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THE PARABOLOID

CAMIL MUSCALU AND ITAMAR OLIVEIRA

Dedicated to the memory of Robert S. Strichartz.

ABSTRACT. We propose a new approach to the Fourier restriction conjectures. It is based
on a discretization of the Fourier extension operators in terms of quadratically modulated
wave packets. Using this new point of view, and by combining natural scalar and mixed
norm quantities from appropriate level sets, we prove that all the L?-based k-linear extension
conjectures are true for every 1 < k < d+ 1 if one of the functions involved is a full tensor. We
also introduce the concept of weak transversality, under which we show that all conjectured L>3-
based multilinear extension estimates are still true provided that one of the functions involved
has a weaker tensor structure, and we prove that this result is sharp. Under additional tensor
hypotheses, we show that one can improve the conjectured threshold of these problems in some
cases. In general, the largely unknown multilinear extension theory beyond L? inputs remains
open even in the bilinear case; with this new point of view, and still under the previous tensor
hypothesis, we obtain the near-endpoint best possible target for the k-linear extension operator
if the inputs are in a certain L? space for p sufficiently large. Finally, we exploit the connection
between the geometric features behind the results of this paper and the theory of Brascamp-
Lieb inequalities, which allows us to verify a special case of a conjecture by Bennett, Bez, Flock
and Lee.
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1. INTRODUCTION

Given a compact submanifold S € R*! and a function f : R4 — R, the Fourier restriction
problem asks for which pairs (p, q) one has

1F1sl zacsy S N f )l ograsay,

where ﬂ g is the restriction of the Fourier transform fto S. This problem arises naturally in
the study of certain Fourier summability methods and is known to be connected to questions
in Geometric Measure Theory and in nonlinear dispersive PDEs. The interaction between
curvature and the Fourier transform has been exploited in a variety of contexts since the works
of Hérmander ([18]), Fefferman ([I3]) and Stein and Wainger (J43]) in the study of oscillatory
integrals. For a more detailed description of the restriction problem we refer the reader to the
classical survey [34]. In this paper we work with the equivalent dual formulation of the question
above (known as the Fourier extension problem), and specialize to the case where S is the
compact piece of the paraboloid parametrized by I'(z) = (z,|z|?) ¢ R¥! with 2 € [0,1]¢. In
this setting, the Fourier extension operator is initially defined on C([0,1]¢) by

(1) Eag(x1,. .., t) = / g&1, .. ., Eg)e 2ot bara) o= 2mit(Ei+HED) g
[0,1]¢

E. Stein proposed the following conjecture (cf. Chapter IX of [42]):

Conjecture 1.1. The inequality

(2) €49l La(ma+1y Spa.d 191 r(j0,174)

holds if and only if q¢ > @ and q > @p’.

Multilinear variants of Conjecture arose naturally from the works [21],[22] and [23] of
Klainerman and Machedon on wellposedness of certain PDEs. Given 2 < k < d + 1 compact
and connected domains U; C R?, 1 < j <k, define

(3) Eu,gat)i= [ g(©e e A (a,t) e RIXR
U.

Taking the product of all k such operators associated to a set of transversal U; leads to the
following conjecture (see Appendix :

Conjecture 1.2 ([I]). If the caps parametrized by U; are transversal, then

k k
11 v95 <119l
j=1 , =

2(d+k+1
for all p > W.

Roughly, transversality means that any choice of one normal vector per cap is a set of linearly
independent vectors, as shown below in Figure

Remark 1.3. From now on, we shall refer to Conjecture as the case k = 1. It was settled
only for d = 1 by Fefferman and Zygmund ([12], [47]). In higher dimensions we highlight the
case p = 2 solved by Strichartz in [44], which is equivalent to the Tomas-Stein theorem ([39])
in the restriction setting. Progress beyond these two results was made in many works over the
last decades through a diverse set of techniques: localization, bilinear estimates, wave-packet
decompositions and more recently polynomial methods. We mention the papers [9], [32], [35],
[26], [45], [16] and [20]. Analogous problems for other manifolds were studied in [46], [44] and
[31].



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 3

Figure 1. A choice of normal vectors to the caps parametrized by U; via
T |x)?

Remark 1.4. In [I6], Guth proved a weaker version of Conjecture forall2 <k <d+1 and
up to the endpoint, which is known as the k-broad restriction inequality. This estimate plays a
central role in his argument in [16] to improve the range for which Conjecture is known.

Only three cases of Conjecture [1.2] are well understood:

(i) Tao settled the case k = 2 in [35] up to the endpoint inspired by Wolff’s work [46] for the

cone. Lee obtained the endpoint for k = 2 in [24].
(ii) Bennett, Carbery and Tao settled the case k = d + 1 up to the endpoint in [5].
(iii) Bejenaru settled the case k = d in [8] up to the endpoint.

The goal of this paper is to propose a new approach to these problems based on a natural
discretization of the operators in terms of scalar products against quadratically modulated
wave-packets. Our main theorem reads as follows:

Theorem 1.5. Conjectures and hold up to the endpoint if one (any) of the functions
involved is a full tensoif]

Remark 1.6. The endpoint (p,q) = (Z(djl), Q(djl)) is not included in the range where is
supposed to hold, therefore our main theorem implies the case kK = 1 when g is a full tensor.

Remark 1.7. For 2 < k < d 4 1, Theorem can be proved if the caps are assumed to
be weakly transversal, which is defined in Section [3] We will prove that transversality implies
weak transversality (up to dividing the caps into finitely many pieces), the latter being what is
actually exploited in this paper. Under weak transversality, Theorem holds if one (any) of
the functions has a weaker tensor structure. This will be made precise in Section [9]

Remark 1.8. For 2 < k < d + 1, Theorem is sharp under weak transversality in the
following sense: if all functions g1, ..., gi are generic, it does not hold if the caps are assumed
to be weakly transversal. This is explained in Appendix [A]

Remark 1.9. For 2 < k < d+ 1 we do not use the tensor structure explicitly. It is used in an
implicit way when comparing the sizes of natural scalar and mixed norm quantities that appear
in the proofs.

Remark 1.10. For 2 < k < d, if all functions involved are full tensors, one has more estimates
than those predicted by Conjecture [1.2| assuming extra degrees of transversality, as proven in
Section [l

It is natural to try to generalize the statement of Conjecture for LP inputs rather than
just L2. A motivation for that is to deeply understand the role played by transversality; as we
will see, the farther our inputs are from L?, the less impact the configuration of the caps on the
paraboloid has in the best possible estimate (with a single exception to be detailed soon). The
general statement of the k-linear extension conjecture for the paraboloid is (as in [1]):

1A function g in d variables is a full tensor if it can be written as

g(x1,...,wa) = g1(x1) - ... - ga(Ta).
We refer the reader to [40] and [37] for other results related to the restriction problem involving tensors, and we
thank Terence Tao for pointing these papers out to us.
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Conjecture 1.11. Let k > 2 and suppose that Uy, ..., Uy parametrize transversal caps of the
paraboloid x +— |x|? in RA+L, If% < 2(d€lf1)7 % < Zi]lz;%z% and % < 3;21%}% + k_”f_‘il, then
k k
H &u, 95 Spa H 191l e ;)-
Jj=1 L%(Rd+1) j=1

For 2 < k < d+ 1, to recover the whole range, it is enoughﬂ to prove Conjecture and

k k
@ [Tév,0 S Illosl e
J=1 L2(Cllcji—l)+5(Rd+l) Jj=1 J

for all € > 0.
Remark 1.12. Observe that covers the case (p,q) = (g(dfjl), Z(dfjl) +5) of Conjecture

(1.11)). Notice also that this case would follow from the case (p, q) = (Q(djl), @ + 5) of the

linear extension conjecture [I.I] and Holder’s inequality. This means that the closer we get to
the endpoint extension exponent, the less improvements transversality yield in the multilinear

theory. The exception to this is the k = d + 1 case, for which L? functions give the best
. . - 2(d+1)
possible output for the corresponding multilinear operator (rather than L™= ). Indeed, when

one function is a tensor, the best result in this case are obtained in Section

By adapting the argument that shows the case 2 < k < d + 1 of Theorem [1.5 we are able to
prove the following weaker version of :

Theorem 1.13. Let 2 < k < d+1. If g1 is a tensor in addition to the hypotheses of Conjecture
the following estimate holds:

k k
(5) I1¢v,9 <e [T 1950 poar oy
=1 A vegarry  g=1

for all € > 0, where

UdHl)  yp g << d
p(k,d)_{“k“’ oy

4(d+1) e d

Remark 1.14. Notice that @ < p(k,d), so Theorem is not optimal on the space of

. . 2(d+1) . .
the input functions. On the other hand, the output L™ %@ ¢ (for all € > 0) is the best to which
one can hope to map the multilinear operator on the left-hand side.

Remark 1.15. Bounds such as the one from Theorem [1.13] i.e. in which one needs p big
enough (and not sharp) to map LP inputs to a fixed L9, are common in the linear extension
theory. For example, in [45] Wang shows that & maps L>([—1,1]?) to LI(R3) for ¢ > 3 + 3.
As mentioned in [45], this implies the (seemingly stronger) bound

€29 Laws) Sq ll9llLaq-1,112)
for ¢ > 3+ % via the factorization theory of Nikishin and Pisier (see Bourgain’s paper [9]).

.. . . 2(d+1) .
Remark 1.16. The multilinear extension theory for inputs near L T remains largely un-

known in general (except for the almost optimal result in the k = d 4+ 1 case in [5]). In fact, it
is not fully settled even in the k = 2, d > 1 case (whose L?-based analogue is known). We refer
the reader to the recent paper [29] for partial results in this direction.

Remark 1.17. As the reader may expect, any function can be taken to be the tensor in the
statement of Theorem [L.13

2The full range of estimates follows by interpolation between these two cases and the trivial bound (p,q) =
(1, 00).
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We finish this introduction by highlighting the close connection between our results and the
theory of linear and non-linear Brascamp-Lieb inequalities. The concept of weak transversality
that we introduce can be characterized in terms of certain Brascamp-Lieb data, and by exploiting
the geometric features arising from this fact we are able to verify a special case of a conjecture
by Bennett, Bez, Flock and Lee.

The paper is organized as follows: in Section [2| we present the linear and multilinear models
that we will work with in the proof of Theorem We also highlight the main differences
between the linearized models that are used in most recent approaches and ours. In Section
we define the concepts of transversality and weak transversality, and state in what sense the
former implies the latter. Section [] presents what we refer to as the building blocks of our
approach. Sections [f] [6] and [7] establish these building blocks: in Section [5] we revisit the case
k =1 and p = 2 for our model, in Section [6] we revisit Zygmund’s argument and recover the
case k = 1 for d = 1, and in Section [7] we deal with the case k¥ = 2 and d = 1. In Section
we settle the case k = 1 of Theorem and in Section |§| we show the cases 2 < k < d + 1.
Section [10| covers the endpoint estimate of the case k = d+ 1. In Section 11| we discuss how one
can improve the bounds of Conjecture [I.2] under extra transversality and tensor hypotheses.
Theorem m (our partial result beyond the L2-based k-linear theory) is presented in Section
In Section we establish a connection between the classical theory of Brascamp-Lieb
inequalities and our results, and give an application of this link to a conjecture made in [4]. In
Section [I4] we make a few additional remarks. Appendix [A] contains examples that show that
the range of p in Conjecture [I.2]is sharp, and also that one can not obtain this range in general
under a condition that is strictly weaker than transversality. Appendix [B] contains technical
results used throughout the paper.

We thank David Beltran, Jonathan Bennett, Emanuel Carneiro, Andrés Fernandez, Jonathan
Hickman, Victor Lie, Diogo Oliveira e Silva, Keith Rogers, Mateus Sousa, Terence Tao, Joshua
Zahl and the anonymous referees for many important remarks, corrections and for pointing out
references in the literature.

2. DISCRETE MODELS

A common first step of the earlier works is to linearize the contribution of the quadratic
phase z +— |z|?. One starts by studying £;9 on a ball of radius R (hence |(z,t)| < R) and splits

the domain of g into balls 6, of radius R™%. Let us consider d = 1 here for simplicity. If
965, ‘= g " Loy,
where ¢, is a bump adapted to [kR_%, (k+ 1)R_%], the quadratic exponential

(6) x t(g) — 6271'1'156271'1'1552
behaves in a similar way to a linear exponential e'#¢ when restricted to this interval. Indeed,
the phase-space portrait of e, is the (oblique if ¢ # 0) line

u — x + 2tu,

as it is explained in more detail in Chapter 1 of [28]. When we evaluate this line at the endpoints
of the support of gy, (taking into account that [t| < R), we see that the phase-space portrait of

@Qk : ez,t
is a parallelogram that essentially coincides with the rectangle
(7) IxJ=[kR %, (k+1)R 2] x [x + 2tkR™%,2 + 2tkR™% + R3|.

Observe that I xJ has area 1. On the other hand, the phase-space portrait of ¢, is a Heisenberg
box of sizes R~ and R%, and the linear modulation

(8) 627Ti£(1+2th7 3 )

shifts it in frequency to J. The conclusion is that the phase-space portrait of
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0, Q2mit (x+2tkR™3)
k

is the Heisenberg box (7)), hence the effect of the quadratic modulation e, in this setting is
essentially the same as the linear one in .

Using bumps such as @y to decompose the domain of g and expanding each gy into Fourier
series allows us to write

go(x) 90,0(z)
g(z) = > 9(z)py(x) po(x) = > > ™ Gy(a),
9eR™374n[0,1]4 9eR™374n[0,1]4 veRI Z4

where gy is = 1 on the support of ¢y and decays very fast away from it. Applying £; and using
the previous intuition gives rise to the wave packet decomposition

Eqg = Z Ealgo,),

(0./)eR™374n[0,1)4x R% 74

where &;(gg,) is essentially supported on a tube in RI+1 of size R? x ... x R? x R whose
direction is determined by # and that is translated by a parameter depending on v. With this
linearized model at hand, one can study the interference between these tubes pointing in different
directions (both in the linear and multilinear settings) and take advantage of orthogonality both
in space and in frequency. This leads to local estimates of type

1€agllLa(B0.r)) S B\ fllps Ve >0

and multilinear analogues of it that are later used to obtain global estimates via e-removal
arguments (as in [36]). The reader is referred to [I5] for the details of the decomposition above.
This approach has given the current best LP bounds for &;.

