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Abstract  
 

Objective: Our aim was to improve meta-analysis methods for summarising a prediction 

model’s performance when individual participant data are available from multiple studies for 

external validation. 

  

Study design & setting: We suggest multivariate meta-analysis for jointly synthesising 

calibration and discrimination performance, whilst accounting for their correlation. The 

approach estimates a prediction model's average performance, the heterogeneity in 

performance across populations, and the probability of ‘good’ performance in new 

populations. This allows different implementation strategies (e.g. recalibration) to be 

compared. Application is made to a diagnostic model for deep vein thrombosis (DVT) and a 

prognostic model for breast cancer mortality. 

 

Results: In both examples multivariate meta-analysis reveals that calibration performance is 

excellent on average, but highly heterogeneous across populations unless the model’s 

intercept (baseline hazard) is recalibrated. For the cancer model, the probability of 'good' 

performance (defined by C-statistic≥0.7 and calibration slope between 0.9 and 1.1) in a new 

population was 0.67 with recalibration, but 0.22 without recalibration. For the DVT model, 

even with recalibration there was only a 0.02 probability of 'good' performance.  

  

Conclusion: Multivariate meta-analysis can be used to externally validate a prediction 

model’s calibration and discrimination performance across multiple populations, and to 

evaluate different implementation strategies.  

 

Keywords 

Risk prediction; prognostic model; individual participant data (IPD); multivariate meta-

analysis; external validation; calibration; discrimination; heterogeneity; model comparison  
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What is new? 

 

KEY FINDINGS 

 

Given individual participant data (IPD) from multiple external validation studies, meta-

analysis enables researchers to summarise prediction model performance, in terms of both 

average performance and consistency in performance across populations. It thereby allows 

different implementation strategies (e.g. recalibration) to be formally compared. 

 

A multivariate meta-analysis approach should be used to jointly evaluate discrimination and 

calibration performance, whilst accounting for their correlation. This can be used within 

internal-external cross-validation (to also incorporate a model development phase), or when 

IPD from multiple studies are available for external validation of existing models. 

 

WHAT THIS ADDS TO WHAT IS KNOWN: 
 

Before implementation, risk prediction models require validation in data external to that used 

for model development. This is best achieved using IPD from multiple studies, so that model 

performance can be examined and quantified across multiple populations of interest. A good 

prediction model will have satisfactory performance on average across all external validation 

datasets, and crucially little or no between-study heterogeneity in performance.  

 

Our examples show that a prediction model may have excellent average performance, but 

with heterogeneity (inconsistency) in performance across populations. Recalibration of the 

model’s intercept term (or baseline hazard) in the intended population might reduce 

heterogeneity, and thereby improve the probability of acceptable model performance when 

applied in new populations.   

 

WHAT IS THE IMPLICATION, WHAT SHOULD CHANGE NOW: 
 

When IPD are available from multiple studies for external validation of a prediction model, 

researchers should use multivariate meta-analysis to jointly summarise calibration and 

discrimination performance, and to identify how best to implement the model in new 

populations.  
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1. Introduction 

A crucial part of medical research is to develop risk prediction models. These aim to 

accurately predict disease and outcome risk in individuals [1-3], thereby informing clinical 

diagnosis and prognosis. For example, healthy individuals with a high predicted risk of future 

disease (e.g. cardiovascular events) may be advised to modify their lifestyle and behaviour 

choices (e.g. smoking, exercise), and diseased individuals may be grouped (e.g. stage of 

cancer) according to future outcome risk so that clinical decisions (such as treatment options, 

monitoring strategies) can be tailored accordingly. Two well-known examples are QRISK [4] 

and the Nottingham Prognostic Index [5]. They are typically implemented within a 

multivariable regression framework, such as logistic or Cox regression, which provides an 

equation to estimate an individual's risk based on values of multiple predictors (prognostic 

factors [6]) such as age, biomarkers, and genetic information  

 

A key stage of prediction model research is model development [2]. This identifies important 

predictors and develops the risk prediction equation using an available dataset; it usually also 

examines the model's apparent performance in this same data, or uses internal validation 

techniques (such as bootstrap resampling) to examine and adjust for optimism in performance 

[7]. The next stage is external validation [8-10]. This uses data external to the model 

development data and its source, and examines whether the model predictions are accurate in 

another (but related) situation. The aim is to ascertain the model's generalisability to the 

intended populations for use [11], and to identify the best implementation strategy (e.g. 

recalibration of the intercept).  

 

Unfortunately, most prediction research focuses on model development and there are 

relatively few external validation studies [12]. However, nowadays there is increasing access 

to multiple datasets, as evident in meta-analyses using individual participant data (IPD) from 

multiple studies [13, 14]. This provides an exciting opportunity to perform external validation 

on multiple occasions [15, 16]. Model development and external validation can even occur 

simultaneously, using an approach called internal-external cross-validation [17, 18]. This 

develops a model in all but one of the IPD studies, and then its external validity is 

immediately checked in the omitted study. This process is repeated across all rotations of the 

omitted study, to measure external validity in each distinct IPD study.  
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Given multiple external validation studies, meta-analysis methods are needed to synthesise 

and summarise model performance appropriately across the available populations. Van 

Klaveren et al.[16], Pennells et al.[15] and, within internal-external cross-validation, Royston 

et al.[17] consider approaches to summarise validation performance across multiple studies or 

clusters. These focus mainly on producing pooled estimates of discrimination performance; 

that is, a model’s ability to distinguish correctly between patients with and without the 

outcome of interest. Researchers should also be interested in summarising calibration 

performance, which is the agreement between a model’s predicted risk and the observed risk. 

Calibration is often ignored in external validation research [19], even though it is 

fundamental that observed and predicted risks should closely agree. Moreover, baseline risk 

may vary across study populations and so a model's implementation may need to be tailored 

to each population (often referred to as recalibration) in order to improve calibration 

performance in new populations. 

 

In this article, we propose multivariate meta-analysis for jointly synthesising discrimination 

and calibration performance, whilst accounting for their correlation. This can be used within 

internal-external cross-validation (to also incorporate a model development phase), or when 

IPD from multiple studies are available for external validation of existing models. We show 

that the multivariate approach summarises a prediction model's average discrimination and 

calibration performance, and quantifies the heterogeneity in performance across populations. 

It also allows researchers to predict the potential calibration and discrimination of a model 

when it is applied to a new population, and can be used to estimate the probability of ‘good’ 

performance (as pre-defined by the user). Using two real examples, we illustrate how this 

enables researchers to compare the performance of different implementation strategies (e.g. 

recalibration of the intercept term) to help identify the best strategy for applying the model in 

practice. 

  

The article now proceeds by introducing the proposed multivariate meta-analysis 

methodology for summarising and comparing validation performance (Section 2). Two 

clinical examples are then used to illustrate the approach (Section 3), one for diagnosis and 

one for prognosis, and we conclude with some discussion (Section 4). 
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2. Meta-analysis of predictive performance statistics from multiple 

external validation studies 

External validation of a prediction model requires evaluation of its predictive performance, in 

terms of both calibration and discrimination. There are many statistical measures available 

for this purpose [1, 20]. Here we focus on those most commonly used: the C-statistic [20, 21] 

the D-statistic [22, 23], the calibration slope [1, 20], calibration-in-the-large [1], and the 

Expected/Observed number of events. These are defined in the Appendix. We focus here on 

how to meta-analyse such performance statistics when they are estimated in multiple external 

validation studies. 

 

2.1 Obtaining suitable data for meta-analysis 

The meta-analysis approach requires an estimate of each performance statistic of interest (e.g. 

