 

Cardiovascular and metabolic health 

Children and adolescents with CAH have increased BMI and blood pressure compared to 

healthy controls, with BMI correlating positively with glucocorticoid dose (83,84). Children 

with CAH are also at risk of developing impaired insulin sensitivity, with unfavourable 

changes in HOMA-IR being associated with raised fasting insulin concentrations (85,86). 

More recently a retrospective cross-sectional study of 107 individuals (mean age 9.2 years, 

range 0.4-20.5 years) reported that individuals managed with lower doses of hydrocortisone 

replacement therapy (13.3 mg/ m2/ day) have lower HOMA IR than historical controls (87). 

Overall, altered insulin sensitivity appears to be therapy-related with both over and under-
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treatment potentially leading to impaired insulin sensitivity (33). Carotid intima thickness, a 

surrogate marker for atherosclerosis, has been shown to be increased in a study of 19 young 

adults with CAH (88). This finding was independent of hormonal control, glucocorticoid 

dose or metabolic parameters including lipid status, glucose or insulin concentrations. The 

relevance of these structural changes to future cardiovascular health in patients with CAH 

remains unclear. However, two studies reported that these changes can be already detected in 

children and young persons (89,90). There is no evidence to suggest that children with CAH 

are at risk of dyslipidaemia, with the majority of studies describing normal lipid profiles in 

children and adolescents with CAH (33). The current guidelines in children recommend that 

BP should be assessed at every clinic visit and that BP should be maintained within the 

normal range for age and sex to minimise the risk of long-term cardiovascular complications. 

Investigations into insulin sensitivity should be considered in individuals who present 

clinically with signs of insulin insensitivity.  

 

Bone health 

Long-term glucocorticoid therapy suppresses osteoblast activity and increases bone 

resorption by osteoclasts. Patients with CAH exposed to supraphysiological hydrocortisone 

doses are therefore at risk of developing bone health abnormalities. To date studies in 

adolescents and young adults with CAH have not identified any bone mineral density 

abnormalities (33). However, data on bone mineral density in adults aged over 30 years and 

in postmenopausal women with CAH suggest there is an increased prevalence of osteopaenia 

and osteoporosis compared to healthy controls (79,91,92). In children and adolescents it is 

therefore advised to limit cumulative hydrocortisone overexposure to optimise bone health 

and to maintain serum androgen concentrations in the upper normal range. There are 
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currently no recommendations for regular monitoring of bone mineral density in children and 

adolescents with CAH. 

 

Monitoring of treatment 

Assessment of treatment efficacy in children with CAH involves monitoring for signs of 

glucocorticoid excess in addition to signs of inadequate control of sex steroid excess (31). 

Classically disease control has been measured by monitoring growth velocity, bone age 

(annually after 4 years of age) and serum concentrations of androgen precursors (31,93). 

However there is ongoing debate amongst clinicians both regarding the specific analytes that 

should be measured to assess control and what the number and timing of these measurements 

should be. Measurements of cortisol concentrations are not useful to monitor quality of 

glucocorticoid replacement in adrenal insufficiency (94). Treatment of CAH should aim to 

normalise sex-hormones. The optimal glucocorticoid dose fails to suppress 17OHP and its 

metabolites and maintains sex hormone concentrations in the mid to upper age and sex-

specific normal range. 

Glucocorticoid metabolism varies with age and between individuals, it has therefore been 

suggested that doses should be titrated against 24 hour serum cortisol profiles (95). After 

hydrocortisone administration approximately 95% of the drug is absorbed into the circulation. 

Peak concentrations of cortisol are reached after two hours with the duration of action being 

4-6 hours (half-life average 80 mins) (41). Hourly cortisol profiles over a 24 hour period 

enable assessment of whether there are times when the patient is either over or under exposed 

to cortisol and whether the doses are been administered frequently enough at the right times 

of day. Thus, the assessment of cortisol kinetics and dynamic profiles might improve 

glucocorticoid replacement with respect to finding a more individualised dose and better 
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timings. The possibility of using saliva to monitor 24 hr cortisol profiles has also being 

explored. Salivary cortisol can be collected in a painless way and offers a measure of 

bioactive free hormone (96). Dried blood spots have also been assessed as a means of 24 hour 

steroid profiling using liquid chromatography tandem mass spectrometry (97). However, 

different monitoring strategies have not been compared in clinical studies and no evidence 

base exists therefore in relation to outcomes. 