In our case, we do not linearize the contribution of the quadratic phase. Instead, we consider
a discrete model that keeps the quadratic nature of &£; intact.

2.1. The linear model (k = 1). We consider d = 1 for simplicity, but the discretization
process is analogous for all d > 1. Recall that the extension operator for the parabola defined
for functions supported on [0, 1] is given by

1
51 (.’L’, t) _ / g(u)e—2ﬂ'zxue—27mtu2 du.
0

We can insert a bump ¢ in the integrand that is equal to 1 on [0, 1] and supported in a small
neighborhood of this interval. Rewriting &,

Ele.t) = 3 | [ stwetue2mre ] w0,

nmezZ

where Xy, := X[n,n+1)- Define the sequences x,, and t,, by

/g(u)w(u)e—szue—thqﬂ du

sup

— ‘/g(u)«p(u)e_%w"“e_%it’”UQdu .
(z,t)€[n,n+1)x [m,m+1)

These sequences depend on g, but the bounds we will prove do not. Bounding &,

Xn () X (1)

E@n< Y

n,me”Z
= |Thg(z,t)| + |Tog(x, )| + [T39(z, t)| + [Tag(x, t)],

/ g(u)go(u)6_2””"“6_2”t’"u2du

where T3 is given by
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T = 3| [atwptue e et (o),
n,meZ
n=0 (mod 2)
m=0 (mod 2)
and Ts, T3 and T}y are defined similarly, but with sums over
n=1 (mod 2), m=0 (mod2) for Ty,
n =0 (mod 2), m=1 (mod 2) for T3,
n=1 (mod 2), m=1 (mod2) for Tj.
Let us look at T1, for example. The restriction of the sum in (n, m) done above guarantess that
Ton, and to,, are strictly increasing sequences such that

(9) ‘x2n - x2(n+1)‘ ~ 1, ’tQm - t2(m+1)‘ ~ 1.

Similar spacing properties hold for 15, T3 and Tj.

Figure 2. The points {(z2n, t2m) }nm-
Suppose we have the bound

1T59llq < llgllp,

and the implicit constant does not depend on the sequences x,,t,,. The considerations above
imply

1€19llg S l9llp-

Let ¢ be a compactly supported bump (say, in a very small open neighborhood of [0, 1]) with
¢ =1 on [0,1] and denote

(10 Pt (1) = pl)e2mie T 2milelm,

There is a slight abuse of notation here: in we use the same letter ¢ to represent a
multivariable bump with ¢ = 1 on [0, 1]¢, which is just a tensor product of d copies of the
single-variable one.

Definition 2.1. Let E,; be defined on C([0, 1]¢) given by

Ea(g) = > {905 m) (X7 ® Xm),

ezl
meZ
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where x4 and x,, are the characteristic functions of the boxes [n1,n1 +1) X ... X [ng,ng + 1)
and [m,m + 1), respectivelyﬁ

Observe that we made a special choice in the definition above. The scalar products in the
sum are indexed by points in Z%*1, but there is no guarantee that the points {(2n, tm)}n.m are
in this lattice. This is not an issue because all bounds we will prove for E; and A, will depend
only on the fact that points in Z4*! satisfy the spacing condition @ﬁ

The wave packets have a natural phase-space portrait that consist of parallelograms in
the phase plane.

Po.3

Po.1 ¥3,-2

0 1 0 1

Figure 3. The phase-space portrait of ¢,

By keeping the quadratic nature of Fy intact we take advantage of orthogonality in different
ways. For example, for a fixed m the wave packets ¢, ,, are almost orthogonal, as suggested by
the fact that the corresponding parallelograms are (almost) disjoint.

2.2. The multilinear model (2 < k < d+1). We recall the definition of the k-linear extension
operator:

Definition 2.2. For Q = {Q1,...,Q} a transversal set of cubes, the k-linear extension oper-
ator is given by
k
(11) Mgk,d(gl7'-'7gk) = HgQ]gja
j=1
where

Sngj(x,t) = / gj({)672#1’1“5672“”5'2(15, (x,t) € R? x R.
Qj
By an analogous argument to the one we showed in subsection [2.1} it is enough to prove the
corresponding bounds for the following model operator:

Definition 2.3. Let M E}, 4 be defined on C(Q1) x ... x C(Qy) by

k
MEpa(gr - a0) = > 19595 ) (0 @ xm).
(7 ,m)eza+1 j=1

3Morally speaking, the discrete model and the original operator are “comparable”, but we were not able to
prove that rigorously. For that reason we included the proof of known extension estimates for Fq.

4The only reason why we considered the operators 11, T, T3 and T4 above was to obtain @ If we had not
done that, it could be the case that pairs of consecutive x,, T,n+1 get arbitrarily close, which would not allow us
to use Bessel’s inequality in Section E, for example.
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where
(p]ﬁ’m = ® (pfim’ (pfg’m (xl) — SDl,j (:Ul)€27rmm eQmmzl
I=1
and @7 (x) is = 1 on the [-coordinate projection of the domain of g; defined above and decays
fast away from it.

3. TRANSVERSALITY VERSUS WEAK TRANSVERSALITY
We recall the following definition from [1]:

Definition 3.1. Let 2 < k < d+1 and ¢ > 0. A k-tuple Sy, ..., S of smooth codimension-one
submanifolds of Rt is c-transversal if

\Ul/\.../\kaZC

for all choices v1, . . ., v of unit normal vectors to S, ..., Sk, respectively. We say that Sy, ..., Sk
are transversal if they are c-transversal for some ¢ > 0.

In other words, if the k-dimensional volume of the parallelepiped generated by v1,...,vg is
bounded below by some absolute constant for any choice of normal vectors v;, the submanifolds
are transversal. From now on, we will say that a collection of k cubes in R is transversal if the
associated caps defined by them on the paraboloid are transversal in the sense of Definition [3.1

One can assume without loss of generality that the U;’s in the statements of Conjecture
are cubes that parametrize transversal caps on P¢ via the map z + |z|2. Even though these
conjectures are known to fail in general if one does not assume transversality between the caps
(see Appendix , the theorem that we will prove holds under a weaker condition, since one
of the functions is a tensor.

Definition 3.2. Let Q = {Q1,...,Qx} be a collection of k (open or closed) cubesﬂ in R%. Q is
said to be weakly transversal with pivot @Q; if for all 1 < j < k there is a set of (k — 1) distinct
directions & = {e;,,...,e;,_,} (depending on j) of the canonical basis such that

mi, (Q5) Ny (Q1) = 0,

ﬂ—ij—l(Qj) a 7rij_1(Qj—1) = ®’

(12)
iy (Q5) Ny (Qj+1) = 0,

(i1 (Q5) N iy, (Qr) = 0,

where 7 is the projection onto e¢;. We say that Q is weakly transversal if it is weakly transversal
with pivot @; for all 1 < j < k‘ﬁ

Remark 3.3. For each 1 < 5 < k, from now on we will refer to a setﬂ & above as a set of
directions associated to ;. Notice that there could be many of such sets for a single j. Also,
if j1 # j2, it could be the case that no set of directions associated to @), is associated to @j,.

5The word cube will be used throughout the paper to refer to any rectangular box in R¢, regardless of the sizes
of its edges, and they always refer to the supports of the input functions of our linear and multilinear operators.
In this paper, it will not be relevant whether the sides of a box have the same length or not, therefore this slight
abuse of terminology is harmless.

6The estimates that we will prove depend on the separation of the projections in Definition just as they
depend on the behavior of ¢ from Definition in the general case for transversal caps.

"The typeface &; is being used to distinguish this concept from the previously defined operators £; and Fq.
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Let us give a few examples to distinguish between definitions [3.1] and Consider the case
d=2,k=3, Q1 =[0,1]% Q2 = [2,3]% and Q3 = [4,5]%. The line y = x intersects Q1, Q2 and
Q3, then it follows from Definition that they are not transversal. However, observe that

1(Q2) =10,
mo(Q1) Nma(Q3) =0

so {e1,ea} is a set associated to @)1 (and similarly one can verify that it is also associated to Q2
and @3). This shows that the collection defined by @1, Q2 and Q3 is weakly transversal.

Consider now the cubes K1 = [0,1]%, Ko = [4,5] x [0,1] and K3 = [2,3]2. Not only are they
transversal in the sense of Definition but also weakly transversal.

)

{m(Ql) N1 (Q2)

6 6
4 4
2 2
0 2 4 6 2 4 6

Figure 4. Transversality versus weak transversality

This is not by chance: a given transversal collection of k cubes can be “decomposed” into
finitely many collections of k cubes that are also weakly transversal.

Claim 3.4. Given a collection Q = {Q1,...,Qk} of transversal cubes, each Q; € Q can be
partitioned into O(1) many sub-cubes

Q= U Qi

so that all collections Q made of picking one sub-cube Q;; per Q

é: {@17"'7@16}7 @l € {Ql,i}ia
are weakly transversal.

Proof. See Claim [B.4]in the appendix.
(]

As a consequence of Claim to prove the case 2 < k < d + 1 of Theorem [I.5] it suffices
to show it for weakly transversal collections. To simplify the exposition, we will present our
results for the cubes

Q1 =[0,1]¢,
Qj = 12,372 x [4,5] x [0,1]477+ 2 < j <k

The associated directions to @1 are {e1,...,ex_1}, and we will use it as the pivot. Any other
weakly transversal collection of cubes can be dealt with in the same way.



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 11

4. OUR APPROACH AND ITS BUILDING BLOCKS

Notice that the operators £; and ME}, 4 are pointwise bounded by E; and M Ej, 4, respectively,
therefore we can not directly conclude any result about the models from the fact that they hold
for the original operators. Some of these results will be reproven for the models in this paper,
and they will act as building blocks in the proof of Theorem which is presented in Sections
and [9] More precisely, Theorem relies on the following:

(1) Mixed norm Strichartz/Tomas-Stein (k = 1, p = 2). In Section [5| we show the following:

. 2(d+2)
Proposition 4.1. For all p > ===,

1Eagllp Sp llgll2-
As a consequence, we have:

Corollary 4.2. For all e > 0,
(13) 1Za(l 2t-ren ) Se llglle-
s

Proof. Apply Minkowski’s inequality and Proposition in dimension d — Iﬁ U

We will use Corollary in Section to prove Theorem for2<k<d+1. It
will not be needed when k =d + 1.

(2) Extension conjecture for the parabola (k =1, d =1, p=4). In Section |§| we prove the
following:

Proposition 4.3. For alle > 0,
(14) [E19la+e Se llglla-
One can show by interpolation that Proposition [£.3] implies Conjecture ford = 1.
We will use it in Section [§ to settle the case k = 1 of Theorem [

(3) Bilinear extension conjecture for the parabola (k = 2, d = 1). In Section [7| we show that
the model M Es 1 in Definition [2.3| maps L2([0,1]) x L?([4,5]) to L?(R?).

Proposition 4.4. The following estimate holds:

(15) IME21(f,9)ll2 S 112 - llgll2-
Transversality will be captured in Section |§| through .

By combining scalar and mixed norm stopping timesﬂ performed simultaneously, we are able
to put together the key estimates , and . In the 2 < k < d+ 1 case, the tensor
structure is used in an implicit way to allow us to better relate these scalar and mixed norm
stopping times.

8Notice that, after taking L2 norm in the first [ variables, we can use Bessel to bound the left-hand side of
by

Po
2

,,,,,,,,,,

0} P0
< [ Z ”(g,tpan ,,,,, nd,m” 1270 ,

N
3
M
&
©
E
T
N
3
©
z
E
S
"
2

where po = % + ¢. This is how we will use Corollary in (53).
9This is not meant in a literal probabilistic sense; strictly speaking, the argument combines the level sets of
various scalar and mixed norm quantities that appear naturally in our analysis.
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Remark 4.5. The tensor structure g = g; ® ... ® gq in the k = 1 case allows us to write

d
(16) 97 Pr.m H gja@n],m

We then obtain the following multilinear form by dualization:

(17) Aa(g1,-- ., 94, 1) = (Eq = > H 9js Pnjm) * (R X3 @ Xm),

THezd j=1
meEZ

The goal in the kK = 1 case is to show that

d

[Aa(grs - ga WIS llg - T 195,
j=1

for appropriate exponents p; and ¢. Interpolation theory shows that it suffices to obtain

(18) [Aa(grs-- - 9a; )| Se [F[74 - HIE K
j=1

for all € > 0, |g;| < xg;, |h] < xF, EIEJ [0,1] and F C R3 measurable sets such that ~;
(1 <j <d) and 7441 are in a small neighborhood of 57

) and + €, respectlvel We

d+1 2(d+1)
refer the reader to Chapter 3 of [38] for a detailed account of multilinear interpolation theory.
To keep the notation simple, all restricted weak-type estimates we will prove in this paper will

be for the centers of such neighborhoods. For example, we will show that

d
d+2 d

(19) |Ad(glvagd7h)|§€ |F|ﬁ+€H|EJ|m7

j=1
for all € > 0, but it will be clear from the arguments that as long as we give this ¢ > 0 away,
a slightly different choice of interpolation parameters yields . The restricted weak-type
estimates that we will prove in the 2 < k < d 4+ 1 case will also be for the centers of the
corresponding neighborhoods.

5. PROOF OF PROPOSITION - STRICHARTZ/TOMAS-STEIN FOR Ey (k =1, p = 2)

Our proof is inspired by the classical TT* argument. It is possible to prove the endpoint
estimate directly for the model E; by repeating the steps of this argument (see for example
Section 11.2.2 in [27]), but we chose the following approach because of its similarity with the
one we will use to prove Theorem By interpolation with the trivial bound for ¢ = oo, it is
enough to prove the bound

| Eaglzsa ., < lgllz

for all € > 0.
We start by dualizing 4 to obtain a bilinear form Ag:

10T here is an overlap of classical notation here that we hope will not compromise the comprehension of the
paper: we chose the typeface E4 to represent the discrete model of the official extension operator £. On the
other hand, the classical theory of restricted weak-type multilinear interpolation usually labels the measurable
sets involved in the problems by E; or F;. The context will make it clear which object we are referring to.