C-statistic, calibration slope) from each external validation study. Given IPD, these can be 

calculated in each validation study using appropriate statistical methods, as described 

elsewhere [1, 20, 23]. However, meta-analysis also requires the variance-covariance matrix 

of the performance statistics in each study: in other words, the variance of each performance 

estimate and (for multivariate meta-analysis) the correlation between all pairs of estimates. A 

general approach to obtaining these is via non-parametric bootstrapping, as described in the 

Appendix.  

 

2.2 Univariate random-effects meta-analysis 

For clarity, before proposing our multivariate approach we firstly describe a univariate 

random-effects meta-analysis that is applicable separately to each performance measure of 

interest[24, 25]. In external validation study i let Yij be the estimate of the jth performance 

statistic of interest, and let  Sij2 be its sample variance (derived from bootstrapping and 

assumed known), then the univariate meta-analysis can be written as: 

  

 
Yij ~ N���� ,	Sij2� 
μij ~ N��� ,	�
 � 

(1)  

 

Equation (1) assumes the Yij are normally distributed about the ith study's true validation 

performance, μij, and that the μij are also normally distributed with an average of �� and a 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 

between-study standard deviation of 	�. There are several frequentist methods that can be 

used for estimation of a random-effects meta-analysis; here we use restricted maximum 

likelihood (REML)[26]. With the addition of prior distributions for unknown parameters, a 

Bayesian approach is also possible, for example using Gibbs sampling. An approximate 

100(1-α)% confidence interval for the average performance, ��, is obtained by 

�̂� ±1.96 SE(�̂�), where SE(�̂�) is the standard error of �̂� . White [27] proposed that SE(�̂�) is 

inflated to account for the uncertainty in the estimated 	�, and we implement this here. 

 

Summarising consistency in model performance 

On its own, �̂� is an incomplete summary because it does not adequately summarise the 

consistency in performance across studies. Estimates such as 
 (the percentage of the total 

variation in study estimates that is due to between-study heterogeneity [28]) and  	̂�
	are thus 

also helpful [29]. However, when evaluating performance statistics of a risk prediction model 

we are examining its generalisability, in other words its robustness when applied in new 

populations that differ from those it was developed in [11]. Thus, consistency is best 

expressed by a 100(1-�)% prediction interval for the performance of the model in a new 

population [24, 25]. This is derived by 

 �̂� ± t∝,	N - 2�	̂�
  +V(�̂�)  (2)  

where t∝, N - 2 is the 100�1-
∝
2
	�% percentile of the t-distribution for N - 2 degrees of freedom 

(N = no. of studies), V(�̂�) =SE(�̂�)
, and ∝  is typically taken to be 0.05 to give a 95% 

interval. The use of a t-distribution, rather than a normal distribution, is used to account for 

the uncertainty in 	̂�
 [24]. The prediction interval thus indicates the performance expected in 

a new (external validation) study, similar to those included in the meta-analysis. 

 

2.3 Multivariate meta-analysis 

Our multivariate approach is an extension of equation (1)[30], and allows the joint synthesis 

of all predictive performance measures of interest from the i = 1 to N external validation 

studies, whilst accounting for their within- and between-study correlation. Let there be j = 1 

to J measures of interest, and let iY  be a vector containing the available J estimates (

iJii ,Y,,YY K21 ) of the measures in the ith validation study. The general multivariate meta-

analysis model is as follows: 
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( )

( )Σµθ

SθθY

i

iiii

,~

,~

MVN

MVN| 
  

 

Here MVN denotes a multivariate normal distribution, iθ  contains the true underlying effects 

for the J performance measures for the ith study, iS  is the within-study variance-covariance 

matrix for the ith study (assumed known) containing the J variances of the estimates (in the 

diagonal: 22
2

2
1 iJii ,S,,SS K ) and their covariances (in the off-diagonal; for example 2121 ii),Wi( SSρ  

is the within-study covariance for measures 1 and 2, where ),Wi(ρ 21 is their within-study 

correlation caused by estimates derived from the same patients), µ contains the J means for 

the measures of interest, and Σ  is the between-study variance-covariance matrix containing 

the J between-study variances (in the diagonal:
22

2
2
1 J,τ,,ττ K ) and their between-study 

covariances (in the off-diagonal; e.g. the between-study covariance for measures 1 and 2 is 

2121 ττρ ),(B , where ),(Bρ 21  is their between-study correlation induced by differences in study 

populations and settings). The number of rows in each vector is equal to the number of 

measures. In its simplest form with two measures of interest (e.g. C-statistic and calibration 

slope), equation (3) can be expressed as a bivariate meta-analysis (Appendix).  
 

 

REML can again be used for estimation, although other options are available [30, 31]. 

Multivariate extensions to 
 can also be calculated [26, 31], giving the fraction of the total 

variability due to between-study variability for each performance statistic (�
).  
 

Making joint inferences across multiple performance measures 

After equation (3) is estimated, marginal confidence and prediction intervals for each 

performance measure can be obtained using the formulae given in the univariate section. 

However, by accounting for their correlation, the multivariate approach also enables joint 

inferences. For instance, extending equation (2) to a bivariate t-distribution with k – 2 degrees 

of freedom, one can obtain a joint 95% prediction region for two performance measures of 

interest (e.g. the C-statistic and the calibration slope) in a new population. Joint probabilistic 

inferences can also be made if we assume the multivariate t-distribution is an approximate 

posterior distribution (that is, we assume it is obtained from a Bayesian analysis with 

uninformative priors, and give it means, variances and covariances obtained from REML 

(3) 
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estimation of equation (3) - see Supplementary material 1 for full details [32]). For example, 

one can derive the joint probability that the C-statistic will be above 0.7 and the calibration 

slope will be between 0.9 and 1.1 in a new population. A fully Bayesian approach can also be 

used to derive such posterior inferences by formally specifying prior distributions and 

combining them with the likelihood, then using, for example, Gibbs sampling to take samples 

from the exact posterior distributions. Riley et al.[33] describe the Bayesian approach to 

multivariate meta-analysis with IPD. 

 

2.4 Comparing the predictive performance of different implementation strategies 

When applying a prediction model to a new population, different implementation strategies 

might be used regarding the choice of model intercept (baseline hazard) (this is illustrated in 

Sections 3.1 and 3.2, and for example includes recalibration). Meta-analysis of performance 

statistics allows such implementation strategies to be formally compared. The aim is to 

identify an implementation strategy that, for each performance measure, has excellent 

performance on average (indicated by �̂�); small values of between-study heterogeneity 

(indicated by 	̂� and/or �
); and a narrow prediction interval that suggests consistently good 

performance in new populations. Multivariate meta-analysis even allows the competing 

strategies to be ranked according to their overall performance: for example, according to the 

joint probability that, in a new population, the C-statistic will be above 0.7 and the calibration 

slope will be between 0.9 and 1.1. The strategy with the largest probability will be ranked 

first.  

 

2.5 Meta-regression and examining covariates 

Meta-analysis equation (3) can be extended to a multivariate meta-regression that includes 

study-level covariates to explain between-study heterogeneity, such as treatment policies, 

population characteristics (e.g. mean age), year of investigation, and length of follow-up. 

Competing implementation strategies can then be evaluated and compared for specific 

subgroups of studies (e.g. those done within the last few years, those with consistent 

treatment policies, those with the same case-mix, etc). This may help identify populations 

where model performance is satisfactory and others where it is inadequate, to inform the 

model's generalisability and applicability [11]. A nice example of a meta-regression to 

examine the impact of case-mix variation on model performance is given by Pennells et al. 

[15], who identify that studies with a higher standard deviation of age are strongly associated 
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with a higher C-statistic and D-statistic. Model performance can also be examined for patient-

level covariates; for example, discrimination and calibration could be estimated for males and 

females separately. Equation (3) can then be applied to summarise each subgroup, or even the 

difference between subgroups. 