Even with careful optimisation current replacement regimens with hydrocortisone tablets do 

not parallel the physiological pattern of cortisol production with the dose of hydrocortisone 

required to maintain a safe background cortisol concentration resulting in supraphysiological 

cortisol concentrations 1-2 h after administration (41). Exposure to high concentrations of 

glucocorticoids suppresses growth, increases blood pressure and can cause osteoporosis and 

iatrogenic Cushing’s syndrome (34,83,84,91,98). Despite significant reductions in 

glucocorticoid doses over the last decade CAH continues to be associated with significant 

morbidity and mortality. Children with CAH have reduced final height compared to their 

mid-parental target height despite treatment optimization. They also have an increased 

prevalence of cardiovascular risk factors including obesity and hypertension (87) and are at 

increased risk of infertility in adulthood (33). However, further dose reductions would place 

patients at an increased risk of adrenal crisis, with under-treatment also leading to increased 

adrenal androgen production. Novel approaches to treatment are therefore being explored.  

 

Novel approaches to glucocorticoid replacement 

Hormone replacement in CAH remains challenging as the pharmaco-kinetics and dynamics 

of immediate release hydrocortisone make it almost impossible to replicate physiological 

cortisol profiles (87). Due to the lack of low dose hydrocortisone preparations a variety of 
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unlicensed hydrocortisone preparations at doses of between 0.5 to 5mg are currently used in 

paediatric practice (45). Such preparations bear the risk of significant dose variations (99). A 

recent innovation of multilayered multiparticulate hydrocortisone granules (Infacort®), might 

overcome these problems in the foreseeable future. A dose of 10 mg Infacort® has been 

shown to be bioequivalent to 10 mg hydrocortisone and unit doses of 0.5, 1, 2 and 5 mg have 

been tested in a recent phase 1 study (45). The efficiency of this formulation needs to be 

tested in infants and children and will have the potential to optimise glucocorticoid 

replacement in this age group. 

 

Continuous subcutaneous hydrocortisone infusions 

In individuals with persistent poor control studies of cortisol clearance might provide 

important information. Where plasma cortisol profile (hourly samples) identifies a rapid 

clearance of hydrocortisone initially a more frequent regiment of hydrocortisone replacement 

should be trialled. If good control remains elusive these individuals may benefit from 

continuous subcutaneous hydrocortisone infusion therapy administered via an insulin pump, 

which has been adapted to deliver hydrocortisone (58). Several small, uncontrolled studies 

have now demonstrated that subcutaneous hydrocortisone infusions can accurately mimic the 

circadian cortisol profile, improving hydrocortisone replacement and resulting in near normal 

ACTH and 17OHP concentrations in previously poorly controlled subjects (100,101). In 

published studies improved control of adrenal androgen has been achieved with decreased 

glucocorticoid doses. Pump therapy is also a helpful option in children who are unable to 

tolerate oral steroids e.g. severe gastritis and in patients with obesity or hypertension 

secondary to high dose glucocorticoid therapy (58). Whilst pump therapy offers many 

benefits, including improved management of stress and inter-current illness the risk of site 
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and pump failures and the need for injections in combination with being attached to a medical 

device limit their use in general clinical practice. 

 

Sustained release hydrocortisone preparations 

The development of modified release hydrocortisone preparations which aim to provide a 

more physiological cortisol profile is ongoing (40). Chronocort®, a modified-release 

formulation of hydrocortisone aims to replicate cortisol circadian rhythm and to suppress the 

overnight ACTH surge which drives excess androgen production in CAH (102). The recently 

published phase 2 study for Chronocort® demonstrated a decrease in equivalent 

hydrocortisone dose required, lower 24-hour and afternoon androstenedione area under the 

curve and lower 24 hour and morning 17-hydroxyprogesterone area under the curve (103). A 

further dual-release hydrocortisone preparation, PlenadrenTM (Duocort/ViroPharma, 

Helsingborg, Sweden), has been trialled in patients with adrenal insufficiency as once-daily 

dosing, compared to thrice-daily dosing (104,105). However is does not address the overnight 

rise in ACTH and the suitability of the use this glucocorticoid preparation in patients with 

CAH requires further research. 