11Rigorously, this only verifies the case k = 1 near the endpoint ( @, Q(dfjl)), but this is known to imply
the desired estimates in the full range. For details, see Theorem 19.8 of Mattila’s book [25].
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Aa(g:h) = (Ea(g),h) = Y (9, 5m) - (B X7t ® Xom)-

ezl
meZ

Let £y C R? and E; C R¥! be measurable sets of finite measure with |g| < g, and
|h| < xEB,. Split Z9T! in two ways:

z4 = | ) A", where (1,m) € A" <= [{g, 05 )| m 27"
lheZ
74! = U B2, where (70,m) € B? <= [(h, x7t ® xm)| = 27.
12 E€Z
Define X!tz .= Al N B2 and observe that

|Ad(g>h)|5 Z 2_l12_l2#xll7l2_
l1,l2€7Z

Notice that, for all (7, m) € X2,
2705 [ oo n(@)lde < min {|E. 1),

272 5 [ W@l @ (@) do < min {|E2] 1),
R

In particular, l1,lo > 0 in the sum above. Now we bound #X!+2 in two different ways and
interpolate between them:

(a) L'-type bound: Exploit h.

(20)

AXE < #B2 S22 N [(hxw © xm)| S 212 > / Ihl 22|y < 2| Enl,
(7 ,m)eBl2 7, m) €L+

where Q< ,, = ¢, [ng,n; + 1] x [m,m + 1], ﬁ = (n1,...,n4q).
(b) L?-type bound: Exploit g.

#xIl 220 N (g, g )

(7, m)ex!1l2

222“< > <g,s0ﬁ,m><pn,m,9>

(21) (7,m)exi-l2

1
S 22l1|£;1’2 Z <g730i’,m>907,m
(7t m)exii-l2

(%)
For each set X' define m,, := {7 € Z% (7, m) € X'*2}. Observe that:

=2 X X X ennlleega)enm ez,

m; m; ﬁ@r
7Tm7£® 7rm7é m kEﬂ'm

U((907 m)) 7 emm (997 ) Ter. )

We will estimate U in two ways. Let a ,, == (g, @77m>. First, by the triangle inequality
and the stationary phase Theorem
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‘U ((aﬁ,m)ﬁeﬂma(a? keﬂm)’ Z Z (g, e5,m)| - (g, ﬁmﬁ
76”"1 kemsm m=m
_ I8g: o miller ) - 149 0-sid o1 )
(m —m)?

Another possibility is:

’U ((aﬁ,m)ﬂewm’ (a?,m)?em)

7w i ko mi(m—m)|z|?
/Rd > (g em e Y (g 00 | pl@)p(a)etm I dg

ﬁeﬂ'm ?eﬂ',’:h

IN

S g @ md L2 () = 1495 @) o2 ()

by Cauchy-Schwarz and orthogonality on the sets m,, and 7 (recall that m and m are
fixed). Interpolating between these bounds for 1 < p < 2:

U (@t ) stems (07 ) 2ems )| S 1, -y

(m —m)
Back to (x):
1 < 149, - m) lev () ~ 11495 -0 ) | ew ()
~ Z Z g(; L/)
7Tm7£®7rm7£@ m — m> P p
1{g: - i) ller (5
:ZH g,(Pm ‘Ep(ﬂ'm)z dff(l)
o iG)
ﬂ—m#@ 7Tm7é®
”<9790,’rh>||f T
< H||<ga@-,m>”€?’(7rm)ng(Z) Z d(lp(_13
m; (m—my2\r
70 o' (z)
< HH<ga(an>H€p(7rm)ng(2) ' HH<ga(p~,77~1>H€p(7rm)ng(Z)
2
= HH<ga @',m>pr(7rm)H€p(Z) )
as long as
lfl 4oy o1 o2 2 d o, 2dtd
p 2\p p p P d+2 T p  d+2 P=u

by discrete fractional integration. Plugging this back in :

#X1t2 S22 B2 (149, . lev e o

D=

1
= 22| By > Y g emmlP
(7,m)exia-l

1
< 2% By |7 (2 Phpxlt )

which implies

(22) #XI < o) By 1+
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Interpolating between and :

0
Malg. ) 5 D7 272 (2000 By 148 (2 By )

l1,12>0

Z 9~ l1 )91) Z 2—l2(1—92) ‘El‘(1+§)91 ‘E2|92

(23) 11>0 12>0
S 2—[1(1—(2—&—%)01)2—[2(1—02) |E1|(1+%)91 |E2|02
< min {| B[ (17 (F0)%) 13 min {| By |02, 13| By (2% | By 2
< |E1|a1(17(2+%)91)+(1+%)01 |E2|O‘2(1_02)+92,

for all 0 < ag a2 < 1,61 +60, =1, with 0 < (2+3)6; < 1,0 < 62 < 1, where I, is the

smallest possible value of 1 for which A" # () and Iy is defined analogously. Picking oy = %,

as = 0, 91:2(#‘%—6and02:%+5gives

_d+a
[Ada(g, h)| a’Eﬂ? \E2|2(d+2)"‘8

for all € > 0, which proves the proposition by restricted weak-type interpolation.

6. PROOF OF PROPOSITION [4.3| - CONJECTURE FOR By (k=1,d=1, p=4)

The following argument is inspired by Zygmund’s original proof of this case. Define

Drn (s, ) 1= [t = 8|2 p(s)p(t) >t

Claim 6.1.

(®rm, Bim) = O <\(n - ﬁ)(vln - m)\N)

for any natural N if n # n and m # m.

Proof.

(B s D) // 1t — 8] p(5)[2ip(£) 225D =) 2mi(s* =) (m—i) g 1y
0,1]2

_ / :uw(u7 7))627riu(nfﬁ) 627riv(mfrh)dudvj
R U

where R is the region that we obtain after making the change of variables s —t = u, s> — > = v,
2

and Y(u,v) = p ® go(”"'“ =4=). The claim follows by the non-stationary phase Theorem
O

We now prove the following;:

Lemma 6.2. For G smooth supported on [0,1] x [0, 1],

[NIES

G(s,t)|?
Z <Ga Pnm @ (Pn,m> (Xn ® Xm // ‘ S | ————dsdt
012 |s—t

n,me”Z
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G(s,tl) o

Proof. Define G(s,t) = -
s—t

Z <G7 Pnm @ @n,m) (Xn & Xm)

nme”Z

n [0,1]2\{(z,);0 < 2 < 1}. Observe that

2

y Onm & m”z

> e

n,meZ

S G B

n,me”L

S IIGI,

2

by the almost orthogonality of the ®,,,, proved in the previous claim.

Remark 6.3. By the triangle inequality,

Z <G> Pnm @ %Dn,m> (Xn @ Xm)

n,me”

Hence by interpolation we obtain

(24)

nmez

for 2 <p < 0.

Z (G, onm @ Prym) (Xn ® Xm)

5// |G (s,t)|dsdt.
[0,1]2
o
p
S\ s
[0,1]2

|G (s, )"
|s — t|p'—1

16

Let E C R? be a measurable set of finite measure with |g| < yg. Using Remark and

Lemma [6.2] for G = g ® g, we have

47?%5 B 4<2H~:
Z | {9 QOnm |4+€ = / Z | (g QOnm ’4+€(Xn ® Xm)
n,mez | R? n,mez
B 4% 4-2H;‘
< / Z | {9, Pn,m) ’2(Xn ® Xm.)
R? nmezZ
= Z | (g5 Pnm) 1 (xXn ® Xom)
nmeZ o1e
2
L/
NE 4
< // lg(s Hg,)1| dsat |
o2 |s—tP
where p' = %—Iz. To bound this last integral, we proceed as follows:
1
PR = [ ‘/
IS - tl” tl”
1
— [l (1ol ) (ha
0 [EE
S ACE @) e
<
Ilzagan ot G
NE Hp”p7
. / 4+ 2
if 1% =z - (1 —~), by Theorem [B.1} In our case, p = [g|P, v =p' — 1 and pp’ = 5(22)

then

> 4,
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1
Y

2

1| ’ ol

g9(s g / or

dsdt ppdt
<// = ) < () wora)
1 (4+¢)? ?EJW?
a4 (LBl y c
i </ gt} )dt>
0

4(2+¢€)

(4+e)2
s wora)”

4(2+¢€)
= ’E‘ (4+5)2 .

Observed that in the second line of the chain of inequalities above we used the fact that
lg| < 1. Finally,

1
44
2+e)

|Ergllase = | D g enm) 72| S|BI67 < B[,
n,meZ

This shows that £y maps L*([0,1]) to LY(R?) for any g > 4 by restricted weak-type interpo-
lation.

7. PROOF OF PROPOSITION - CONJECTURE FOR MFEs; (k=2,d=1)
The model to be treated is

MEyy(f,9):= Y. (f:0hm) (9 @nm)Xn ® Xm)-
(n,m)€eZ?

Since d = 1, we do not have to deal with the multivariable quantity

® o

from Definition so we will simplify the notation by taking go}l’m = gp,ll}n and gogl’m = gp,lﬁn
We also replaced (g1,¢92) by (f,g) here to reduce the number of indices carried through the
section.

We provide a simple argument involving Bessel’s inequality. After a change of variables to
move the domain of p? to be the same as the one of ¢!, we have:

IMEy (£, S D 1 @hmd 19) 45 0% smm) | 0 @ Xom)
(n,m)€Z?

= Z |<f X (9)747 30111,m ® (p;z+8m,m>|(Xn X Xm)v
(n,m)€Z?

Wherelﬂ = g(y +4). Observe that

12This was done to bring the support of c,pfhm to the one of go}wgmym. The price to pay is the +4m shift in
the linear modulation index of the bump.



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 18

<f ® (g)_47 @}L’m ® 90711+8m,m> = // f(:(:)g(y + 4)()01(1-)()01 (y)e 2ming ,—2mima® J2mi(n+8m)y  2mimy dzdy

//f y+4 27rm(y x) 2mm(y z)(y+z) lﬁﬂzmydxdy

5/ [/f <U ; u> g (U‘;’“ +4> 2rimun Srim(utv) g | p27inu g,

Hp (u)

= Hp(—n)
Hence

IME> (£ )l5 S D Y [Ha(=n) = >~ [ Hll3,

meZLnEL meZ
by Bessel. On the other hand,

||Hm||% = / /f (U ; U) g (’U ‘|2‘ u + 4> eQﬂimuUGSﬂ'im(u-‘rv)dU

2

:/ /f<v;u)g(v—12—u+4) e2mimu(utd) 1u 1 du

1.(v)
_ / | H(m(u + 4))2du.

Transversality enters the picture here through the factor (u + 4) above: the +4 shift in u
comes from the fact that the supports of ¢! and ¢? are disjoint and far enough from each other,
hence u + 4 > ¢ > 0. This way,

|\ME>1(f,9) / (Z |Hy(m u—|—4))|2> du

meZ

S [ [ 1P

S 1120913,

2
du

by Bessel again.

8. CASE k£ =1 OoF THEOREM

In this section we start the proof of Theorem [I.5] There are two main ingredients in the
argument for the case k = 1: Proposition [4.3] and the fact that the wave packets
7t (@) 1= p1) .. plag)e?m T il
are almost orthogonal for a fixed m and s varying in Z¢. The latter fact will be exploited
through Bessel’s inequality whenever possible. Recall from Remark that, since g = g1 ®
.. ® gq, it suffices to study the multilinear form

Adlgr, .- gah) = > H 9isPnyam) - (hy X7t © X)),

ez i=1
me7Z

Now we focus on obtaining (I9). Let E; C [0,1],1 < j < d, and F C R%*! be measurable
sets for which |g;| < xg, and |h| < x . Define the sets
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L 1. .
Y = {(nm) €2 |(gom )l # 270}, 1<j<d

Blatt .= {(7,m) € ZTY; |(h, x5 ® xm)| & 2711}
Xholaer o= {(R,m) € Z4Y; (ny,m) € AY, 1< j < d}ynBla,

Hence,
Aa(gr, - g0, D) S D 27T e lan,
l1,lap1€Z
Asin Section we know that l1,...,lq11 > 0. We can estimate #X!»ld+1 ysing the function
h:
(25) xilan g olen YT [(hxm @ xm)| S 24| F).
(7 ,m)ezd+t
Alternatively, many bounds for #X!1»d+1 can be obtained using the input functions g1, . . ., ga:
#Xhlar < Z ﬂAlll (ny,m)-...- ﬂAldd (ng, m)
(7 ,m)ezd+1
(20 ST Y Y tulnm) L G m) Y
meZni1€EL ng—1€% ngEZ

Ad,m

Observe that ag,, = #{n;(n,m) € Aild} and (n,m) € Aild = 1 < 2%41(g4, onm)|?. Adding
up in n,

Adm S 2%l Z (9a; ‘Pn,m>|2 S 22ld|E‘d‘
n;(n,m)GAldd

by orthogonality. Notice that this quantity does not depend on m, therefore we can iterate this
argument for d — 2 of the remaining d — 1 characteristic functions:

(27)
#cholins S PUIEY ST Ly (nym) o Ly (a2m) D0 L (s, m)
meZni €L na-1€Z
ov’d‘rlm
S PN B 3 3 Ly lmm) - naam) YD Ly (nar,m)
meZni1EZ nd—2€Z
5 22ld22ld,1 . .22l2|Ed‘ . |E2| Z Z ]]'All (nl,m
meZni1€EZL !
#AL!

To bound #Alf we can use Proposition For € > 0 we have:

(n,m) € Al = 1 <2 (g o )1 = gl <29 N7 (g g ) [11E < 204 By,
(n,m)GAlll

Using this above,

(28) #xhtan < glag2la— 92Ol By || By | By
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We could have used the L* — L*+¢ bound for any g; and a Bessel bound for the remaining
ones. More precisely, if o € Sy is a permutation, we have

(29) #Xh,---,ldﬂ <, 2oy 92lo(a-1)  92le(2)9(4+e)lo(1) |Ea(d)| o |E0'(2)HE0'(1)|

This amounts to exactly d different estimates. Interpolating between all of them with equal
weight %, we obtain:

2(d—1)+4+ 2(d—1)+4+
#xhola < 9= a7 T BBy

(30)
=@+t | o(+ard)l gy By

Finally, we interpolating between bounds and :

|Ad(gla <. 9d, h)|
< Z 9=l . . 2*ld+1#xl1~--,ld+1

I1yeeslgy1€Z 4

e c 0 [%
< Y 2hotlen (2(2+%+a>l1...2(2+3+8>ld\E1\...|Ed!)1(2ld+1lFl)2

o las1 €24
d
< Z 9= (1=02)las1 | |62 H Z 27(17(2+§+§)91)1j|Ej|61
lg+120 J=11,>0
,S ‘E1|a(1—(2+%+%)01)+01 . |Ed‘a(1_(2+%+%>01)+91 |F|92,
for any 0 < o < 1. On the other hand, for several of the series above to converge we need

(2 + % + %) 61 > 1. By choosing the appropriate o and 6 close to (2+ %)_1, one concludes this
case.