 

3. Applied examples 

We now illustrate the proposed meta-analysis methods with two applied prediction model 

examples, one for diagnosis and one for prognosis, and compare the performance of different 

implementation strategies, including recalibration 

 

3.1 Diagnostic example: Prediction of existing deep vein thrombosis 

Data, model development and competing implementation strategies 

We used IPD from 12 studies to develop a diagnostic prediction model for the risk of having 

deep vein thrombosis (DVT) in patients that were suspected of having DVT, as described 

previously [34]. A total of 10002 patients were available across the 12 studies (with study 

sample sizes ranging from 153 to 1768 patients), and 1864 (19%) patients truly had DVT. 

This IPD is used here only for illustration purposes and not to develop or recommend the 

optimal diagnostic model to be used in medical practice.  

 

The prediction model was developed using logistic regression, including a separate intercept 

for each study and three predictors chosen a priori: sex (male=1, female=0), surgery (recent 

surgery or bedridden = 1, no recent surgery or bedridden = 0) and calf difference (≥3cm = 1, 

<3cm = 0). However, three different implementation strategies were considered (for the 

model intercept) when applying the developed model to the external validation dataset: 

Strategy (1): Use a new intercept estimated in the external validation dataset itself. 

This is a form of model recalibration [35]. 

Strategy (2): Use the estimated weighted average of the study intercept terms from 

the developed model. 

Strategy (3): Use the estimated intercept for one of the studies in the developed 

model that had the most similar prevalence of DVT to the external 

validation study. 
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Internal-external cross-validation was undertaken for each implementation strategy, and their 

predictive performance then summarised and compared across the 12 external validation 

studies using our multivariate meta-analysis approach. 

 

Results 

Regardless of which study was excluded, the predictor effect estimates (log odds ratios) were 

very similar in each cycle of the internal-external cross-validation approach (supplementary 

material 2 shows the parameter estimates in each cycle, and the intercept to be implemented 

in strategy (3)). During external validation of the model, for each implementation strategy 

four validation statistics were estimated: calibration-in-the-large, calibration slope, the C-

statistic, and the ratio of expected and observed DVT cases, as defined in the Appendix. 

These results are shown (with standard errors) in supplementary material 3(a) for each of the 

strategies. Their within-study correlations, obtained from bootstrapping with 1000 samples, 

are shown in supplementary material 3(b). These are large (between +0.90 to +0.98) for the 

calibration slope and C- statistic, indicating a strong positive relationship between them. In 

other words, as the observed calibration slope of model predictions decreases (becomes 

flatter) the observed discrimination of the model predictions also decreases (less separation); 

conversely, when model predictions produce a steeper observed calibration slope the 

discrimination is improved. The other measures of calibration (calibration-in-the-large and 

expected/observed) measure overall agreement, and thus are not affected so much by changes 

in discrimination; thus their within-study correlation with the C-statistic is close to zero. 

There is a perfect negative correlation between log(expected/observed) and calibration-in-

the-large by definition. 

 

The multivariate meta-analysis results for each statistic are shown in Table 1. The meta-

analysis results for the C-statistic are practically the same in all implementation strategies, as 

are those for the calibration slope. The mean C-statistic is 0.69 (95% CI: 0.67 to 0.71), 

indicating moderate discrimination. There is a small amount of between-study heterogeneity 

(τ̂≈0.02; I2 
≈37%), leading to a 95% prediction interval of 0.64 to 0.73, revealing fairly 

consistent discrimination performance across studies (Figure 1). The mean calibration slope 

is around 0.98 (95% CI: 0.85 to 1.10), which is close to the ideal value of one though 

indicating very slight over-prediction. The amount of between-study heterogeneity is large 

(	̂≈0.16; I2 
≈59%), leading to a wide 95% prediction interval (e.g. 0.59 to 1.38 for strategy 

(2)). This contains values well above and well below one, which respectively suggest that in 
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some populations the predicted probabilities vary too little (i.e. the model is under-fitted 

and/or assigns probabilities that are too similar across individuals) and in others they vary too 

much (i.e. the model is over-fitted to the development sample and assigns probabilities that 

vary too much across individuals). This illustrates how the average performance is an 

incomplete picture; calibration slope is good on average, but could be poor in particular 

populations (Figure 2). 

 

Calibration-in-the-large does differ more importantly across implementation strategies (Table 

1), as it is sensitive to the choice of intercept. The meta-analysis results reveal it is, on 

average, slightly worse for strategy (1) as there is a small over-prediction in the proportion 

with DVT (-0.13, 95% CI: -0.19 to -0.08).  However, there is almost no heterogeneity in the 

calibration-in-the-large (τ̂=0.008; I2 =1%), leading to a narrow 95% prediction interval (-0.20 

to -0.07). Using strategy (2) or (3) the average calibration-in-the-large is closer to zero           

(-0.004 and 0.047 respectively), but comes at the expense of slightly larger between-study 

heterogeneity (τ̂=0.53 and 0.27, I2 =97% and 89% respectively), leading to wider prediction 

intervals. For example, for strategy (2) the 95% prediction interval is -1.24 to 1.23.  

 

Instead of calibration-in-the-large, it is perhaps easier to interpret the Expected/Observed 

proportion of DVT cases (Table 1). This follows a similar pattern (Table 1), with narrowest 

prediction interval for strategy (1) and slightly improved average performance for strategies 

(2) and (3). The 95% prediction interval for Expected/Observed for strategy (1) suggests the 

overall agreement is likely to be reasonable in new populations (1.05 to 1.14), with the 

number of DVT cases over-predicted by between 5% and 14%. However, the 95% prediction 

interval is unsatisfactory for the other strategies; for example, it is 0.41 to 2.54 for strategy 

(2) indicating the number of predicted DVT cases in a new population could range from 59% 

too few up to 154% too many. 

 

Overall, therefore, strategy (1) appears best as it removes heterogeneity in the calibration-in-

the-large and Expected/Observed, whilst maintaining similar discrimination. However, the 

prediction model would benefit from additional predictors, as currently discrimination is only 

moderate and there is large heterogeneity in calibration slope. This is confirmed by a joint 

probability of only 0.03 that strategy (1) will give a C-statistic ≥ 0.7 and a calibration slope 

between 0.9 and 1.1 in a new population (Table 2). If the criteria for model discrimination is 

relaxed to a C-statistic ≥ 0.65, then the joint probability improves but only to 0.43.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 
 

3.2 Prognostic example: Prediction of mortality in breast cancer patients 

Data, model development, and competing implementation strategies 

We used IPD from eight cohort studies (relating to eight different countries from Look et 

al.[36]) to develop and evaluate a prognostic prediction model for the risk of mortality over 

time in women recently diagnosed with breast cancer. In total there were 7435 patients 

(ranging from 69 patients to 3242 per study) and 2043 events. The maximum follow-up 

duration was 120 months and the median follow-up duration across all studies was 86.3 

months. Internal-external cross-validation was used and, in each cycle, a Royston-Parmar 

flexible parametric survival model was fitted [37-39], with the baseline cumulative hazard 

function modelled using restricted cubic splines (with four knots deemed sufficient) and 

predictor effects (hazard ratios) assumed constant over time. A set of eight candidate 

predictors was considered at each cycle: age, tumour type, tumour grade, tumour size, 

number of positive nodes, menopausal status, adjuvant therapy, and hormone receptor status. 

Backwards selection was used, with p>0.05 taken for exclusion. Separate but proportional 

baseline hazard functions were included for each country; that is, one study was taken as the 

reference group, and others were allowed a country-specific adjustment factor). When 

applying the developed model to the external validation study, three different implementation 

strategies were considered (in regard the baseline hazard): 

 

Strategy (1): Use a new country-specific adjustment factor as estimated in the 

validation study itself. This is a form of recalibration, but assumes the 

baseline hazard in the validation study and the development studies are 

proportional.  

Strategy (2): Use a weighted average of the estimated country-specific adjustment 

factors from the developed model.  