 

Childhood experimental therapies 

Inhibition of Corticotropin Releasing Hormone  

Corticotropin Releasing Hormone (CRH) stimulates ACTH production and release from 

pituitary corticotrophs. Inhibition of CRH and/ or ACTH production would enable 

administration of lower HC replacement doses, reducing the side effects from 

supraphysiological hydrocortisone doses. A recent single-blind, placebo-controlled, single 
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centre study explored the use of a selective corticotropin-releasing factor type 1 receptor 

antagonist in adult females with 21OHD aged 18 to 58 years. The authors reported a 

meaningful reduction of 17OHP and ACTH in combination with variable concentrations of 

androstenedione and testosterone (106). Future clinical studies are required to determine the 

clinical relevance of these promising efforts reducing the ACTH drive, which has the 

potential to reduce glucocorticoid doses in the future. 

 

Blocking androgen synthesis and androgen action 

The androgen-receptor blocker, flutamide, has been used in conjunction with the aromatase 

inhibitor testolactone, low dose hydrocortisone replacement therapy (8 mg/ m2/ day) and 

fludrocortisone replacement. This four-drug regimen normalalised linear growth and bone 

maturation, despite elevated adrenal androgens  as compared with conventional therapy in a 

2-year randomized study (107). More potent antiandrogens are now available, currently in 

use for the treatment of prostate cancer. Bicalutamide has a half-life of one week and reduced 

hepatoxicity when compared to flutamide (108).  

A novel potentially very interesting alternative is abiraterone acetate which blocks the 

enzymatic function of CYP17A1. The recently published phase 1 study reported that low 

dose abiraterone acetate therapy administered alongside hydrocortisone replacement doses of 

8 mg/ m2/ day enabled normalisation of measures of androgen excess (71). However, the long 

term safety of these therapies, and their role in the management of CAH warrants future 

clinical studies. 

 

Practice Points 
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• Hydrocortisone divided into three or four doses is the drug of first choice until final 

height is achieved.  

• The timing of hydrocortisone replacement if of significant importance with 50-66% of 

the daily dose to be administered as early as possible in the morning. 

• Adequate glucocorticoid replacement commonly fails to suppress or normalise 17-

hydroxyprogesterone concentrations, but normalises androstenedione and testosterone 

into the age and sex specific normal range. 

• The relative mineralocorticoid dose per body surface area declines with increasing age 

and decreasing mineralocorticoid resistance.  

• Replacement doses are monitored assessing renin concentrations (target upper normal 

range) and blood pressure (normal age and sex specific, ideally height adapted range). 

• Glucocorticoid over-exposure appears to be a key factor associated with long-term health 

problems; thus patients at all ages should be treated with the absolute minimal required 

glucocorticoid dose. 

 

Research Agenda 

• It appears vital to establish large scale clinical research networks to assess the the current 

and future health status in patients with CAH and adrenal insufficiency. 

• Oral hydrocortisone replacement regimes have been optimised over the last decade, 

future research needs to address the optimum method of steroid hormone delivery and 

monitoring of hormone replacement. 

• The development of novel adjunct treatments minimising cumulative hydrocortisone 

exposure appear useful; however, the wider clinical indication and use in clinical practice 

will require a broader evidence base. 
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• Replacement strategies aiming to mimic physiological glucocorticoid replacement are 

required in all age groups. 
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Table 1. Signs and Symptoms of Adrenal Insufficiency 

 

   

Glucocorticoid deficiency  Mineralocorticoid deficiency (only PAI) 
   

Conjugated jaundice  Poor feeding 

Fatigue, lack of energy  Vomiting, nausea, abdominal pain 

Weight loss, anorexia  Failure to thrive 

Myalgia, joint pain  Dehydration  

Fever  Dizziness, postural hypotension 

Anaemia, lymphocytosis, eosinophilia  Salt craving 

Slightly increased TSH   Low blood pressure, postural hypotension 

Hypoglycaemia   Increased serum creatinine (volume 

depletion) 

Increased Insulin sensitivity  Hyponatraemia, hyperkalaemia 

Low blood pressure, postural hypotension  Urinary salt loss 

Hyponatraemia (loss of feedback inhibition of 

AVP release) 