9. CASE 2 <k <d+1 oF THEOREM

Recall that we fixed a set of weakly transversal cubes Q = {Q1,...,Q} in Section |3| and let
g; be supported on ();. The averaged k-linear extension operator | in R? is given by

1
1 k . E
MEL (9100 = > [ TINg ek, 0] (i ® xim)-
(1,m)ezd+1 \i=1
The conjectured bounds for it are
1 k 1
(31) IMEE (1. - 90 | mgorny < T 1951200,
j=1
2(d+k+1)
fOI' all p Z m

13We consider this averaged version of M E}) 4 for technical reasons. The conjectured bounds for it have a
Banach space as target, as opposed to the quasi-Banach space (for most k and d) L% that is the target
of Conjecture The fact that LP for p > % is Banach lets us use effectively in the interpolation
argument, since it forces the final power v on |F|” to be positive.

When k = d = 2, Conjecture has L3 as target. We will discuss this case first to help digest the main ideas

of the general argument, and since this space is Banach, we can work directly with M E5 5 instead of considering

1
the averaged operator M ES,.
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As done in the case k = 1, it’s enough to prove certain restricted weak-type bounds for its
associated form

) k } %
(32) Apalg.h) = > (H\(gj,w%,mH) (hy X7 ® Xm),

(7t ,m)endtl \i=1
where ¢ := (g1,...,9x) by a slight abuse of notation.

Remark 9.1. We will prove up to the endpoint assuming that g; is a full tensor, but the
argument can be repeated if any other g; is assumed to be of this type. As the reader will
notice, the proof depends on the fact that we can find k£ — 1 canonical directions associated to
Q;, which is the defining property of a weakly transversal collection of cubes with pivot @;. In
what follows, we are taking {ei,...,ex_1} to be the set of directions associated to Q;.

Remark 9.2. As we mentioned in Remark[1.7, under weak transversality alone we do not need
g1 to be a full tensor to prove the case 2 < k < d of Theorem In fact, the following structure
is enough in this section:

g1(z1,. ., ma) = g11(21) - g12(x2) -+ gre—1(Th—1) - 91k (Ths - - -5 Ta)-
Notice that we have k£ — 1 single variable functions and one function in d — k + 1 variables. The
single variable ones are defined along k — 1 canonical directions {ey,...,ex_1} associated to Q1,

and g 1 is a function in the remaining variables.

In general, if we are given a weakly transversal collection é, forafixedl1 <j<k—1we
have a set of associated directions & = {e;,,...,€i,_,} (see Definition . Denote by zse the

vector of d — k + 1 entries obtained after removing z;,,...,z;, _, from (z1,...,24). Assuming
that the functions g; for [ # j are generic and that g; has the weaker tensor structure
(33) 9i(x1s- -5 xwa) = gja (@) - Gik-1(Ti_,) - e (wsr)

will suffice to conclude Theorem for Q through the argument that we will present in this
section.

Remark 9.3. As a consequence of Claim a collection @ = {Q1,...,Qx} of transversal
cubes generates finitely many sub-collections Q of weakly transversal ones (after partitioning
each Q; into small enough cubes and defining new collections with them). However, for a fixed
1 < j <k, the associated k£ — 1 directions in & can potentially change from one such weakly
transversal sub-collection to another, and this is why we assume g; to be a full tensor under the
transversality assumption.

In this section we will use the following conventions:

e The variables of g; are x1, 22, ..., x4, but we will split them in two groups: £ — 1 blocks
of one variable represented by x;, 1 < i < k — 1, and one block of d — k + 1 variables
pou QRN
T = (Th, Tht 1, - -+ Td—1, Td)-

e The index z; in (-,-),, indicates that the inner product is an integral in the variable z;
only. For instance,

(34) <gj7 SO>151 = / gj(xla cee >$d) ’ @(.ﬁUl, cee 7xd)d$1
R
is now a function of the variables zs, ..., z4. The vector index Ti in () 7 1s understood
analogously:
(35> <g]7g0>ﬁ ::/ gj(l'l,...,xd) '@(-Z'l,...,.%'d)dﬁ?]z
Rd—k+1

e The expression ||(g;, )|, is the L? norm of a function in the variables z;, 1 <1 < k—1,
[ # 1. To illustrate using ,

g3 )12 = [ L.

1
2 2

/ gj(x1,...,xq) - @(x1,...,xq)dar| drs. ..dmd]
R
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The quantity H (95, >:t_;3H2 is defined analogously as

5> 9)z 2 = [ L.

e For 7 = (n1,...,nq), define the vector

[T

2
/de+1 gj(£C1, cee ,xd) '¢($1, . 7$d)dﬁ>

dxl e dl‘k_ll

’fL\i = (n17 sy M1, 415 - - - 7nd)'
In other words, the hat on 7n; indicates that n; was removed from the vector 7. For

f:7Z% = C, define
1@y = X IR

'FL\iEZd_l

That is,

f(ﬁ)HeL is the ! norm of f over all ny, ..., ng, except for n;. Hence Hf(ﬁ)HélA

is a function of the remaining variable n;. The quantity ‘

I (ﬁ) H . is defined analogously

g,
as

@l = > 1
" ("17---7nk_1)€Zk—1

Finally, the integral [ gdz; means the following:

/g($1, oy xg)da; = /g(ml, cooyxg)dey .. driogdaigg .. deg.

In what follows, let Ey1,...,F1,-1 C [0,1], By C [0, 1 B, c Q; (2 < j < k) and
F C R4 be measurable sets such that |g; | < xmy, for 1< <k—1, |g1k] < xEs 195 < XE;
for 2 < j <k and |h| < xp. Furthermore, Ey := E11 X ... X Ej ;1 X Ey .

A rough description of the argument in one sentence is: the proof is a combination of
Strichartz in some variables and bilinear extension in many pairs of the other variables. In
order to illustrate that, we will first present the simplest case in an informal way, which means
that we will avoid the purely technical aspects in this preliminary part. Once this is understood,
it will be clear how to rigorously extend the argument in general.

9.1. Understanding the core ideas in the £k = d = 2 case. Consider the model

MBys(g1,92) = >, (91,05 ) (92, 9% 1) (X7t © Xom)
(7,m)ez3
and its associated trilinear formlE
Ranlgr,go,h) = D {91, 0% 092, 0% ) (X3 © Xom)-
(7,m)ez3
Assuming that g; = g1,1 ® g12, we want to prove that
= 1 1 2
[A22(g1,92)| Se |En|2 - |Eal? - [FI57E,

for all ¢ > 0. The L2 x L? — L3+ bound will then follow by multilinear interpolation and
Remark[4.5] Given the expository character of this subsection, we adopt the informal convention

2t means x + &, where § > 0 is arbitrarily small,
x~ means x — d, where § > 0 is arbitrarily small.

We will always be able to control how small the  above is, so we do not worry about making
it precise for now.
The first step is to define the level sets of the scalar products appearing in M E» »:

MThere is a slight abuse of notation here: we are using Az o for the form associated to M FEs 2 and not for its
averaged version M Ej3 o, as established in the beginning of this section.
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ap = {(dm) s g ek ) =2 ]
Al ={(Am): a0~ 272}

Transversality will be captured by exploiting the sizes of “lower-dimensional” information:
in fact, we want to make the operator M F>; appear, and this will be possible thanks to the
interaction between the quantities associated to the following level sets:

]B71“1 = {(nl,m : H<glaso'}7,’11,m>x 9 ~ 2_T1}a

Cil = { nl; H 927@n17m>a;1 9 ~ 2781} .
Since there is only one direction along which one can exploit transversality, we will use the

L? theory for By (i.e. Strichartz) along the remaining one. In order to do that, the following
level sets will be used:

By = {(n27m) : H<917303L’21,m> )~ 242},

Cs2 — {(nQ,m) : H<92’<‘0”2:m>mz ) ~ 2—82}.
The size of the scalar product involving h will be captured by the following set:

k —k
={(",m) : |(H, x5 ® xm)| = 27"},
We will also need to organize all the information above in appropriate “slices” and in a major
set that takes everything into account. The sets that do that are

X2t = Al 01 {(7m): (m1.m) € €},
l2:52 . Al; N {(ﬁ,m), (ng,m) € (ng}7
o
KT AL 0 A 0 (o) : (m,m) € B 1 G, (naym) € B 1€ D,
where we are using the abbreviations I = (I1,1l3), 7 = (r1,7) and & = (s1, s2). This gives us
=~ —
|A272(91’ 92, h)‘ S Z 2—11 2—122—k#x l ,77?&'
T,k

For the sake of simplicity, let us assume that g1 = 1p,, ® 1g,,, g2 = 1g, and h = 1
We will need efficient ways of relatlng the scalar and mixed-norm quantities above. A direct

computation (using the definition of x 17 *) shows that

277’1 . 277'2
|z
Using Bessel along a direction, for (n1,n2,m) € X21 we have:

l )
1 ~ 222 (g,, o P = #X o 22l Z {92, @%,m>|2

l2,s1
m2€K G m)

(36) 270 =

— #XZM < 92 || 92: 007 m H2

(n1,m) ~
2-

1
12781 2
(#x <n1,m)
2751
-1
=272 < S ,

(37) — 2712 <

Il

15 These indicator functions actually bound g1 and g2, but this does not affect the core of the argument.
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by taking the supremum in (n1,m). Analogously,

2792

(38) 972 <

~ 1

Ltz .0l 2o

|| Xl2:82 ”gn%mg}q

Relations , and play a major role in the proof. The last major piece is a way

of bounding #X ! 75k that allows us to exploit transversality and Strichartz along the right
directions, as well as the dual function h. We start with the simplest one of them:

ﬁ
(39) #X DT IR ST (X ® xd] = 24F .
(7,m)ez3
—
By dropping most of the indicator functions in the definition of X ! 7k and using Holder, we

obtain

7 = =
#X L7 Tk < Z Txin.s (ﬁv m) - II'B;IQ(CTI (n1,m) < ||]1Xl2151 ||€$L°l,mf,112 ) H]lIB%;lm(Cil ||£}L1,m.
(7,m)ez3

The second factor of the inequality above will be bounded by the one-dimensional bilinear
theory:

2 2
1 S1 2r1+2s1 1,1 1,2
#Bl N (Cl 5 2 E H<gl790n1,m>xl 9 ’ H<927()0n1,m>g;1 9
ni,mez
0 +2 1.1 2 1,2 2
— T S ) ) .
= 24" 1 E ’<gl7 (pnl,m>xl ’ ‘<92) 30n1,m>x1 dz2dzs
n17meZ

_ 92 2 2 2 ~
= 2+ // lg1llzz, - llg2l7z dwadz
< 2212 g1 [13 - | gall3,

by Propositionsince the supports of o' and o2 are disjoint (this is equivalent to transver-
sality in dimension one). This gives us

7 ==
(40) AXETTE <1y 0 e

ny,m

&, (22N By| - | Byl

Alternatively,

_>
#X ! ’?’?’k S Z 13220(:;2 (TLQ, m) Z ]1X12752 (ﬁ, m) . HB? (nl, m)

(ng,m)eZ? n1€Z

ng,m

1 1
g [ [ A e I

We can treat the last two factors appearing in the right-hand side above as follows: for a fixed
m € 7,

2
, <27 llgill

Z 1gr (nl, m) S 22” Z H<gl’ 90111711,m>x1

n1€Z ni1€Z

by Bessel (recall that the modulated bumps go}{im are almost-orthogonal if n; varies and m is
fixed), and then we take the supremum in m. As for the other factor, observe thaﬂ

16Here we are also ignoring the fact that we do not prove the endpoint L? — LS estimate for the model E;. It
will not compromise this preliminary exposition.
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5
#]322 N ng < 9bra+s2 Z H<gl7 (pm,m>m H<927 ‘Png,m>$2

na,meZ

2

(<[
ol

6

ikl Y H<91,<p72421,m>m2 , > H<9279031722,m>x2

n2,mez na,mEZ

6

2

< 2572492101113 - [l g2l

%
by Corollary These last to estimates give the following bound on #X ! Tk

— 1
(41) #X DT TR < a2, B2 B3 By

1
2 ,mgnl

In what follows, we interpolate between , and with weights 2, %7 and 27, respectively. We

also take an appropriate of combination between and , and use :

4 1
~ 2—7’1 . 2—7‘2 27531 27532 B
’A272(917927h)’“§” Z 1 ) 2 ) T 27k
73k B i o gl p
ni,m-ng ng,m-nj

2-
5

(Mool s, - 22772 1B o))

% 1 1 5ro+s2 3 L é
A Mgz llfe o 2™ [E1]2 -2 C|Er]2 - |Ea2
ng,meny
5
-(2’“\F\)5

S|E? - |7 - |FIF

which is the estimate that we were looking forEl

9.2. The general argument. Roughly, this is a one-paragraph outline of the proof: we split
the sum in into certain level sets, find good upper bounds for how many points (ﬁ, m) are
in each level set using the weak transversality and Strichartz information, and then average all
this data appropriately.

First we will prove the bound

1
(42) IME 4(g )H ikt

+E N€H‘E1l|2k H‘E|2k

for every € > 0. As we remarked at the end of Section [d] this is the restricted weak-type bound
that will be proved directly; all the other ones that are necessary for multilinear interpolation
can be proved in a similar way, as the reader will notice.