 Strategy (3):  Use the country-specific adjustment factor for a country that was 

included in the developed model and is closest geographically to the 

validation country. 

 
Internal-external cross-validation was undertaken for each strategy, and their predictive 

performance then summarised and compared across the eight external validation studies 

using meta-analysis. 
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Results 

The predictor effect estimates (log hazard ratios) were similar in each cycle of the internal-

external cross-validation approach (results available on request). The backwards selection 

retained all candidate predictors in each cycle, apart from menopausal status which was 

always excluded.  For each implementation strategy, we evaluated model performance in 

each external validation study by estimating Harrell's C-statistic [20], the D-statistic [22, 40], 

and the calibration slope between the predicted hazard function and the observed hazard 

function, as defined in the Appendix. The estimates, with their variances and within-study 

correlation, are shown in supplementary material 4. Within-study correlations were all 

positive, and generally moderate to large. 

  

Multivariate meta-analysis of the validation statistics is summarised in Table 3 for each 

implementation strategy. The summary C-statistic and D-statistic results are barely affected 

by the choice of strategy. The average C-statistic is 0.71 and its 95% prediction interval is 

0.66 to 0.76, suggesting consistently moderate discrimination across populations. The 

average D-statistic is about 0.33, which equates to a moderate hazard ratio of 1.39 (95% CI: 

1.23 to 1.57) between two equal sized groups across the prognostic index. However, D is 

inconsistent across populations (I2 is about 87%), and thus its prediction interval is wide 

(Table 3).  

 

Calibration slope is affected by the choice of strategy. For strategy (1), which allows 

recalibration in the validation study, the calibration slope is excellent. The meta-analysis 

gives an average calibration slope of 1.003, with only moderate heterogeneity (I2 = 35%) 

leading to a narrow prediction interval of 0.93 to 1.08. In contrast, strategies (2) and (3) 

perform poorly. Although average calibration is excellent, there is large between-study 

heterogeneity (e.g. I2 = 99% for strategy (3)) leading to wide predictions intervals (e.g. 0.15 

to 1.77 for strategy (3)). This again reveals how average performance is an incomplete and 

potentially misleading summary of performance.  

 

Figure 3 shows joint prediction ellipses for the C-statistic and the calibration slope, derived 

using the multivariate meta-analysis results for each strategy. For implementation strategy (1) 

there is a joint probability of 0.67 for a C-statistic ≥ 0.7 and a calibration slope between 0.9 

and 1.1; however, the probability is only 0.15 for strategy (3) and 0.22 for strategy (2).  
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Strategy (1) thus performs best, but it requires recalibration of the model in new countries and 

may be difficult to implement. We therefore sought to improve strategy (2), which does not 

include recalibration, by identifying the cause of heterogeneity in its calibration performance. 

It was observed that Study 3 gave the poorest calibration slope upon external validation of the 

models (Table 4), most likely due to the baseline hazard in Study 3 being different in shape 

(non-proportional) to those other studies. Extending equation (3) to a multivariate meta-

regression with a covariate for country (1= Study 3, 0 = otherwise) explained a large part of 

the heterogeneity (p < 0.001). We repeated the internal-external cross-validation approach for 

strategy (2), but omitted Study 3 for the entire process. External validation performance was 

improved, as heterogeneity in calibration slope was reduced (τ̂ = 0.156 excluding Study 3, τ̂ = 

0.22 including Study 3), and thus its 95% prediction interval was narrower (supplementary 

material 5). The joint probability for a C-statistic≥0.7 and a calibration slope between 0.9 and 

1.1 was improved to 0.32, but still considerably worse than strategy (1), indicating 

recalibration remains preferable.  

 

4.  Discussion  

We have proposed a multivariate meta-analysis approach for summarising and comparing 

prediction model performance across multiple external validation studies using IPD. This can 

be used within internal-external cross-validation to also incorporate a model development 

phase, or when IPD from multiple studies are available for external validation of existing 

models. Each of the statistical methods involved (such as obtaining within-study correlations 

and fitting the multivariate equation) only take up to a few minutes to perform using 

computer software such as STATA, and provide results that improve the interrogation of a 

prediction model’s performance and its implementation strategy.  

 

Currently, most external validation research is undertaken using a single dataset. However, 

multivariate meta-analysis of IPD is a novel way to examine the overall performance and 

generalisability of a prediction model across multiple datasets[13, 15, 16]. A good model will 

have satisfactory performance on average across all external validation datasets. But ideally 

there should also be little or no between-study heterogeneity in performance. Our examples 

showed that a prediction model may have excellent average performance, but may not have 

consistent performance across datasets. Such heterogeneity is rarely considered in external 

validation research, but should be routinely examined where possible, in particular to identify 
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the best implementation strategy. In our examples, the investigation of heterogeneity revealed 

that recalibration of the intercept term to the validation population was essential, otherwise 

there was considerable inconsistency in calibration performance of our prediction models. 

The importance of intercept recalibration is also shown elsewhere [41, 42]. However, it may 

not entirely remove the issue of miscalibration, as seen in the DVT example where there 

remained slight over-prediction even after recalibration. In particular, if there is also 

heterogeneity in predictor effects then one may also need to recalibrate these to the intended 

population; however, this defeats the purpose of the initial research (i.e. to develop a 

prediction model that can be used widely and easily), and rather indicates that additional 

and/or more homogenous predictors are required. 

  

Heterogeneity in discrimination performance was also observed in our examples. This may 

also be due to heterogeneity in predictor effects across populations and/or different case-mix 

distributions across populations, as populations with wider ranges of continuous predictors 

often have better discrimination[15]. For such reasons, incorporating matched case-control 

studies alongside cohort studies may increase heterogeneity in discrimination performance, as 

the former typically have narrower ranges of predictors [43]. Another potential cause of 

heterogeneity in performance of a prognostic prediction model is follow-up time, and also 

heavy censoring may bias Harrell’s C-statistic, prompting Gönen and Heller to propose an 

alternative [44]. Such factors may also impact the magnitude of between-study correlation in 

the performance measures.  

 

As external validation of a prediction model usually requires multiple statistical measures of 

performance, in particular at least one for calibration and one for discrimination [8, 19], our 

multivariate meta-analysis approach jointly synthesises all measures together across multiple 

validation studies. This accounts for their within-study and between-study correlation [45], 

which may arise because measures are highly related [33]. For example, the C-statistic and 

D-statistic typically have moderate to large positive within-study correlation (as seen in 

supplementary material 4(b)) as they are both measures of discrimination and within-studies 

are estimated on the same patients. Similarly the calibration slope and C-statistic may also be 

correlated between-studies, for instance if the between-study heterogeneity in predictor 

effects causes calibration slope to become greater than 1 as discrimination improves, but less 

than 1 as discrimination worsens. Accounting for such correlation in the meta-analysis allows 

the borrowing of strength across performance measures to potentially reduce bias and 
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improve precision [46, 47]. Further, it is crucial to account for correlation when computing 

joint probabilities of model performance, such as the magnitude of the C-statistic and 

calibration slope, as otherwise inferences may be misleading [45].  

 

Our intention was to illustrate how the multivariate meta-analysis approach allows 

researchers to summarise both discrimination and calibration. We focused on well-known 

statistical criteria, such as the calibration slope, (Harrell’s) C-statistic, and Royston and 

Sauerbrei’s D-statistic. However, we recognise that the criteria for a 'good' prediction model 

is open to much debate [48], and readers may prefer to meta-analyse other statistical 

measures available, including alternatives to Harrell’s C-statistic [44]. Clinical criteria may 

also be preferred [49], to focus more on the consequences for decision-making [50].Whatever 

criteria are used, we recommend they are pre-specified in a published protocol [51]. Visual 

plots of calibration [23] and discrimination [52] are also important, as neatly illustrated by 

Royston et al.[17]. Calibration estimates can also be obtained (and then meta-analysed) for 

particular subgroups within studies, for example defined by particular patient characteristics 

or categories of the prognostic index [23]. Also, we note that excellent validation 

performance is not the end of the story: a prediction model’s impact on patient outcomes also 

needs to be evaluated, for example in subsequent trials[3].  