 Hypovolaemic shock 

Apnoe   
   

 

Hyperpigmentation occurs in PAI only and is caused by excess of proopiomelanocortin (POMC)-

derived peptides 

Alabaster-coloured pale skin occurs in secondary AI only caused by deficiency of POMC-derived 

peptides; rare in children 

Decreased pubic and axillary due to adrenal androgen deficiency in females 
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Table 2. Differential diagnosis and clinical presentation of different forms of steroidogenic adrenal 

insufficiency 

Enzyme  DSD  Affected organ  Deficiency  Excess  

CYP21A2  46,XX  adrenal  MC, GC  SexH  

CYP11B1  46,XX  adrenal  GC  MC, SexH  

CYP17A1  46,XY  adrenal, gonad  GC, SexH  MC  

HSD3B2  46,XY (46XX)  adrenal, gonad  MC, GC, SexH   

POR  46,XY + 46,XX  adrenal, gonad, liver  GC, SexH  (MC)  

StAR  46,XY  adrenal, gonad  MC, GC, SexH   

CYP11A1  46,XY  adrenal, gonad  MC, GC, SexH   

CYP11B2  ―  adrenal  MC   

 

CYP21A2: 21-hydroxylase, CYP11B1: 11β-hydroxylase, CYP17A1: 17α-hydroxylase, HSD3B2: 3β-

hydroxysteroid dehydrogenase type 2, POR: P450 oxidoreductase, StAR: steroidogenic acute 

regulatory protein, CYP11A1: P450 side chain cleavage enzyme, CYP11B2: aldosterone synthase. 

MC: mineralocorticoid, GC: glucocorticoid, SexH: sex steroid hormone 

 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

41 

 

Table 3. Aetiologies of Primary Adrenal Insufficiency in Children 
 
Condition/ deficiency Gene OMIM Associated clinical signs and symptoms 
Impaired Steroidogenesis    
Impaired cholesterol transport    

Steroidogenic Acute Regulatory Protein 
(Congenital lipoid adrenal hyperplasia; 
CLAH) 

StAR 201710 46,XY DSD, gonadal insufficiency 

    

Steroidogenic enzyme/ co-factor deficiency 
causing Congenital adrenal hyperplasia (CAH) 

   

3β-hydroxysteroid dehydrogenase type 2 HSD3B2 201810 46,XX and 46,XY DSD, gonadal insufficiency 
21-hydroxylase CYP21A2 201910 46,XX DSD, hyperandrogenism 
11β-hydroxylase CYP11B1 202010 46,XX DSD, arterial hypertension 
CYP17A1 deficiency CYP17A1 202110 46,XY DSD, arterial hypertension, gonadal insufficiency 
P450 oxidoreductase POR 201750 46, XX and 46,XY DSD, gonadal insufficiency, bone 

malformation, affects all endoplasmic CYP450 enzymes 
    

Steroidogenic enzyme deficiency (non CAH)    
P450 side-chain cleavage enzyme CYP11A1 118485 46,XY DSD, gonadal insufficiency 
Aldosterone synthase CYP11B2 124080 Isolated mineralocorticoid deficiency 

  

 
 

Defects of cholesterol synthesis / metabolism    
Wolman disease 
(lysosomal acid lipase deficiency, cholesterol 
ester storage disease) 

LIPA 278000 Diffuse punctate adrenal calcification, xanthomatous changes in 
liver, adrenal, spleen, lymph nodes, bone marrow, small 
intestine, lungs and thymus, and slight changes in skin, retina, 
and central nervous system, hypercholesterolaemia, steatorrhea, 
poor prognosis 

Smith-Lemli Opitz disease DHCR7 270400 Mental retardation, craniofacial malformations, limb 
abnormalities, growth failure 

Abeta-lipoproteinaemia MTP 200100 Ataxia, retinopathy, acanthocytosis, fat malabsorption 
Familial hypercholesterolemia LDLR 143890 Tendinous xanthomas, xanthelesma, corneal arcus 

    

Adrenal Dysgenesis     
Without syndromic features    

X-linked adrenal hypoplasia congenital 
(AHC)  

NROB1 
(DAX1) 