We will define several level sets that encode the sizes of many quantities that will play a role
in the proof. We start with the ones involving the scalar products in the multilinear form above.

l; j 1. .
A = {(,m) e 2™ (gl M =270, 1< <k

The sizes of the (g;, ¥+ ,,) are not the only information that we will need to control. As
in the previous subsection, some mixed-norm quantities appear naturally after using Bessel’s

17Th15 bound on A2 2 is of course informal, which is why we wrote “ <”. Observe that we also removed the

sum in l it contributes with a term that depends on € in the formal argument. Later in the text we will see
why we can assume 7, ?, k > 0 in the sum above.
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inequality along certain directions, and we will need to capture these as well:
B = {(nm) € 2% [lgn, @il maill, 270}, 1<i<h-1
B:’izzfll = {(nz,m) VAR H<9z+1780;1ﬁr%>x1 9
B}/ = {(n_g,m) € 74+, H(gj,sﬂ%’imm ,

Set IEB:L]J := () for any other pair (4,7) not included in the above definitions. Observe that

mrmﬂ}, 1<i<k-1,

zz—%}, 1<j<k

g1 (the function that has a tensor structure) has k sets B associated to it: k — 1 sets ]B:fl’l
and 1 set IB%’,;'fil. The other functions gj, j # 1, have only two: 1 set ]B%;J__f]] and 1 set IB%;;’Z’

for each 1 < j < k. The idea behind the sets B:fil and B;}il-‘fll is to isolate the “piece” of

each function that encodes the weak transversality information from the part that captures the
Strichartz/Tomas-Stein behavior, which is in the set szjj . Foreach 1 <i < k—1, we will

7

pair the information of the sets B;;' and B;:'"| and use Proposition to extract the gain

7,041 [~
yielded by weak transversality. The information contained in the sets IB%kkj’? will be exploited via
Corollary

The last quantity we have to control is the one arising from the dualizing function h:
C':={(7,m) € Z%;  [(h, x5 @ xm)| # 27"},

In order to prove some crucial bounds, at some point we will have to isolate the previous
information for only one of the functions g;. This will be done in terms of the following seﬂ

i _ abi d+1. . g
X J_A]Jﬁ{(ﬁ,m)EZ ; (n“m)EBm]}-

In other words, X% contains all the (ni,...,nq, m) whose corresponding scalar product

(95, Y7t m) has size about 274 and with (n;, m) being such that H(gj, go%fm)zl ) has size about
277,

Finally, it will also be important to encode all the previous information into one single set.
This will be done with

- ) .
- ﬂ Aym (7, m) € 23+, (ni,m)eﬂBW 1<i<dyncCt,
J

Z?] )
1<j<k
where we are using the abbreviations I = (I1,...,l;) and R := (r;;); ;. Hence we can bound

the form /N\k,d as follows:

~ k L —-
(43) Aealg )| S Y. 27 [ 2 rax AL
TR0 =1

Observe that we are assuming without loss of generality that [;,7; ;,¢ > 0. Indeed,

275 S g 2 )l < Ngillos - Il S 1,
so [; is at least as big as a universal integer. The argument for the remaining indices is the
same.

The following two lemmas play a crucial role in the argument by relating the scalar and
mixed-norm quantities involved in the stopping-time above. Lemma allows us to do that for
the quantities associated to g1, the function that has a tensor structure. We remark that this
is the only place in the proof where the tensor structure is used.

N
Lemma 9.4. If X't £ () then:

18Many of these sets are empty since we set B?]] = () for most (i, ), but only the nonempty ones will appear
in the argument.
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27T L 27TR
k,
H91H2 !

=l ~

9

Proof. Observe that

27TLLL L2k

%

ﬁ
Il
N

H<gl7 90:1711,771>=’Bz 2

H<91,1 Q. Qg1 ks <Pf%1m>xz 9

Il

s
Il
—

I

—_

g1 i) 911 ® - @ g1 @ .. @ g1 lla

—_—

k—
91,95 )| - llgnlls™

—l 1
' lloalls
and this proves the lemma. O

%
v

Lemma gives us an alternative way of relating the quantities previously defined for the
generic functions ¢, ..., gi.

%
Lemma 9.5. If X Bt £ () then:

(44) 27l S T

H Ltivrimiit Heigjmf%
(45) S

a

km ag

2
b+ 15Tk, i41 H@g /1
ng, o

foralll1<i<k-—1.

Proof. is a consequence of orthogonality: for a fixed (n;, m), denote

KL = (i (7,m) € Xlisamien),
(3l

This way,
Lit13Tii41 o2l i+l \|2
#X(ni7m) A 2T Z ’<9i+1,‘:0ﬁ,m>|
eX 7,+1 3Ti,i+1
= (ngm)
2
) — i L ox2 [, P o ~
< 22ll+1 Z /<gz+17<,022,ti> e 2mim(32; ., %5) He 2mwinjxj dz;

J#i

~

2l zz+1
<2 Hl/‘ g+1790m,m

~ 02l —2r
~ 2 i+1 2 z,z+17

where we used Bessel’s inequality from the second to the third line. The lemma follows by
taking the supremum in (n;,m). (45| is proven analogously.
O

The following corollary gives a convex combination of the relations in Lemma that will
be used in the proof.
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Corollary 9.6. For 1 <i: <k —1 we have

% _(d=k+1)
. < Q*W'ﬁ,wl 27 (dtk+1) Thyitl
9 bit1 .
~ (d—k+1) °
d+k+1 2(d+k+1)
H ]lelJrl Tiyit1 H H]l Lit 15Tk, i1 H gl
ko™ g

Proof. Interpolate between the bounds of Lemma (9.5 with weights +k 1 and 3 +£ﬂ, respec-
tively.

We now concentrate on estimating the right-hand side of . 43) by finding good bounds for

#Xl .t The following bound follows immediately from the disjointness of the supports of
X7 @ Xm:

—
(46) #XDREC Y [(hoxs @ xm)| S 2'1F).

—
By definition of the set Xt /-t

(47) #X7,R,t < Z H]IA;J ﬁ m H ]]. i ,j nz, )

(7,m)ezd+1 j=1
23’750
We will manipulate (47) in k different ways: k& — 1 of them will exploit orthogonality (through
the one-dimensional b1hnear theory after combining the sets B.;" and IB%:’Z:T, 1<i<k-1)
and the last one will reflect Strichartz/Tomas-Stein in an approprlate dimension. The following

lemma gives us estimates for the cardinality of X! based on the sizes of some of its slices
along canonical directionﬂ

Lemma 9.7. The bounds above imply
(a) The orthogonality-type bound{™}:

ﬁ.
(48) #X I < [ Lgtirimiin ”ego ol LAl gy |[5 - [ giga ][5, 1<i<k-—1
(b) The Strichartz-type bound:
TRt k “7 i
(49) #X M < HHHXJ,%HEOO o 2E T gy L genat Sl . lgalls-T T llaull5,
j=2 R =2
where
2(d+k+1 d+k+1 2 < (d—k+1
_dwkD) oo drheD) o2 o @—k+1)
kE(d—k+1) k(d—k+3) k k(d—Fk+3)

with 6,6 > 0 being arbitrarily small parameters to be chosen late.

Proof. For each 1 <1i < k—1 we bound most of the indicator functions in by 1 and obtain

19T he reader may associate this idea to certain discrete Loomis-Whitney or Brascamp-Lieb inequalities. While
reducing matters to lower dimensional theory is at the core of our paper, we do not yet have a genuine “Brascamp-

Lieb way” of bounding #XT’R’t for which our methods work. For instance, no “slice” of X ! given by fixing
a few (or all) n; and summing over m appears in our estimates, which breaks the Loomis-Whitney symmetry.
20Weak transversality enters the picture here.
210ne should think of § and § as being “morally zero”. They will be chosen as a function of the initially given
€ > 0, and the only reason we introduce them is to make the appropriate up to the endpoint Strichartz exponent
appear in . The main terms of o and 3 are also chosen with that in mind.
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%
#X I < Z Lt (,m)-1 B4 (nw m) - Lyriie (ni, m)

(R myezdt i+1 i1
= E : Lytipaimiiga (7, m) - 1 Bli it (1, M)
(50) (7 m)ezi+i S
= E 1 Tz 103211_?;1 nz; E ]lxlz+l Tii+1 (ﬁ m)
g, M
| I R . ]l7'1 +1
S H xXlit13Ti,i41 HZ%;MZ:TZ_ IB%Z,’z ﬂIBilzlil n
n;,m

Transversality is exploited now: the cube Q1 with {ej,...,ex_1} as associated set of direc-
tions satisfies , which allows us to apply Proposition for each 1 < i < k — 1 since weak
transversality is equivalent to transversality in dimension d = 1. By definition of the sets IB%;fl’l

and B>, Fubini and Proposition H we have:

1,141
. . ; 2
’ ]]']BTZ A"t ril < 227”1,1+27"1,z+1 Z H <gla SO%rzzl,m>I H <gl+17 Sozzjjr_r%>
i, 1
Gjom (ni,m)€EB; T lﬂ]B:ZZril
; 2 2]
< 92ri 1+ 2 i1 // .gla ‘piiil,m>mi |<gz+1a 90:13+1> i dz;dy;
(ng,m 622
<o [ g2, gl anag
= 2ratrisss i - g
—
Using this in gives (a). As for (b), bound #X ! -ft as follows:
—
#XER = YT Ay (T, m)
(7 ,m)eza+1
k k—1 k
< Y T rwes @ m) ] Lyrit (i, m) - I1 Ly (ng, m)
(7, m)ezd+l j=2 i=1 =1 ’
k k—1
=Y H]l ma(mim) D [ gy, () ] 2gria (nim)
(51) m =1 N1y =2 i=1 "
k 1 k-1 %
< Z H]l Tkl nk’ HH]]' rkJ )H;l/_\) H:ﬂ-Ezill(nlam)
n,m =1 "k i=1 ’ 0L
"
k . k—1 1 k
<HH1[ Lisr HE H Lpria H]l Tkl
= Xk lless gL B ’
=2 St S B et = ey
ng,m

where we used Hélder’s inequality from the third to fourth line. Next, notice that

(52) = sup 2271 /Z ‘ g1, Sonz,m

<27 g3

2
1.rin
B, 7

< sup 277t Z g1, €5t am) s

bRl m
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by orthogonality. Now let

. k(d—k+3)
Pel = " k1)

k(d — k + 3)

AETETY v 2<i<k
d—k+1)’ =t=

Pkl =

and notice that

hE

kS
S

This way, by definition of IB k " and by Holder’s inequality with these pi; we have

(53)
k
[T 1575
=1 L,
ng,m
. B
5 2a.rkv1+zl=2ﬁ'rk’l Z H<g1790n’>km H H glv nkm mk
(nk7m)
1
ar +Zk B-r Q- Pk.1 Phi1 i k,l /B.pk’l o
< 0Tk 1T g BT Z H<91790n’gm> , H Z H(glaﬂpﬁgm> )
(fm) =2 \(at.m)
1
. M-ﬁ-(s Pk,1 k M+5
. . - d—Fk
— 9Tk 1+ BTk Z H gl’son.)k m> ;d k+1) H Z H(glaﬁpﬁg m> 2< w
(k. m) =2 \@km)
. k
< 27t Okt g |3 - T llaalls,
1=2

by the up to the endpoint mixed-norm Strichartz bound in Corollary 4.%% Using (52) and (53] .
in (51)) yields (b).

%
Given € > 0 smal we interpolate between k 4+ 1 bounds for #X ! f* with the following
WeightsEI:

=g —5, 1<Ii<k-1 for (&),
d—k+1

O = st — & for @),

9k+1:[1_%}+5 for ({9),

which leads to

223ee the footnote related to Corollary .

23Perhaps it is helpful for the reader to think of ¢, § and & as equal to zero to focus on the important parts of
the proof. The presence of these parameters here is a mere technicality, except of course for the fact that € > 0
makes us lose the endpoint in this case.

240bserve that ZkH 6, = 1. These weights are chosen so that the correct powers of the measures |E;| and

|F| appear in
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|Ak.a(g, h)l
k
SIERRSIEn
T Rt>0 j=1
k—1 _1 e
d+k+1 k
X (HHXZZHW,M Hgoo oL L 2P gy |3 Hgl+1”%>
=1 e
(d=k41) ¢
k 1 206-1) k 5 2(d+k+1) K
[T oy o 2R Zmmet gy & - 2omeatZime e iy i TT ol
j:2 ng,m n_]; l 9
(d+k—1)
% (gf‘F’)[ mh 7
Using Lemma and Corollary to bound the 27% in the form [\k:,d yields:
|Ar.a(g, )]
1_ e
kg2
e N S It
2 a0 g1 || i
-
9~ TTRTT Tikitl 2 —RaT R Thit
XH2 kQH—lXH 1 (d—kt1)
=1 ”:H.Xli+1%?“i,i+l HZ%IT;E% H]l Lid 157k id1 H 2k(d+lzl+1)
g TL
k—1 _1 _ e
d+k+1 k
H]l U15m, 141 H 1 P Q2RI HQIH% ) Hgl+1”g
=1 T
(d—k+1)
k 1 Q(k 1) k k 8 Q(d%il)_z
H H]lxlj"“k,j H;@) o, Lo i i lgilly ® - 227kt Eima el gy - H lgill5
j:2 T, ng

=2
dtk—1

X (2t\F])[ 2(d+k+1))]+57

Developing the expression above,
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1_ e
~ . k kok? (k=1) __ (k=1)
Aralg: D) S D 270 x 27w x [ ]2 g lly ¥ *
T .Rt>0 j=1
k—1 k—1 =kt 1_%
X H 2 k2 z+1 X H 2 d+k+1 Ti,i4+1 2 k(d+k+1) k,i+1
=1 =1

£_ (d—kt1)
o) [ e B TN i

”k
H kol _2 2
[H el | ¢ [TT oyt
=1
2(k—1) 2(k: 1)e 2¢
<l 57 Hugmuf“k“ k

l <(d k+1) ¢ (d—k+1) ¢
k

2(dtk+tl) k 2 k=1, . k . 2(d+k+1) k
% H H]l ?“k] O-o> ( + +1) ) . <2k 21:1 i1, 201 Tk,l+zl=2ﬁ7‘k,l) ( )

ng

x ugluﬁ YT o (55 )
=2
(d+k—1)

x(?wD[ﬂﬂﬂﬂ+

At this point we set the values of § and & (as functions of €) to be such tha

.[w—k+1)_(d+k+ns]_1
k(d—k+3) k2(d—k+3)] 2
5-[ (d—Fk+1)? _(d—k+Ue]_1

2k(d+k+1)(d—k+3) k2(d—k+3)] 2

[_s+2w+k+mﬂ
k2 k2(d—k+1)
26 (d—k+1)e
hQ_k%d+k+1J

Simplifying (and using the expressions that define o and § in Lemma ,

25We emphasize that these particular choices are just for computational convenience, and we have not devel-
oped the expressions because this is exactly how we use them to simplify the previous calculations.
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_ k—1 d+k
Bra(g.mI < (D227 < T | X2 3 (F) ) | > g (st )
11>0 Jj=1 \r;12>0 rg,1>0
(k-1 _
X H Z 9wzl || x 22*'5(%*5)
Li=1 \lit1>0 >0
(k-1 k—1 ~
i (5 rremne | [ 5 st
Li=1 \74,i4+120 =1 \7g,i+120
k—1 . (d—k+1)
~£(1-z5her) v (15t
X H sup || Lgtppgimis " cosup [Tty .
J h+1ﬂ%¢+1“ Xl+l7ﬁb+1‘£%’m€ h+1ﬂ%@+1‘} Lit1s kl+1HZ o eﬁi
||gl|| —rai i E e (CE iR )
_ 2e (d—k+1)
oz 2(d+k+1) -1
X H ”ng2 ()