 

A potential limitation of our work is the multivariate normality assumption for the 

distribution of true performance across studies. Though this is a common assumption in the 

meta-analysis field, prediction intervals and regions are potentially vulnerable to departures 

from this[53]. A related issue is the choice of scale to use for the estimates of validation 

performance[16], and further research is needed on this. Internal-external cross-validation is 

also limited if the number of studies are small, and researchers should ensure the number of 

events is suitable in each cycle [54, 55].  

 

In conclusion, we propose multivariate meta-analysis for external validation of the 

performance and implementation of a prediction model when IPD are available for multiple 

studies. The approach encourages researchers to focus not only on average performance, but 

also on the consistency in performance across populations, for both calibration and 

discrimination. 
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Table 1: Trivariate meta-analysis results* for the calibration and discrimination performance of the DVT model for each implementation 
strategy. 
  

Strategy Validation statistic 
Estimate (95% CI) of mean, 

μμμμ 
95% prediction interval I2 %  �� (95% CI ) 

Strategy (1): 

Develop using logistic 
regression and implement 
with intercept estimated in 
external validation study 

Calibration-in-the-large -0.130 (-0.185 to -0.075) -0.195 to -0.065 1 0.008 

Calibration slope 0.975 (0.855 to 1.097) 0.597 to 1.353 57 0.158 

Log(Expected/Observed) 0.086 (0.047 to 0.124) 0.041 to 0.128 0 0.0009 

C-statistic 0.687 (0.670 to 0.704) 0.645 to 0.729 34 0.017 

Strategy (2): 

Develop using logistic 
regression and implement 
with average study intercept 
taken from developed model 

Calibration-in-the-large -0.004 (-0.313 to 0.305) -1.240 to 1.232 97 0.532 

Calibration slope 0.980 (0.853 to 1.107) 0.585 to 1.375 59 0.165 

Log(Expected/Observed) 0.022 (-0.206 to 0.250) -0.887 to 0.931 97 0.391 

C-statistic 0.687 (0.669 to 0.705) 0.640 to 0.734 37  0.019 

Strategy (3): 

Develop using logistic 
regression and implement 
with intercept taken from a 
study used in development 
data with a similar prevalence 

Calibration-in-the-large 0.047 (-0.120 to 0.214) -0.584 to 0.678 89  0.270 

Calibration slope 0.976 (0.851 to 1.102) 0.578 to 1.375 59  0.167 

Log(Expected/Observed) -0.029 (-0.150 to 0.093) -0.485 to 0.427 89  0.195 

C-statistic 0.687 (0.669 to 0.705) 0.640 to 0.734 38 0.019 

 
 
*  A trivariate meta-analysis was fitted to calibration-in-the-large, calibration slope and C-statistic, and then again for log(Expected/Observed), 
calibration slope, and C-statistic. Perfect negative correlation between calibration-in-the-large and expected/observed within studies prevents all 
four measures being analysed together (due to collinearity). Results were practically the same for calibration slope and C-statistic, regardless of 
the trivariate model fitted.              
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Table 2: Joint predicted probability of 'good' discrimination and calibration performance for 

each of the three DVT models, derived using the multivariate meta-analysis results for the C-

statistic and calibration slope shown in Table 1.  

 

Calibration 
slope 

required 

Minimum  
C-statistic 
required 

Joint predicted probability of meeting criteria in new population 
Strategy (1):  

Develop using logistic 
regression and 
implement with 

intercept estimated in 
external validation 

study 

Strategy (2):  
Develop using 

logistic regression 
and implement with 

average study 
intercept taken from 

developed model 

Strategy (3):  
Develop using logistic 

regression and implement 
with intercept taken from 

a study used in 
development data with a 

similar prevalence 
0.9 to 1.1 0.70 0.027 0.037 0.037 

0.8 to 1.2 0.70 0.146 0.158 0.156 

0.9 to 1.1 0.65 0.427 0.413 0.409 

0.8 to 1.2 0.65 0.728 0.712 0.707 
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Table 3: Trivariate random-effects meta-analysis results for calibration and discrimination 

performance of the breast cancer model for each implementation strategy 

Strategy 
Validation 

statistic 
Pooled estimate 

(95% CI) 

95% 
prediction 
interval 

I-
squared 

Estimate 
of τ 

Joint 
probability 
of 'good'* 

performance 
in a new 

population 

Strategy (1):  

Develop using 
Royston-Parmar model 

and implement with 
baseline hazard 

estimated in validation 
study 

Calibration 
slope 

1.003 (0.971 to 
1.036) 

0.927 to 
1.080 

35% 0.026 

0.67 
C-statistic 0.711 (0.690 to 

0.733) 
0.657 to 
0.766 

49% 0.019 

D-statistic 0.328 (0.215 to 
0.442) 

-0.056 to 
0.713 

87% 0.146 

Strategy (2):  

Develop using 
Royston-Parmar model 
and implement with the 

estimated average 
baseline hazard from 

developed model 

Calibration 
slope 

0.994 (0.835 to 
1.153) 

0.411 to 
1.577 

98% 0.224 

0.22 
C-statistic 0.711 (0.691 to 

0.732) 
0.662 to 
0.761 

43% 0.017 

D-statistic 0.332 (0.212 to 
0.452) 

-0.080 to 
0.745 

88% 0.157 

Strategy (3):  

Develop using 
Royston-Parmar model 
and implement with the 

estimated baseline 
hazard from the closest 
geographical country 

Calibration 
slope 

0.961 (0.741 to 
1.181) 

0.148 to 
1.775 

99% 0.313 

0.15 
C-statistic 0.710 (0.687 to 

0.734) 
0.653 to 
0.767 

50% 0.020 

D-statistic 0.330 (0.211 to 
0.450) 

-0.068 to 
0.728 

87% 0.151 

 

* defined by a C-statistic≥0.7 and an calibration slope between 0.9 and 1.1 
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Appendix: Brief explanation of key statistical concepts considered in the article 

 

C-statistic 

A measure of a prediction model's discrimination (separation) between those with and 

without an event (outcome), which can be calculated for either binary or survival outcome 

data [20, 21]. Also known as the concordance index or, for binary outcomes, the area under 

the receiver operating characteristic (ROC) curve. It gives the probability that for any 

randomly selected pair of individuals, one with and one without the event (outcome), the 

model assigns a higher probability to the individual with the event (outcome). A value of 1 

indicates the model has perfect discrimination, whilst a value of 0.5 indicates the model 

discriminates no better than chance. For the DVT model we used the ‘roctab’ module in 

STATA to calculate the C-statistic, whilst for the breast cancer model we used ‘stcstat2’ to 

calculate Harrell’s C-statistic. 

 

D-statistic 

A measure of discrimination for time-to-event outcomes [22]. This can be interpreted as the 

log hazard ratio comparing two equally sized groups defined by dichotomising at the median 

value of the prognostic index from the developed model (where the prognostic index is 

defined by the combined predictor effects in the developed model, i.e. beta1*X1 + beta2*X2 

+ ...). Higher values for the D-statistic indicate greater discrimination, and an increase of 0.1 

over other risk scores is suggested to be a good indicator of improved prognostic separation 

[10]. For the breast cancer model, the D-statistic in the external validation study was 

calculated using the ‘str2d’ module [40] in STATA after fitting the Royston-Parmar model in 

our development data using the ‘stpm2’ module [38]. 