300200 Combined primary and secondary hypogonadism, DMD in 
contiguous gene syndrome 

Adrenal hypoplasia steroidogenic factor-1 
deficiency 

NR5A1 
(SF1) 

184757 46,XY DSD, gonadal insufficiency 

    

With syndromic features    
IMAGe syndrome CDKN1C 

 
300290 Intrauterine growth retardation, metaphyseal dysplasia, adrenal 

insufficiency, genital anomalies 
Pallister-Hall syndrome GLI3 165240 Hypothalamic hamartoblastoma, hypopituitarism, imperforate 

anus, postaxial polydactyly 
Meckel Syndrome MKS1 249000 Central nervous system malformation, polycystic kidneys with 

fibrotic liver changes, polydactyly 
Pena-Shokeir syndrome 1 DOK7 208150 Arthrogryposis, fetal akinesia, IUGR, cystic hygroma, 

pulmonary hypoplasia, cleft palate, cryptorchidism, cardiac 
defects and intestinal malrotation, pterygia of the limbs 

 RAPSN   
Pseudotrisomy 13  264480 Holoprosencephaly, severe facial anomalies, postaxial 

polydactyly, various other congenital defects, and normal 
chromosomes 

Hydrolethalus syndrome  HYLS1 236680 Severe prenatal onset hydrocephalus, polydactyly 
Galloway-Mowat syndrome   251300 Early-onset severe encephalopathy, intractable epilepsy, 

nephrotic syndrome, microcephaly, hiatal hernia 
    

ACTH resistance    
Familial glucocorticoid deficiency (FGD) Type 
1 

MC2R 202200 Tall stature, isolated deficiency of glucocorticoids,  
generally normal aldosterone production 

Familial glucocorticoid deficiency (FGD) Type 
2 

MRAP 607398 Isolated deficiency of glucocorticoids,  
generally normal aldosterone production 

    

 
Impaired Redox Homeostasis 

   

Triple A syndrome (Allgrove syndrome) AAAS 231550 Alacrimia, achalasia; neurologic impairment, deafness, mental 
retardation, hyperkeratosis 

Mitochondrial deficiency of free radical 
detoxification 

NNT 614736  

 TRXR2 606448 Isolated deficiency of glucocorticoids 
 GPX1, 

PRDX3 
 Digenic inheritance has been shown in one patient with isolated 

glucocorticoid deficiency  
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   Table 3 continued 
Miscellaneous    
DNA repair defects MCM4 609981 NK cell deficiency, growth failure, increased chromosomal 

breakage 
Bioinactive ACTH  POMC 201400  
    
Adrenal Destruction    
Inherited aetiologies    

Autoimmune Adrenalitis    
Isolated autoimmune adrenalitis associated 

with 
HLA-
DR3, 
CTLA-4 

  

Autoimmune Polyglandular Syndromes (APS)    
APS Type 1 AIRE 240300 Hypoparathyroidism, chronic mucocutaneous candidiasis, other 

autoimmune disorders, rarely lymphomas 
APS Type 2 associated 

with  
HLA-
DR3, 
CTLA-4 

269200 Hypothyroidism, hyperthyroidism, premature ovarian failure, 
vitiligo, type 1 diabetes mellitus, pernicious anaemia 

APS Type 4 associated 
with  
HLA-
DR3, 
CTLA-4 

 Other autoimmune diseases, excluding thyroid disease or 
diabetes (unusual in children) 

    

Peroxisomal defects    
X-linked Adrenoleukodystrophy (X-ALD) ABCD1 300100 Progressive neurodegeneration, behavioural changes, cognitive 

decline, loss of speech, hearing and vision, dementia, spasticity, 
seizures 

Refsum disease PEX7 266500 Least severe form of peroxisome biosynthesis defects 
Neonatal Adrenoleukodystrophy  
(Autosomal recessive) 

PEX1 601539 Craniofacial abnormalities, and liver dysfunction, and 
biochemically by the absence of peroxisomes 

Zellweger syndrome PEX1 214100 Craniofacial abnormalities, hepatomegaly, severe mental 
retardation and growth failure, hypotonia, deafness, blindness, 
genitourinary abnormalities, stippled epiphyses 

    