(d+k—1)

xyp|[ m]*

Observe that

Z 27 wzh <27 th

11>0

~ - o~
where [; is the smallest index [y such that Xl Ft £ (). Hence there exists some ( k,m) such
that
-0 ~ 1
270 = (g1, 0 )| < Bl

therefore

> 2R S B

11>0
Notice also that

3 o () < o ()

rj,120

i

where 7; is defined analogously. We can then find (n;, m) such that

s ; 1
27750 5 ||(gr, @l b |, < 1B 12,

therefore
2e €
S o (Frahn o i
2 (k k2 J Se’;‘ |E1|k 2k2
7,120

We can estimate all other sums in the bound above analogously. Observe that since the cardi-
nalities appearing in

k—1 (1 a k 1) _ﬁ<1—%)
(54) H sup H1X11+177‘11+1H£00 - AU sup H]lxl“'l”kyiﬂugo_g "

i—=1 [li+1Tii i+15Tk,i41 koM ny
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are integers, the whole expression is O(1). Using these observations and the fact that
|E;| < 1 gives us

(55) Rt 52 1P 45 ]
J=1
To simplify our notation, set g := (91,1, 91,2, 91,k—1, 91,k G2, - - - » Gk). To rigorously use mul-

tilinear interpolation theory, one can run the argument above for the following averaged multi-
linearized version of M E}, 4:

=

1 k—1
MEgq9) = Y (IL Ko eiladl ] loieeis )]

(7, m)ezd+1 \I=1

with associated dual formP

[1 l{os- oL O @xm),

==
Eall

_ k
~ 1
Awalg, )= Y (T Koueselalmdl | Horm @l E | TT g %0l ] (B xaz@xom).
(7, m)ezd+1 \I=1 j=2

Hence gives us

1

k

(56) IME 4(9)|l D Se H | B2 - H || 2F,

which is for ]\YEk,d. Finally, observe that

(57)

k times
-

IMEsa(9)l| 2gcien < | MEka(9)*|| asnsn . oo IMEra(9)F || st .

I k(d+E=1) E(Rd+1) I, (d+k=T1) (R+1) I, (d+k=1) (Rd-+1)
k k K
< 1 1
SATT 1B - ] 1Bl
=1 j=2

i 1 i 1
=T11Eulz - T] B2,
=1 j=2
which finishes the proof of the case 2 < k < d 4+ 1 by restricted weak-type interpolation.

10. THE ENDPOINT ESTIMATE OF THE CASE k = d + 1 OF THEOREM

Let g1 : Q1 = R, gj : Q; — Rfor 2 < j < d+ 1 be continuous functions. Recall that the
multilinear model for k = d + 1 is given in Section [2| by:

d+1
MEgi1,4(91,-- -, 9at1) = Z H<9ja o ) G ® X)),
(7 ,m)ezd+1 j=1

where

26There is a slight difference between the forms /~\k,d and [N\k,d: the latter is 2(k — 1)-linear, whereas the
former is k-linear. We can not apply multilinear interpolation theory with inequality directly, because all we
proved is that it holds when g; is a tensor. In order to correctly place our estimates in the context of multilinear
interpolation, we need to consider a form that has the appropriate level of multilinearity, which is ]\k,d-
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. . . . 2
® Pl s ) = P9 () ePrimem 2mima

and " (z) was defined in Section [2, From now on, we will assume without loss of generality
that g is the full tensor. To simplify our notation, set g := (g1,1,--., 91,492 - - -, gd+1). Define

d+1
MEg1.4(9) == Z H IR H<937‘P7 o) (X7 ® Xim).
(7 ,m)ezd+1 =1 j=2

We will show that j\ﬁd+1’d maps

L2([0,1]) x ... x L*([0,1]) x L*(Q2) X ... x L*(Q4+1)

2d times

to L%, which implies the endpoint estimate of the case k = d 4+ 1 in Theorem

Endpoint estimate of the case k = d 4+ 1. Notice that we have d factors in the first product and
d factors in the second. We will pair them in the following way:

d+1

]\ﬁdﬂ,d(g) = Z H ggﬁﬂﬁm (91,5- 1;<Pn] 1, m) (X7 © Xm)
(7 ,m)ezd+1 j=2

Now observe that

5 d+1
— 2 j —T1 (2
IMEq14(9)l5 = (9 ® 91,j-1, 90%,,” ® Pn,_im)|d
¢ (7,m)ezd+1 j=2
58 1
59 . ;
I 11
< H I(g; ®917j—17§0]ﬁ7m®§0£&j71,m>|2
=2 \(7,m)ezd+1

Let us analyze the j = 2 scalar product inside the parentheses (the others are dealt with in a
similar way):

_ 11
(9 ®TIT, 0% 1y © Pritm)

— / <92,1 ® I, (p7ll,127m ® 4,0#11,m> H 90“’2 ($u) e 277”"(2»2 xl) 2”(2»2 nll“l)dggl
Rd-1 u>2

—

= Hnl,’m(n27 cee 7nd)7

where

— 2 2
Hnl,m(x% e ,1’d> = <g2,1 ® gT,lv @711712,771 ® ()0711711,771) H ¢U72(xu e 2 Zm(2l22 zl)_

u>2

We can then use Plancherel if we sum over no, ..., ng first:
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I —
Yo Ny @Fek , © ey im)

(7 ,m)ezd+1
2
= Z Z ‘ ni,m n27"'7nd)‘
ni,mmnz,...,Ng
= > [ Hupymll
niy,m
— 1.1 T
/Rd 1 Hso <Z (g2 ®gl,1,s03;f,m®s0m,m>\2> day
ni,m

By our initial choice of cubes, supp(np}{ll,m) N Supp(gogjﬁ m) = 0, so the sum in (n1,m) is actually
Ms 1 (we are freezing d — 1 variables of go in this sum). Our results from Section |7| imply

S — T
Z [{9; ® G151, ‘p]ﬁ’m ® SO‘ZLj—l,m>|2 =

(7, m)ezd+1
Arguing like that for all 2 < j < d+1, gives us
2 d+1
IMEqi1.4(g Iz < H 192 ® g1,5- 1”2
d+1 )
= 1] llglls
j=1
and the result follows. O

11. IMPROVED k-LINEAR BOUNDS FOR TENSORS

In this section we investigate the following question: can one obtain better bounds than those of
Conjecture if one is restricted to the class of tensors?lﬂ The answer depends on the concept
of degree of transversality. The extra information that the input functions are supported on
cubes that have disjoint projections along many directions leads to new transversality conditions,
and we can take advantage of it in the full tensor case. This is the content of Theorem [11.2

Let {ej}1<j<a be the canonical basis of R%. If @ C R? is a cube, m;(Q) represents the
projection of () along the e; direction.

Definition 11.1. Let {Q1,...,Q} be a collection of k closed unit cubes in R? with vertices
in Z?. We associate to this collection its transversality vector
T = (7‘1,... Td)

where 7; = 1 if there are at least two distinct intervals among the projections m;(Q;), 1
and 7; = 0 otherwise. The total degree of transversality of the collection {Q1,...,Qx} is

|T] = Z .
1<i<d

The k-linear extension model for a set of cubes {Q;}1<;<x as in Definition is initially
given on C(Q1) X ... x C(Qy) by

(59) MEZ % (g1,e o) = > [{e3¢%,.) 0 @ xim).
(7,m)ezd+1 j=1

2TExtension estimates beyond the conjectured range have been verified by Oliveira e Silva and Mandel in [30]
for a certain class of functions when the underlying submanifold is S*~'. [41] also contains results of this kind
for the paraboloid.
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where the bumps 4,0% ., are analogous to the ones in Sectiox1|§|7 but now adapted to the cubes

Q-

From now on we will assume that g; is a full tensor 9]1 ... g}i for 1 < j < k and that
the transversality vector of the collection {Q1,...,Q} is 7. To simplify the notation, we will
replace the superscripts (); in with 7 and denote

1 d 1 d 1 d
G =Gy 915 GjseesGjree s Gor > Gk)-

We are then led to consider

k d
(60) ME74(9) = Y. [T e ) (ks @ xm),

(7 m)ezd+1 j=11=1

where
. , , o, .
b (@) = b ()e2mimre2mima® - Gupp (o) © m(Q;).

As it was the case in Section El, we will deal first with an averaged version of M E] ; for
technical reasons. Define

k d
., .
(61) ME) 4(9) := TTTT 1o ehddl® (xat @ xim),
(7,m)ezd+t j=11=1

and consider its dual form

k d
~ ) 1
Aalg )= > TITI e 5 mdl® - (b Xz @ Xm)-

(7, m)ezd+1 j=11=1
Let Ej;, 1 <j<kand1<1[<d, bemeasurable sets such that ]gé\ < XE;,- Let F c Rat!
be a measurable set such that |h| < yp. Under these conditions we have the following result:

Theorem 11.2. M E] ; satisfies

k d
1M EF 4(9) | oqasry Sp [T 1T 1512

Jj=11=1
L 2(dH|T)+2)
fO’f‘ G/llp > Dr = W

Proof. It is enough to prove that

kod
— T
IMEy, q(9)| Lo ma+ry S HH jl‘2k

holds for every
2(d+ |1+ 2)

b= @

Define the level sets
AT = (g m) € 2% [{gh, ok )| ~ 27701,

B' := {(7,m) € Z*";  |(h, x5 © xm)| = 27},
Set R := (ri,j)i,j and

xXBt .= (", m) e 2% (ny,m ﬂA?ll, 1<1<dynB.

We then have
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9=t . pxEL,

E&

k
Ara(g. WS DY 270 ]
j:

R,t>0 11=1

As in the previous section, we can assume without loss of generality that r;;,¢ > 0. We can
estimate #X* using the function h:

(62) #XEE 2 N (b xm ® xm)| S 2.
(7 ,;m)ezd+1

Alternatively, by the definition of X%

(63) #XPE <Y HHJIAW ng,m

(7 ,m)ezd+1 j=11=1

There are many ways to estimate the right-hand side above. We will obtain d different bounds
for it, each one arising from summing in a different order. Fix 1 < < d and leave the sum over
(ng,m) for last:

d
#xtt= S ] Ly (i m) | - T2 11 L,se(ngm)

(ny,m)ez? [j=1

=
I#
(64) [ & 1 d & IR
< Z H]]-Afjl,l<nlam) HH ZHAT ( l’ ) )
(nym)ez? [j=1 7 I i
11

where we used Holder’s inequality in the last line and v, 7 are generic parameters such that

(65) Z Nr=

forall 1 <1 ,l~§ d with [ # [ fixed. Let us briefly explain the labels in these parameters that we
just introduced:

[ indicates that the last variables to be summed are (n;, m),
0/R s 5 corresponds to the }—th function 95
77& [ corresponds to the I-th variable ny.

We will not make any specific choice for the v, jfsince condition will suffice. Now observe
that for a fixed m € Z we have:

(66) 21, m) < E NG A < F- 155
ny gl

by Bessel’s inequality. Using back in :
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d k [
4XRt < H H 92N G5 . |Ejﬂ’h,‘j,?. Z H 1,0 (n,m) |

ot ' : il
I=1j=1 (nyym)ez? [J=1 !
I#

(67) r
d k
=T g 3 | T1 3, metnm) 3,
1=1j=1 (n,m)€Z? | (j1,42)
1£1 Lj1#72

We simply used the fact that 12 = 1 in the last line above. Our goal is to pair the scalar
products in corresponding to the functions gé.l and gé-Q There are two kinds of such pairs:

(a) A pair (j1,72) with j1 # jo is I-transversal if supp(¢"91) N supp(ph72) = 0. '
(b) A pair (ji,jo) with ji1 # jo is non-I-transversal along the direction e; if supp(p"t) N
supp(ph72) # 0.

Thus we have by Holder’s inequality for generic parameters oy j, j, and 3 j, j,:
(68)

Al,51,742
Rt 2y, = o~
#X < HH2 b ’ ‘EETi bt H § ]]- 7]11(”[? ) ]]- ’321(1%1, )
’ - l 1
I=1;j=1 (41,42) (ng,m)€Z2 it A
l;él [-transversal, ji#j2
Bi,j1 32
X H § : 1 AT (nl’ ) ]lAfJQ;l (nla m)
(j17j2) (nl,m)€Z2 71 l 2.l

non-I/-transversal, ji#j2
Define
1. =0, if (j1,72) is non-I-transversal,
Bijrj. =0, if (j1,72) is [-transversal.

Hence Holder’s condition is

(69> Z al7j17j2 + 5lvj17j2 - 27
(jl»jZ)
1<j1,42<k
J17752
since we are counting each ag;, j, and 3 ; ;, twice, for all 1 < [ < d. The labels in the
parameters a and 3 track the following information:

[ indicates that we are summing over (n;, m),

o, 4, and By, g, —
Livdz Psia { J1 and ja correspond to two distinct functions g;, and gj,.