 

Calibration slope 

This is a measure of agreement between observed and predicted risk of the event (outcome) 

across the whole range of predicted values [1, 20]. For example, if a prediction model is 

developed using logistic regression it is of the form: 

logit(p) = alpha + beta1*X1 + beta2*X2 + ... 

Then the predicted probability (P-pred) is derived using 

 

 P-pred = exp(alpha + beta1*X1 + beta2*X2 + ...) / [1 + exp(alpha + beta1*X1 + beta2*X2 + ...)] 
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In the validation data, fitting the model 
 

    logit(p) = delta0 + delta1*(logit(P-pred))  

 

is used to calculate the calibration slope (delta1), which should ideally be 1 (though a value 

of 1 does not by itself confirm calibration is perfect [48]).   

In the breast cancer example in our article, we used a flexible parametric survival model to 

develop the prediction model, using the Royston-Parmar approach where the log cumulative 

hazard function is modelled using restricted cubic splines [37-39], with four knots chosen. To 

estimate calibration slope of the developed model, we fitted the following model in each 

external validation study: 

                lnH(t) = gamma0+gamma1*z1+gamma2*z2+gamma3*z3 +b*X 

where b is the calibration slope, lnH(t) is the log cumulative hazard function over time, t, and 

the gamma and z terms define the knots and the baseline lnH(t). The 

(gamma1*z1+gamma2*z2+gamma3*z3) value was forced to be that from the developed 

model; the X value for each patient corresponds to their value of the prognostic index from 

the developed model (i.e. Beta1*X1 + Beta2*X2 + ...); and the gamma0 value is dependent 

on the implementation strategy used. In strategy (1) gamma0 is newly estimated in the 

external validation study (akin to recalibration). In strategy (2) gamma0 is forced to be a 

weighted (meta-analysis) average of all the study-specific gamma0 estimates from the 

developed model. In strategy (3) the gamma0 value is forced to be the gamma0 estimate for 

the nearest country available in the developed model. 

 

Calibration-in-the-large 

This is an overall measure of calibration,[1] defined by fitting in the validation dataset 

 

   logit(p) = alpha0 + offset 

 

where alpha0 is the calibration-in-the-large and the offset term is equal to logit(P-pred) 

 

Expected/Observed number of events (E/O) 

This is another measure of calibration, closely related to the calibration-in-the-large, but more 

intuitive to interpret. It provides the ratio of the total expected events (outcomes) to the total 

observed events (outcomes). It can be obtained by summing all predicted probabilities in the 
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validation dataset and dividing by the number of observed events. An ideal value is 1. Values 

less than 1 indicate the model is under-predicting the total number of events in the 

population, whilst values above 1 indicate it is over-predicting the total events in the 

population.   

 

Non-parametric bootstrapping to obtain variance-covariance matrix of performance 

estimates 

Consider a single external validation study. Bootstrapping uses the IPD from this study and 

randomly selects one patient with replacement, then randomly selects a second patient with 

replacement, and repeats until the same sample size is obtained as in the original study. This 

process is repeated b times, so that b bootstrap samples are obtained. Then, in each of the 

bootstrap samples the performance statistics of the developed model are estimated (e.g. Yi1 

could be the estimated C-statistic and Yi2 could be the estimated calibration slope estimate in 

study i). This produces b values for each performance statistic. The observed variance of the 

b values for each statistic estimates their variance (i.e. it gives Si1
2 , the variance of Yi1 , etc). 

Similarly, the observed correlation across the b samples for each pair of validation statistics 

estimates their within-study correlation (i.e. it gives ),Wi(ρ 21 , the within-study correlation 

between Yi1 and Yi2 etc). 

 

Bivariate model 

When there are two performance measures of interest (e.g. C-statistic and calibration slope), 

the general multivariate meta-analysis of equation (3) can be simplified to the following 

bivariate meta-analysis: 
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Supplemental Material (Online Only) 
 
 
 
 
 

Supplementary material 1: Example of SAS syntax to derive joint probabilities of model 
performance with regard to two performance measures. 

 

The joint probability of 'good' performance in a new population is obtained below by 
calculating the proportion of 1000000 samples drawn from the approximate posterior 
bivariate t-distribution (with k - 2 d.f.; k = no. of studies). The parameters values to use are 
derived from the estimates of the mean vector and its variance-covariance matrix, and the 
between-study variance-covariance matrix, following REML estimation of multivariate meta- 
analysis equation (3). SAS code is provided below based on using the 'RANDMVT' module . 
Alternatively this can be performed using the “mnormt” package in R software [32]. 

 
/* Breast cancer example: strategy (1)*/ 
proc iml;  
load module=randmvt; 
/* set random number seed */  
call randseed( 1);  
/* define number of samples to take */ 
N=100000; 
/* enter degrees of freedom (no. of studies minus 2)*/ 
DF = 6; 
/* Define the means of the posterior distribution to be the meta-analysis mean 
estimates (mu) for the C-statistic and calibration slope*/ 
Mean = { 0.711 1.003};  
/* Define the variance-covariance matrix S for the posterior distribution by: 
V_11 = Variance for C-statistic = tau1-squared + var(mu1) 
V_22 = Variance for calibration slope = tau2-squared + var(mu2)  
V_12 = V_21 = Covariance of the C-statistic and calibration slope = tau12 +  
cov(mu1,mu2)  
(where tau1 and tau2 are the between-study SD for the C-statistic and the 
calibration slope, respectively; mu1 and mu2 are the mean estimates of the C- 
statistic and the calibration slope, respectively; var(mu1) and var(mu2) are the 
variances of the estimates mu1 and mu2, respectively; tau12 is the between-study 
covariance; and cov(mu1,mu2) is the covariance of the estimates of mu1 and mu2) */ 
S = { 0.00048 0.000611, 0.000611 0.000958}; 
/* derive the samples and define them by x*/ 
x = RANDMVT( N, DF, Mean, S );  
/* show the 1000 pair of values generated if on interest*/  
print x;  

 
/* convert x to a dataset called samples */ 
create samples from x;  
append from x;  
quit;  

 
/* Create a second dataset that identifies whether 'good' performance was obtained 
for each sample within x - here 'good' is defined by the C-statistic > 0.7 and the 
calibration slope between 0.9 and 1,1 */ 
data samples2; 
set samples; 
/* C-statistic criteria */  
if col1 > 0.7 then y = 1;  
/* calibration criteria */ 
if col2 > 0.9 then z1 = 1; 
if col2 < 1.1 then z2 = 1; 
/* joint criteria */ 
if y= 1 and z1= 1 and z2 = 1 then accept= 1;  
else accept= 0;  
run;  

 
/* Calculate the joint probability of good performance, simply by the mean value of 
the 'accept' variable - which is the proportion of samples that had the 'good' 
performance */ 
proc means;  
vars accept; 
run;  
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Study used 
for external 
validation 

Study-specific intercept (ar-i) Age  Sex  Calf 
(β   Study  Study  Study  Study  Study  Study  Study  Study  Study  Study  Study  Study 

1  2  3  4  5  6  7  8  9  10  11  12 
Study 1 
Study 2 
Study 3 
Study 4 
Study 5 
Study 6 
Study 7 
Study 8 
Study 9 
Study 10 
Study 11 
Study 12 