    
Kearns-Sayre syndrome Mitochon-

drial DNA 
deletions 

530000 External ophthalmoplegia, retinal degeneration, and cardiac 
conduction defects; other endocrinopathies 

    

Acquired aetiologies    
Haemorrhage   Bilateral adrenal haemorrhage of the newborn, Primary 

antiphospholipid syndrome, Anticoagulation 
Trauma/surgery   Bilateral adrenalectomy 
Infection   Septic shock, Meningococcal sepsis (Waterhouse-Frederichsen 

syndrome), Tuberculosis, Fungal infections (histoplasmosis, 
cryptococcosis, coccidiomycosis, blastomycosis), 
Cytomegalovirus, HIV-1 

Infiltration   Metastatic cancers, Primary adrenal lymphoma, Amyloidosis, 
Sarcoidosis, Hemochromatosis 

Drugs    Ketoconazole, Rifampicin, Phenytoin, Phenobarbital, 
Aminoglutethimide, Mitotane, Abiraterone, Etomidate, 
Suramine, Mifepristone 
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Table 4. Aetiologies of Secondary Adrenal Insufficiency in Children 
 
Condition/ deficiency Gene OMIM Associated clinical signs and symptoms 
Hypothalamic Disorders    

Congenital aetiologies    
Septo-optic dysplasia (de Morsier Syndrome) HESX1 182230 Combined pituitary hormone deficiency, optic-nerve hypoplasia, 

and midline brain defects  
CRH deficiency    

    

Acquired aetiologies    
Steroid withdrawal syndrome    
Inflammatory disorders   Abscess, meningitis, encephalitis 
Trauma    
Radiation therapy   Craniospinal irradiation in leukemia, irradiation for tumours 

outside the hypothalamic-pituitary axis 
Surgery    
Tumour   Craniopharyngioma, glioma, meningioma, ependymoma, 

germinoma, and intrasellar or suprasellar metastases 
Infiltrative diseases   Sarcoidosis, Histiocytosis X, haemochromatosis 

    

Pituitary Disorders    
Congenital aetiologies    

Aplasia/hypoplasia    
Multiple pituitary hormone deficiencies    

Prophet of PIT1 PROP1  262600 Additional deficiency of GH, PRL, TSH, LH/FSH  
Lim homeobox gene 4 LHX4 262700 Additional deficiency of Growth hormone, TSH 
SRY-box 3 SOX3 312000  

    

Isolated ACTH deficiency 
 

 
 

T-box factor 19 (TPIT) TBX19 201400 Severe neonatal-onset adrenal insufficiency 
Proopiomelanocortin POMC 609734 Adrenal insufficiency, early-onset obesity, red hair pigmentation 
Proprotein convertase 1 PCSK1 600955 Hypoglycemia, malabsorption, hypogonadotrophic 

hypogonadism 
    

Acquired aetiologies    
Steroid withdrawal syndrome   Endogenous glucocorticoid hypersecretion due to Cushing 

syndrome, exogenous glucocorticoid administration for >2 wk 
Tumour   Craniopharyngioma, glioma, meningioma, ependymoma, 

germinoma, and intrasellar or suprasellar metastases, adenoma, 
carcinoma 

Trauma   Pituitary stalk lesions, battering, shaken baby, vehicular 
Pituitary apoplexy (Sheehan's syndrome)   High blood loss or hypotension 
Radiation therapy   Craniospinal irradiation in leukaemia, irradiation for tumours 

outside the hypothalamic-pituitary axis, irradiation of pituitary 
tumours 

Infiltration   Tuberculosis, actinomycosis, sarcoidosis, Wegener 
granulomatosis 

Lymphocytic hypophysitis   Isolated or as a part of APS 
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Table 5. Intravenous glucocorticoid doses during critical illness, major surgery or adrenal 

crisis 

Age  Bolus (single 

dose)* 

Maintenance* 

≤ 3 years Hydrocortisone  25 mg IV 25-30 mg IV per day 

>3 years and <12 

years 

Hydrocortisone  50 mg IV 50-60 mg IV per day 

≥ 12 years Hydrocortisone  100 mg IV 100 mg IV per day 

Adults Hydrocortisone 100 mg IV 100-200 mg IV per 

day 

*dose for bolus and maintenance approximately equals 100 mg/ m2  

 

 