We can then use Proposition[4.4]for the transversal pairs and a combination of one-dimensional
Strichartz/Tomas-Stein with Holder for the non-transversal ones:

(70)

d k
HXRE < H H NG L | BT H 22005155 (T 1 +Tip 1) L | B |z - | B, |tz

— ‘],l Ji, J2,
,lV:l 5:1 (j17j2)
T;él [-transversal, j17#£j2
381,71 32 (Ti1,1FTjg 0 3By 3By
X H (2 1,92 (131,17 )"Ejl,l‘2 1,42 '|E32,l‘2 g1z | .
(41,32)

non-l-transversal, j1#j2

As mentioned earlier in this section, we have d estimates like ([70)). We will interpolate
between them with weights 6;:
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d
#XR’t — H(#XR,L‘)GZ
=1
with
d
(71) oo =1.
=1
This yields
d #i1
(72) Xt < H H O J LT . B2,
j=11=1

where
#io= | > Qo +3B5) | O+ 2950 O
N1#] 1£1

In order to prove an estimate like L? x ... x L? — LP, we will need all these coefficients #i.
to be equal. Let us call them all X for now and sum over j:

k k )
ZX - Z Z (20417]}]'1 + 3Bl,j,j1) -0, + Z 2 Z ’7l~,j7l . QZN
7=l J=1j1#] T
By and ([69):

k
(73) X6 S o] 0t Y26

J=1j1#j 141
for all 1 <[ < d. Together with , gives us a linear system of d equations in the d
variables 61, ...,60,. The solution is
d 4 _ vk - -1
Zj:l Zjl;éj Q.51
& =yt E
o AT 2= 25 0T

Plugging back in gives us

-1

2 1
(75) X=2 |1+ 24—21“ S
=1 j=1 2uji#j Y.

To minimize X we must maximize

k
PIDILIN
J=1n#j
This is achieved by choosing (3 j, j, = 0 for all (j1,j2) if there is at least one I-transversal
pair (j1,j2). In other words, choose

/Bl,j17j2 =0 for all (j17j2) if 7 =1.
Hence by :

: 2 ifrr=1,
O(l~A . = .
2.2 0= i 7= 0.

J=1 j1#j
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This choice of parameters gives us

2(d+ |1+ 2)
k(d+|r) -
which implies the following estimate for #X%:t:

X:

k d
(76) #xht < TT L2 - 1Bl
=1

Finally, we interpolate between with weight ﬁ — ¢ and with weight (1 — ﬁ) +e
to bound the form A;;’d:

AL (g m) S > 2! HHT’T

Rt>0 j=11=1

Developing the right-hand 51de.

kod
ALalg, R Z OSTIITL . 2%

As in the previous section, these series are summable. We have

Z 2—6X~'rj7l SE |Ejl|€X'

75,120

For the series in ¢ we can just bound it by an absolute constant depending on . This leads to

k d
ATalg: W] e HH! |21vJr > | - ]F|(1—ﬁ)+€
Jj=11=1
k d ) 1
HH |Ej|2x | - ’F|(1—k,7)+67
since |Ej;| < 1, which finishes the proof b multﬂmear interpolation.

Remark 11.3. If ; =0 for 1 <[ < d, then

2(d + 2)

kd
which could have been proven in general with Holder and Strichartz/Tomas-Stein. This is
because there is no transversality to exploit, therefore the best bounds we can hope for in the
multilinear setting come from the linear one.

DPr =

Remark 11.4. If there are exactly £ — 1 indices [ such that 7; = 1, then

C2d+k+1)
Pr= @+ k—-1y
which is consistent with Theorem [L.5l
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Remark 11.5. Finally, if one has more than k — 1 indices [ such that 7; = 1, then

- 2d+k+1)
Pr=Fd+k—1)
which clearly illustrates the point of this section. The extreme case is when 77 = 1 for 1 <1 < d,
which gives
_2(d+1)
Pr=""%a

This can be seen as an improvement upon the linear extension conjecture itself in the following
sense: if we take the product of k extensions Fy;g;, 1 < j < k, and combine the linear extension

. . .. . . . 2(d+1) 2(d+1)
conjecture with Holder’s inequality, we obtain an operator that maps L™ ¢ X ...x L™ d to

2(d+1)
—%a T

. On the other hand, if we are in a situation in which we have as much transversality
. ) 2(d-+1)
as possible and all g; are full tensors, we obtain L?x...xL?>to L™ ka %,

12. BEYOND THE L2-BASED k-LINEAR THEORY

We start by restating the near-endpoint estimate . For 2 < k < d+1, to recover the whole
range of the generalized k-linear extension conjecture, it is enough to prove Conjecture and

k k
(77) [Tev9 o | 177 s
J=1 j=1 L~a— (Uy)

2(d+1
L2 e gy

for all € > 0.
Let Q@ = {Q1,...,Qx} be our initially fixed set of cubeﬂ In what follows, we recast the
statement of Theorem [I[.13] in terms of this set:

Theorem 12.1. If Q is a collection of transversal cubes and g1 is a tensor, the operator
MEra(gr, ..., k) satisfies

k
(78) [MEkalgn,- - ’gk)HLZ(‘iZl)H(RdH) Se 1_I1 195l Lok ()
‘]:

where
UED)  if o <k < 4,

p(k,d) = { 4WEH)
.d) {<+> < k<dtl

As anticipated in the introduction, we prove it by adapting the argument from Section [9]

Remark 12.2. As in Section [9 the theorem above holds under the assumption that the given
set of cubes is weakly transversal and any other g;, j # 1, can be assumed to be the tensor.

Remark 12.3. Roughly speaking, the difference between the proof of Theorem [12.1] and the
one done in Section |9 is in the building blocks we use: instead of Strichartz/Tomas-Stein (in
the form of Corollaury7 we will use the best extension bound for the parabola (in the form of
Proposition . One can think of the argument in this section as a rigorous way of replacing
the former piece by the latter in our machinery.

Proof of Theorem [12.1. We work in the same setting as in Section [0] Even though there are
some slight differences between the level sets from that section and the ones that we will define
here, the approach is very similar.

It is convenient to recall a few important points from Section [0}

e The form of interest here is (in its averaged form):

~ k ' k
(79) Aralg:h) = > <H|<gj,¢%,m>\> (hy X5t @ Xm)-

(7,m)ezd+1 \i=1

28966 Section
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e The tensor g; has the structure g1 = g11 ® ... ® g1.4.

e Ei1,...,B14 C[0,1], B; C Q; (2<j <k)and F C R¥! are measurable sets such
that g1 < xg,, for 1 <1 <d, |g;| < xg, for 2 < j <k and |h| < xp. Furthermore,
E1 = E171 X ... X El,d-

We start by encoding the sizes of the scalar products appearing in :

I .y :
A) ={(,m) e Z™Y gy omm) =27}, 1<j<k

Now we see the first difference between the argument in this section and the one in Section
O} the mixed-norm quantities here are all of the same kind, in the sense that the inner products
inside the L? norms are all one-dimensional:

Tig o . 2, b,J
By = { (i, m) € 2% |[{g5, 95 )
The remaining sets are defined just as in Section [9] and with the exact same purpose:

Cl:={(d,m) € ZY (b, x5 @ xm)| = 27},

szfw}, 1<i<d, 1<j<Fk

Xbirid = A% N {(W,m) e Z™  (ni,m) € ]Bsz},

N ‘ ro .
X VRt . ﬂ A‘Z]J N (ﬁ’m) c ZdJrl; (n“m) c ﬂ B.% 1<:<d ﬂ(ct,

Z7‘7 )
1<5<k 1<5<k
: L.
where we are using the abbreviations [ = (I1,...,l;) and R := (r;;); ;. Hence,
A S TR
Aralg, )] < D 2t [ 2 F#x A
_Z),R,t j=1

The analogue of Lemma [9.4] is the bound

2-T1. ... 927Td1

g1 ]14~!

which is proven in the same way. Also, by an argument entirely analogous to the one of Lemma
we can show that

(80) 270

Y

2T
(81) 27l < . LV 1<i<d 2<j<k
|1

1
! H ;
37,5 || poo 1
X 05

The following corollary of the estimates above will give us the appropriate convex combination

of such relationd?%}
Corollary 12.4. For 1 <i <k —1 we have

k . 1 .
27 d+1‘7'z,7,+1 27d+1'ru,z+l

2_li+1 < .
2k(d+1)

.
o | |

130,041 1

xtrrui e,

X'i+13T4,i41 °S) 1
Knl,meﬁz

Proof. Interpolate between the bounds in with one weight equal to % for (¢,7) := (i,i+1)
and (d — k + 1) weights d%—l for (i,7) = (u,i+1), k <u<d. O

29Notice that instead of using just two mixed quantities for each scalar one (as in Corollary , we are using
d — k 4+ 2 many of them here.
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N
We can estimate #X ¢ %! using the function h:

_>
(82) #XEES N (b xm @ xm)| S 2.
(7 ,m)ezd+1
Alternatively,
. k
(83) #XORE < N L, HHH ri (i m
(7 ,m)ezd+1 j=1 A i=1j=1

Similarly to what was done in Section [0] we will manipulate the inequality above in d ways:
k — 1 of them will exploit orthogonality (from the combination of the sets B,’; o ;' and ]E%:Zlff,
1 <i < k—1), but now the other d — k + 1 ones will reflect the linear extensmn problem in
dimension 1. The following lemma is the appropriate analogue of Lemma [0.7] in this section:

Lemma 12.5. The bounds above imply
(a) The orthogonality-type bounds: for all 1 <i <k —1,

ﬁ
(84) xRt < H]lxlm?rzum HZ%O a C92riat2riit g |12+ [l gisa |12
i ny

(b) The extension-type bounds: for all k < u < d,
2(d—1)

—Z)Rt b % zzv Ti,1 k
#X < | | H]lx’j"“u,juégo g 2R gl
U

ny

(85) k
. k .
x g etz Ot T guglla | llgnalld - TT llanll?,
j#u =2
where
2(k+1) (k+1) 2 < 1

with 6,6 > 0 being arbitrarily small parameters to be chosen later.

—
Proof. Part (a) is the same as in Lemma (a). As for (b), fix k < u < d and bound #X !t
as follows:

(7 ,m)ezd+1
k k
= Z H]lxlj”"u] 1_[]l Tl (ni,m HHBT“Z T, M
(7, m)EZ’i+1 Jj=2 i#u =1
k
= 3 Tt ) 2 T s () [T gy
(86> Ty, =1 e J=2 i#u ’
1
k
1
<2 H]1 rut (1 HHﬂ res ()5 | [T 2y (i m
Nay,m [=1 o i#u L
k L k
< IT 1%l e, TL| e ol T ,
Jj=2 o i#u B googl =1

¢l
nu,m

where we used Hélder’s inequality from the third to fourth line. Next, notice that
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2r;, 2
< sup 27! E (g1, @) m)a
£590%

(87) — Sup 22"‘1 1 /Z ‘ glv ()On“m

S22 g3

H ]]-B"li’l

i,1

2 1~
dl‘i

by orthogonality. Now let

pug =2k, V 2<1<k

and notice that

This way, by definition of IB%;"l’l and by Holder’s inequality with these p,; we have

(88)
k
Iz
=1 e
Tu 1+ B 1 o T ! ’
corra et 3 g entades - T oot mde |
(nu,m) =2
. Py, 1 k BDu.l ﬁ
SQOWHJ_FZ[:QB'TW Z H<glv(pnu,m IuHapul ’ Z H<gl,801¢tf,m>l“u 2 )
(nu,m) =2 \ (ny,m)
! s | 143) ™
:201-Tu,1+zl=2/5'7"u,l Z H<gljgp1ﬁ’:’m qu H Z H(Ql#ﬁ%,m)% 9
(nu,m) =2 \(ny,m)

At this point we see another difference between this proof and the argument in Section [9} we
do not obtain a pure LP norm when using the near-L* extension analogue of Corollary |4.2| for
I =d — 1. Alternatively, we use Holder in the term involving g; once more:

- 448
2
446 —
g1, o |0 = / TT100s2@5) | - g1 @2 e
7\
446
< | [ llgrill g1 Pl e [

J#u
For the remaining g; we simply use Holder and the fact that they are compactly supportedm

4+6 4+5

Y [

H<gl7gpgi,m>$u 4

These observations imply

30We use this crude estimate for the remaining g; because they do not have the same structure that allows
“pulling out” the one-dimensional functions gi,;, like g1 does. There is a clear loss here and it is reflected in the
fact that p(k, d) is not the best exponent for which (78) holds.
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(89)
A+6 1
Py,1 Py,1
k
wl < g@rertiize Frut | TT lgy 52 A DD Ko el e,
JFu (nw,m)
1
k N Pyl
‘ ul 443
H Z <gh§0nu,m> 4
=2 \ (nu,m)
. k
< gometZize Brar | T llgwglle | lgvall - T Nanll3-

i#u

where we used Minkowski for norms and the L*— L4+5 one-dimensional extension estimate from
the second to third line above. Part (b) follows from applying and to (86). O

Given € > 0, we bound the multilinear form /N\k,d using the estimates from and Corollary
12.4] (with the appropriate e-losses for later convenience), and the ones from Lemma with
the following weights:

0, = m — %, 1<1<d, forthe d estimates in and ,
Ogr1=1-— 2(d+1) +¢e  for (82).

Hence,
’]\k,d(ga h)| SJ
1_ (d+1)e
k~ 2kd
Z 9~ x 9~ B h H 9751
. nd—1
7 R0 g1 ||
1— (d+1)e
k-1 . d - *
(d+1)s 27 d+1 Ti,i4+1 927 k(d+1) Tu,i+1
XHQ_ 2kd 1+1><H - .
=1 H]]'Xli-‘rl?’"i,i+l HEZSHZL u=k H]lxl”‘l il H %(dHZA
ng,m 7
k—1 1 e
2(d+1)  d
X (H]lxllﬂ%rl,m Hgoo " L QALITRLIL ||91||% : Hgl+1||%>
=1 ny,mong
@4
k 1 2(d 1) 2(d+1
3 2
X HHHXZJ"T%J'H;% el .9k Pigu il HQIHQ
E<u<d \j= T
¢ k ST 4
k
X ot X et TTguglla | lovull§ - T lonlld
k<u<d j#u _

% (zt‘F’)l_z(diU"_E X

Developing the expression above,
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[Ak,a(g, h)| <
1 (d+De
d kT 2kd
‘ (d+1)e; . (d+1)(d—1)e _ (d—1)
2. rtxxmrhoc| [T <ol 7
T Rt>0 j
E—1 d 17(d+1)5
— _ (e, [ B 2
X 2kd lit1 x H 27 d+1 Tiitl H 97T ER(@+1) Twitl
=1 u=~k
k-1 (d+1)e

H [H ]]_Xlwrl _— H 2(d1+1) ( 2d H “ﬂXl2+1 S H 2k(d+1) ( d;dl)g 1)]
1

g

k— k-1 1 2
2(d+1) Td riFrLpl\ a4l d

H ‘1X11+1;Tz,z+1 Hgoo7 g1l X H (2 )

=1

=1
(k71)_2(k 1)e 2
x [lgalla™ Hllgml!d+1 !