-  -1.256  -2.528  -1.807  -2.511  -2.316  -3.061  -1.839  -2.165  -2.339  -2.038  -2.788 
-2.694  -  -2.555  -1.823  -2.538  -2.338  -3.080  -1.857  -2.192  -2.353  -2.059  -2.817 
-2.670  -1.253  -  -1.805  -2.504  -2.312  -3.062  -1.840  -2.157  -2.336  -2.033  -2.779 
-2.604  -1.191  -2.443  -  -2.426  -2.245  -3.005  -1.785  -2.082  -2.289  -1.967  -2.700 
-2.682  -1.265  -2.538  -1.814  -  -2.324  -3.070  -1.849  -2.173  -2.343  -2.045  -2.797 
-2.672  -1.255  -2.529  -1.811  -2.508  -  -3.066  -1.843  -2.161  -2.343  -2.041  -2.783 
-2.672  -1.255  -2.529  -1.810  -2.509  -2.319  -  -1.842  -2.162  -2.342  -2.040  -2.784 
-2.677  -1.260  -2.532  -1.812  -2.513  -2.321  -3.068  -  -2.166  -2.342  -2.042  -2.788 
-2.660  -1.245  -2.515  -1.797  -2.498  -2.304  -3.050  -1.828  -  -2.329  -2.026  -2.777 
-2.677  -1.260  -2.531  -1.809  -2.515  -2.318  -3.066  -1.844  -2.168  -  -2.039  -2.791 
-2.678  -1.261  -2.533  -1.812  -2.515  -2.321  -3.069  -1.847  -2.167  -2.342  -  -2.790 
-2.672  -1.256  -2.528  -1.808  -2.509  -2.317  -3.064  -1.841  -2.162  -2.339  -2.038  - 

0.372  0.606  1.304 
0.370  0.624  1.344 
0.400  0.556  1.286 
0.366  0.513  1.197 
0.387  0.579  1.315 
0.409  0.589  1.277 
0.401  0.594  1.283 
0.403  0.572  1.294 
0.350  0.611  1.300 
0.381  0.572  1.313 
0.399  0.565  1.301 
0.391  0.585  1.293 

 

 
 
 

Supplementary  material 2: Model parameter estimates for the fitted DVT model to be implemented using strategy (3), which fits a logistic 
 

regression model in each cycle of the internal-external cross-validation approach to obtain predictor effects and study-specific intercepts. 
 
 

1) (β2) (β3 ) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Bold numbers represent the intercept used for external validation in the excluded study for strategy (3), where the intercept from the study 
with the closest prevalence was selected. 
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Supplementary material 3(a): Estimates (standard errors) of the calibration and discrimination performance of the DVT model developed in 
each cycle of the internal-external cross-validation approach, for the three implementation strategies 

 

 
Study 

used for 
external 

validation 

 

Strategy (1): 
Develop using logistic regression and apply with 
intercept estimated in external validation study 

 

CITL  
Calibration 

slope  
Log(E/O)  C-statistic 

Strategy (2): 
Develop using logistic regression and apply with 

average study intercept taken from developed 
model 

Calibration 
CITL  

slope  
Log(E/O)  C-statistic 

Strategy (3): 
Develop using logistic regression and apply with 
intercept taken from a study used in development 

data with a similar prevalence 
 

CITL  
Calibration  

Log(E/O)  C-statistic 
slope 

 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

11 
 

12 

-0.172  0.903  0.140  0.678 
(0.098)  (0.131)  (0.080)  (0.024) 
-0.051   0.741   0.028   0.653 
(0.079)  (0.100)  (0.042)  (0.019) 
-0.172  1.418  0.135  0.761 
(0.224)  (0.397)  (0.174)  (0.055) 
-0.084   1.432   0.060   0.735 
(0.054)  (0.100)  (0.039)  (0.014) 
-0.185   0.742   0.141   0.649 
(0.122)  (0.164)  (0.094)  (0.031) 
-0.149   1.030   0.112   0.699 
(0.082)  (0.114)  (0.062)  (0.021) 
-0.178  1.017  0.156  0.694 
(0.090)  (0.117)  (0.080)  (0.023) 
-0.115   0.932   0.081   0.663 
(0.133)  (0.189)  (0.093)  (0.035) 
-0.139   0.994   0.098   0.690 
(0.068)  (0.099)  (0.048)  (0.017) 
-0.127   0.695   0.103   0.636 
(0.150)  (0.215)  (0.122)  (0.037) 
-0.135   0.921   0.094   0.701 
(0.111)  (0.140)  (0.078)  (0.026) 
-0.197  0.936  0.160  0.673 
(0.191)  (0.269)  (0.155)  (0.048) 

-0.440  0.905  0.349  0.678 
(0.098)  (0.136)  (0.081)  (0.025) 
1.105   0.745   -0.709    0.653 

(0.078)  (0.100)  (0.043)  (0.019) 
-0.292  1.396  0.223  0.756 
(0.225)  (0.405)  (0.176)  (0.057) 
0.488   1.434   -0.367    0.736 

(0.057)  (0.099)  (0.040)  (0.014) 
-0.267   0.744   0.201    0.649 
(0.125)  (0.165)  (0.096)  (0.032) 
-0.055   1.044   0.042    0.701 
(0.084)  (0.119)  (0.064)  (0.022) 
-0.877  1.020  0.732  0.694 
(0.089)  (0.122)  (0.078)  (0.023) 
0.464   0.936   -0.340    0.663 

(0.129)  (0.192)  (0.090)  (0.034) 
0.118   0.991   -0.084    0.689 

(0.073)  (0.096)  (0.052)  (0.017) 
-0.081   0.693   0.066    0.635 
(0.144)  (0.219)  (0.116)  (0.038) 
0.258   0.921   -0.185    0.700 

(0.111)  (0.145)  (0.078)  (0.026) 
-0.570  0.923  0.440  0.671 
(0.190)  (0.264)  (0.155)  (0.048) 

0.114  0.905  -0.094  0.678 
(0.094)  (0.132)  (0.078)  (0.024) 
0.583   0.736   -0.344   0.652 

(0.084)  (0.102)  (0.045)  (0.019) 
-0.042  1.390  0.036  0.755 
(0.223)  (0.408)  (0.173)  (0.057) 
0.031   1.434   -0.022   0.736 

(0.057)  (0.102)  (0.040)  (0.014) 
0.016   0.749   -0.011   0.650 

(0.121)  (0.159)  (0.093)  (0.031) 
0.187   1.035   -0.144   0.700 

(0.084)  (0.119)  (0.063)  (0.022) 
-0.399  1.014  0.344  0.693 
(0.090)  (0.123)  (0.080)  (0.024) 
-0.038   0.943   0.028   0.665 
(0.132)  (0.192)  (0.092)  (0.034) 
-0.132   0.996   0.093   0.690 
(0.070)  (0.104)  (0.050)  (0.017) 
0.447   0.699   -0.373   0.637 

(0.146)  (0.208)  (0.119)  (0.036) 
0.132   0.916   -0.093   0.700 

(0.110)  (0.140)  (0.077)  (0.026) 
-0.458  0.930  0.359  0.672 
(0.193)  (0.256)  (0.157)  (0.046) 

Note: CITL refers to calibration-in-the-large and log(E/O) refers to log of the Expected/Observed number of events. 
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Supplementary material 3(b): Within-study correlations (ρWi  ), obtained through 

bootstrapping, between performance statistics estimated for the DVT model in each cycle of 

the internal-external cross-validation approach, for the three implementation strategies 
 
 
 

Study 
CITL & 

calibration 
slope 

 
CITL &  
log(E/O) 

 
CITL & 

C-statistic 

Calibration 
slope & 
log(E/O) 

Calibration 
slope &  

C-statistic 

 
Log(E/O) & 
C-statistic 

 
 
 

Strategy (1): 
Develop using 
logistic regression 
and apply with 
intercept estimated 
in external 
validation study 

 
 
 
 
 

Strategy (2): 
Develop using 
logistic regression 
and apply with 
average study 
intercept taken 
from developed 
model 

 
 
 
 

Strategy (3): 
Develop using 
logistic regression 
and apply with 
intercept taken 
from a study used 
in development 
data with a similar 
prevalence 

1  -0.006  -1.000  -0.022  0.006  0.961  0.021 
2  -0.032  -1.000  -0.046  0.033  0.977  0.046 
3  -0.001  -0.999  0.009  0.001  0.955  -0.011 
4  0.118  -1.000  0.045  -0.117  0.919  -0.045 
5  0.046  -1.000  0.029  -0.046  0.983  -0.029 
6  -0.010  -1.000  -0.045  0.011  0.948  0.043 
7  0.047  -1.000  0.002  -0.047  0.912  -0.003 
8  0.071  -1.000  0.032  -0.072  0.953  -0.034 
9  -0.005  -1.000  -0.011  0.005  0.980  0.011 
10  0.108  -1.000  0.064  -0.108  0.900  -0.064 
11  0.000  -1.000  -0.025  0.002  0.956  0.026 
12  -0.035  -1.000  -0.029  0.036  0.980  0.030 
1  -0.051  -1.000  -0.054  0.053  0.960  0.054 
2  0.046  -0.990  0.037  -0.054  0.976  -0.035 
3  -0.051  -0.999  -0.037  0.052  0.958  0.037 
4  0.062  -0.999  -0.009  -0.065  0.928  0.014 
5  0.069  -1.000  0.055  -0.069  0.981  -0.056 
6  0.031  -1.000  -0.013  -0.031  0.959  0.013 
7  0.018  -0.999  -0.025  -0.013  0.923  0.025 
8  0.105  -0.999  0.042  -0.106  0.951  -0.038 
9  0.074  -1.000  0.068  -0.074  0.976  -0.068 
10  0.035  -1.000  0.012  -0.034  0.895  -0.012 
11  0.053  -1.000  0.015  -0.052  0.953  -0.012 
12  0.000  -0.999  -0.001  -0.003  0.981  -0.003 
1  0.005  -1.000  -0.012  -0.004  0.963  0.013 
2  -0.006  -0.997  -0.033  0.002  0.978  0.034 
3  -0.053  -0.999  -0.049  0.054  0.959  0.050 
4  0.082  -1.000  0.015  -0.082  0.925  -0.014 
5  0.034  -1.000  0.022  -0.033  0.982  -0.022 
6  0.063  -1.000  0.020  -0.065  0.956  -0.019 
7  -0.014  -1.000  -0.025  0.015  0.925  0.025 
8  -0.002  -1.000  -0.052  0.001  0.954  0.051 
9  -0.010  -1.000  -0.021  0.011  0.981  0.021 
10  0.020  -0.999  -0.043  -0.024  0.892  0.043 
11  0.038  -1.000  -0.001  -0.040  0.956  0.000 
12  -0.036  -0.999  -0.041  0.036  0.980  0.039 

Note: CITL refers to calibration-in-the-large and log(E/O) refers to log of the Expected/Observed number of 

events. 
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Supplementary  material 4(a): Estimates (standard errors) of calibration and discrimination performance for the breast cancer model in each 
 
cycle of the internal-external cross-validation approach, for the three implementations strategies 

 
 

 
 

Study 
excluded for 
external 
validation 

 
 
 
 
C-statistic1 

 
 
 
 
D-statistic1 

 
 
Strategy (1): Develop 
using Royston- Parmar 
model and implement 
with baseline hazard 

estimated in validation 
study 

Calibration slope2 

Strategy (2): 
Develop using Royston-

Parmar  model and 
implement with the 
estimated average 
baseline hazard in 

develop model 

 

 
Strategy (3): Develop 
using Royston- Parmar 
model and implement 

with the estimated 
baseline hazard from the 

closest geographical 
country 

 

1 0.697 (0.008) 0.493 (0.027) 0.977 (0.012) 1.049 (0.012) 0.805 (0.012) 
2 0.701 (0.036) 0.420 (0.117) 1.002 (0.057) 1.066 (0.057) 1.414 (0.056) 
3 0.715 (0.023) 0.106 (0.056) 1.026 (0.036) 0.578 (0.037) 0.405 (0.037) 
4 0.735 (0.068) 0.326 (0.187) 0.991 (0.097) 0.870 (0.098) 0.919 (0.097) 
5 0.666 (0.050) 0.238 (0.168) 0.946 (0.088) 1.168 (0.086) 1.184 (0.086) 
6 0.682 (0.017) 0.182 (0.041) 0.969 (0.037) 0.896 (0.038) 0.951 (0.037) 
7 0.781 (0.027) 0.280 (0.063) 1.054 (0.052) 0.996 (0.053) 0.794 (0.054) 
8 0.722 (0.016) 0.541 (0.058) 1.035 (0.030) 1.315 (0.029) 1.197 (0.030) 

 

1 The C-statistic and D-statistic only depend on the prognostic index (see Appendix). As the prognostic index (beta terms) from the developed 
model is not dependant on the implementation strategy, the C-statistic and D-statistic estimates are identical regardless of the implementation 
strategy used. 
2 obtained as defined in the Appendix. 
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C-statistic & 

D-statistic 

C-statistic & 

Calibration 

slope 

(strategy (1)) 

C-statistic & 

Calibration 

slope 

(strategy (2)) 

C-statistic & 

Calibration 

slope 

(strategy (3)) 

D-statistic & 

Calibration 

slope 

(strategy (1)) 

D-statistic & 

Calibration 

slope 

(strategy (2)) 

D-statistic & 

Calibration 

slope 

(strategy (3)) 
 

0.842 
 

0.334 
 

0.325 
 

0.349 
 

0.677 
 

0.663 
 

0.704 
0.827 0.303 0.307 0.324 0.662 0.664 0.668 
0.702 0.218 0.237 0.240 0.661 0.688 0.691 
0.762 0.300 0.294 0.297 0.782 0.777 0.779 
0.834 0.469 0.468 0.468 0.668 0.661 0.660 
0.807 0.438 0.451 0.442 0.750 0.764 0.754 
0.612 0.276 0.276 0.274 0.817 0.821 0.832 
0.812 0.199 0.166 0.183 0.625 0.573 0.599 

 

 
 
 

Supplementary material 4(b): Within-study correlations (ρWi), obtained using bootstrapping, between performance statistics estimated for the 

breast cancer model in each internal-external cross-validation cycle, for each implementation strategy 
 
 
 
 

Country 
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8 

Strategy (1): Baseline hazard estimated in external validation dataset. 
Strategy (2): Average baseline hazard from developed model. 
Strategy (3): Baseline hazard from country included in the development, closest in proximity. 
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Supplementary material 5: Trivariate random-effects meta-analysis results of calibration and 

discrimination performance for the breast cancer model excluding Study 3, for implementation 

strategy (2) 
 
 
 
 
 

Strategy 
Validation 

statistic 

 
 

Pooled 
estimate 
(95% CI) 

 
 

95% 
prediction 

interval 

 

 
I- 

squared 

 

 
Estimate 

of τ 

Joint 
probability 

of good* 
performance 

in a new 
population 

 

Strategy (2) 
including Study 3: 

Develop using 

 

Calibration 
slope 

 

0.994 (0.835 
to 1.153) 

 

0.711 (0.691 

 
0.411 to 
1.577 

 
98% 0.224 

Royston-Parmar 
model and apply with 
the estimated average 

C-statistic 
to 0.732) 0.662 to 0.76 43% 0.017 0.22 

baseline hazard from 
developed model 

D-statistic 
0.332 (0.212 

to 0.452) 
-0.08 to 
0.744 

88% 0.157 

 

Strategy (2) 
excluding Study 3: 

Develop using 

 

Calibration 
slope 

 

0.999 (0.883 
to 1.114) 

 

0.712 (0.688
 

 
0.594 to 
1.404 

 
95% 0.146 

Royston-Parmar 
model and apply with 
the estimated average 

C-statistic 0.650 to 
to 0.735) 0.773 

52% 0.021  

0.32 

baseline hazard from 
developed model 

D-statistic 
0.372 (0.256 

to 0.490) 
-0.014 to 

0.760 
85% 0.138 

 
 
 

* defined by a C-statistic≥0.7 and a calibration slope between 0.9 and 1.1 