T (T I | (2 gt o

2(d—k+1)(d—1)< 1 7%)

k 1 R
d—k _ 1 e
X g1l 2@ 2(d+1) % . | | Hngf( +1)<2(d+1) d)

IT [|lgvala-TT Igrsl2

k<u<d jFu

x (2! F)) 1=ty ) e

Observe that the product of the blue factors above (for k < u < d) i&{ﬂ

[k—1 d
IT (lgvulls- T Ngrsllz | = [TT Noralls ] 11 [Hgl,qu_k : Hg1,ull4}
LI=1

k<u<d JjFu u=k
[ a k—1 d
d—k
=[] llgrsll47%]| - [ |!91,1H2] : [H Hg1,u||4]
j=1 =1 u=Fk

d—k 1
< lgulla™ - [Enla.

Notice that the previous step was lossy, which also reflects in the suboptimal final exponent
p(k,d). Now we set the values of § and ¢ (as functions of ) to be such that

2k d kd

(k+1) 1 e\  (d+1)
o (2(d+1)_d>_

5. (L _ey_ <&
2k \2(d+1) d) kd

Simplifying the expression above with this choice of § and 4,

31Recall that |g1] = [g11 ® ... ® gr.a| < 1p,®...0 1, <1g.
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d

k—1
Oy 3(d+1) (d+1)
|Akd9v IS 52 o I || E 9" oka Til X || E 0~ “Srd Tu.l
j=1

11>0 74,120 u=k \74,1>0

5 lﬁ Z 2_(d;€ii)s‘li+1 22 2(d+1) a

i=1 \liz1>0 t>0

T
L

d

% § : Q—S—Z-ri,iﬂ H 2 : 9= 35 Tusi+1
7i,i+1>0 u=k \7y,i+1>0

B d

3e
T 4d 4kd
X sup Hllem,Hngoo_ o II sup [ Lytiaime z+1He il
1 Llitriit memTng b

™ .
[
Y

.
I

(d—k) 2(d—k)(k+l)s+(d—k)k(:+1)5+(d+12)1($—1)5_2(k;1)5_2(d—k+1)(d—1)5 (k+1)

®(d+1) &d (dil)e

kd . |E1|4k<d+1)+ Ihd

X [lgnlly

k-1 (d+k+1) e (d— k+1)5+(d k+1)e

X H ’El+1’ 4k(d+1) —d_ 2kd 4kd
=1

X ]F|[ 2(Ul+1)]+‘E

By considerations identical to the ones in the end of Section [9] this implies

k—1
= d k+1 2d—k+1
(90) Akalg, W] Se [FI' 2050 By @ [T | By 5650
I=1
To make all exponents of |E;| (1 < j < k) the same, we have to take
1 . [2d—k+1 d+k+1
= 5 — I y
(k. d) 4k(d+ 1) 4k(d+ 1)
Again by the same considerations from Section @, implieslﬂ Theorem m (]

13. WEAK TRANSVERSALITY, BRASCAMP-LIEB AND AN APPLICATION

We were recently asked by Jonathan Bennett if there was a link between our results and
the theory of Brascamp-Lieb inequalities. The motivation for that comes from the fact that,
assuming g1 = g1,1 ® ... ® g1 4, one can see the operator ME 441 4 as the 2d-linear object

T(g11,- 591,925 -+ - Gdr1) = MEar1,a(911 @ .- @ g1,d5 925 - - - Gd+1)s
and given that such a link exists in the theory of ME&g41 4 (see [1]), it is natural to wonder
if boundedness for T is related somehow to the finiteness condition of certain Brascamp-Lieb
constants BL(L, p).
The purposes of this section are to make this connection clear and to give a modest application
of our results to the theory of Restriction-Brascamp-Lieb inequalities.

13.1. A link between weak transversality and Brascamp-Lieb inequalities. We start
with some classical background. Let L; : R" — R™ be linear maps and p; > 0, 1 < j < m.
Inequalities of the form

(91) /n ﬁl(fj o L;)P (v)dv < Cﬁ (/an fj(yj)dyj>pj
i= j=1

32Notice that we obtain something slightly better than Theorem if one is looking for asymmetric estimates:

implies a bound of type LP' x LP? x LP? x ... x LP?
tensor.

T .
*e p1 # p2 and p1,p2 < p(k,d), if g1 is a
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are called Brascamp-Lieb inequalities. In [6], Bennett, Carbery, Christ and Tao established
for which Brascamp-Lieb data (L, p) the inequality above holds, where L = (Ly,..., L,,) and
p = (p1,-.-,Pm). The best constant for which holds for all nonnegative input functions
f; € L*(R™) is denoted by BL(L, p).

Theorem 13.1 ([6]). The constant BL(L,p) in is finite if and only if for all subspaces
VCcR"?

(92) dim(V) < ipjdim(LjV)
j=1

and
(93) ijnj =n.
j=1

Remark 13.2. By taking V = R" in it follows that each L; must be surjective for (93)) to
hold as well.

We will work with explicit maps L; and use Theorem to establish a link between the
concept of weak transversality and inequalities such as These maps will be associated
to the submanifolds relevant to the problem at hand: the d-dimensional paraboloid P? in R4*!
and some “canonical” two-dimensional parabolas.

In order to define L;, we fix standard parametrizations for the submanifolds mentioned above.
Let

(94) I: RY — R

d
(95) (T1,...,2q) — (ml,...,xd,Zaﬁ?>,
i=1

parametrize P¢ and
(96) vt R — R+
(97) x|—>(x~51j,...,x-5dj,x2)

parametrize a parabola in the two-dimensional canonical subspace generated by e; and eg41
(0i; is the Kronecker delta). Their differentials are given by

dl': R — Mg 1)xa

1 o ... O
0 1 ... 0

(xlv"'vxd)'—> 5
0 o ... 1

_2381 29 ... 2:rd_

and
dyj: R — Mgy1)x1

_51]'_
52j
xr — .

8aj
_21‘_

33From now on, we will replace n by d + 1 when referring to the dimension of the euclidean space.
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For d + 1 points z/ = (l‘jl, e xé) € R4 1< j<d+1, define the linear map

L= (dy(al)™, VI<(<d,

(98) )
(7 = (et ah) . vi<i<a

It is important to emphasize that Lq,, depends on 2+ (and similarly, L, depends on z}).
The main result of this subsection is:

Theorem 13.3. Let Q = {Q1,...,Qq+1} be a collection of closed cubes in Re. If Q is weakly

transversal with pivot Q1, then for any choice of points ¥/ = (x{, .. xd) € Qj, the linear maps
in satisfy

1 1 1
(99) BL(L(z),p) < oo for L(z) = (L{1,..., L") and p = (d, . d) :

Conversely, if is satisfied by the linear maps in for any choice of points x/ =
(z1,...,2)) € Qj, then Q can be decomposed into O(1) weakly transversal collections Q' of

d+ 1 cubes, each one having a cube Q) C Q1 as pivot.

Remark 13.4. If Q can be decomposed into O(1) weakly transversal collections Q' of d + 1
cubes (in the sense of Claim, each one having a cube Q)] C @1 as pivot, then the conclusion
of the first part of the theorem above also holds for Q. Some important examples to keep in
mind are the ones of transversal configurations that are not weakly transversal by themselves,
but that are decomposable into such: for instance, {Q1,Q2,Q3} where Q1 = [1,4] x [2, 3],
Q2 = [0,2] x [0,1] and Q3 = [3,5] x [0,1] is a transversal collection of cubes in R?, but not
weakly transversal with pivot @1 since m1(Q1) intersects both m(Q2) and 71(Q3).

Remark 13.5. We can of course obtain a similar statement if Q is weakly transversal with any
other pivot @;, j # 1. The linear maps L; and L4, would have to be changed accordingly.

Proof of Theorem[13.3 Suppose that Q is weakly transversal with pivot ;. We can then
assume without loss of generality that

m(Q1) Nmi(Q2) =0,
(100) :
mq(Q1) N Ta(Qat1) = 0.

The strategy is to apply Theorem [13.1] _ Condition is trivially satisfied, so we just have
to check . Fix the points 2/ = (z1,.. xd) € Qj, 1 < ] <d. To avo1d heavy notation, we

will omit the superscripts x} and z/T! when referring to LZ and Ld +€ , respectively, but these

points will be referenced whenever they play an important role. We emphasize that the maps
Ly, 1 < ¢ < d, are being identified with the row vector

[5lg Oo¢ .. Oqu 2:Eﬂ ,
whereas the maps Lgi¢, 1 < ¢ < d, are identified with the d x (d + 1) matrix
10 ... 0 22411
01 ... 0 225
Do .o e X
00 ... 1 223"

3hwe highlight that the superscript j in xi denotes the point, whereas the subscript i denotes the i-coordinate
of the corresponding point. Notice also that we are identifying the adjoint operator T with the transpose of the
matrix that represents 7' in the canonical basis.
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If V. R*! is a subspace of dimension k, we have to verify that

d d
(101) dk <Y dim(L;V) + ) dim(LayV).
j=1 =1
Suppose that there are exactly m > 0 indices j € {1,...,d} such that dim(L;V) = 0. If
m = 0, we must have L;V = R for all 1 < j <d, hence
d
(102) > dim(L;V) = d.
j=1
Surjectivity of Lgip, 1 < £ < d, implies dim(ker(Lgi¢)) = 1, which gives the lower bound
dim(Lg4 V) > k — 1. We then obtain
d

(103) > dim(LgyV) > d(k - 1).
/=1

It is clear that (102)) and (103) together verify (101) in the m = 0 case. If m > 1, assume
without loss of generality that

(104) LV =...L,V =0,
(105) Lyp1V=...=LgV=R.
This gives us
d
(106) > dim(L;V) =d —m.
j=1

We will show that

d
(107) > dim(La V) = (d —m)(k — 1) + mk.
(=1
Observe that (106} and (107]) together verify (101]) in the m > 1 case.
We claim that there are at least m maps Ly, among Lyt1, ..., Lag such that dim(ng V)=k.
If not, there are d — m + 1 maps Ly,,..., Ly, with dim(L,, V) < k — 1. Since dimV" = k,
the rank-nullity theorem implies the existence of

(108) 0#0vY eker(Ly,) NV, 1<j<d—m+1.
By (104),

(109) L' = v + 2zl =0, 1<r<m,

and by (108 we have
10 ...0 2xfj7d+1 vl vfj + Qxfjfdﬂvflﬂrl

U—d+1 2 ¢ Ui—d+1 15

01 ... 0 2z vy vy + 2x5 v/

(110) Lejvfj — ‘ 2 . 2 _ 2 2‘ d+1 -0
00 ... 1 207 [of ] [ 2T

for 1 <j<d-—m+1. For each 1 < r < m, combining the information from (109)) and (110]

gives us
Vi (@t =2 =0,
If v, = 0, then (TI0) also implies v/ = 0 for all n € {1,...,d}, thus v = 0, which
contradicts ((108)). Then we must have

1 Zj—d—‘rl
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Let us now see why this can not happen. We have just shown that there are d —m + 1 values
of « for which

m1(Q1) Nm(Qa) # 0,
(111) :
T (Q1) N Tm(Qa) # 0.

On the other hand, tells us that a ¢ {2,3,...,m + 1}, hence there are at most d — m
possible values for o (we can not have o = 1 either), which is a contradiction.

Hence there are at least m maps Ly, among Lgy1,. .., Lag such that dim(L,, V) = k. The
remaining d—m maps have kernels of dimension 1, so the image of V' through them has dimension
at least k — 1 (again by surjectivity of Ly, and the rank-nullity theorem). This verifies

For the converse implication, suppose that . is satisfied by the linear maps in . for any
choice of points (ml, . xd) € Q;. As a consequence of the proof of Claim |[B.4, each Q; € Q
can be partitioned 1nto O(1) sub-cubes

= U Qi
(2

so that all collections O made of picking one sub-cube @Q);; per @;

Q={Q1,...,Qur1}, Qi€ {Qui}i,
satisfy the following:
(a) For ~any two @T,és € O, either Fj(@r) N Wj(és) =0, or Wj(@r) = Wj(@s), or Wj(@r) N

j (Qs) = {pr.s}, where p, is an endpoint of both 7;(Q;) and m; (Qs).
(b) All W](Qs) that intersect a given m; (Q,) (but distinct from it) do so at the same endpomt.

By a slight abuse of notation, let Q denote one such sub-collection that has the two properties
above. Suppose, by contradiction, that Q is not weakly transversal with pivot Q1 (recall that this
is a cube obtained from the original Q1). The strategy now is to construct a subspace V C R+!
that contradicts for a certain choice of one point per cube in Q. This construction will
exploit a certain feature of a special subset of Q, which is the content of Claim

For simplicity of future references, let us say that a subset A C Q has the property (P) if

(1) @1 € A.
(2) A is not weakly transversal with pivot Q1.

We say that a subset A C Q is minimal if A C A has the property (P) if and only if
A’ = A. Tt is clear that, since Q has the property (P) itself, it must contain a minimal subset
of cardinality at least 2.

Claim 13.6. Let A = {Q1, Ks,...,K,} be a minimal set of n cubeﬁ. There is a set D of
(d —n+2) canonical directions v for which

(112) ro(@) () 40, ¥ 2<j<n.
Proof of Claim[13.6. See Claim in the appendix. O

35In other words, all 7;(Q.) that intersect a given m;(Q,) (but distinct from it) do so on the same side. In
short notation, let S, be the set of s for which 7;(Q-) N 7;(Qs) # 0. The conclusion is that there is some real
number v; such that

% € (Q) N [ m5(Qs).

SES;

360bserve that @1 is the only “Q” cube in this collection. The others are labeled by Kj.
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We know that Q has a minimal subset of cardinality 2 < n < d + 1. By the previous claim
and by conditions (a) and (b) of our initial reductions, if A" = {Q1, Ka,...,K,} is a minimal
subset of Q, for every v € D there is a number -, such that

Yo € mo(Q1) N () mo(K)-
j=2

Indeed, m,(Q1) intersects each 7,(Q;) “on the same side”, so the intersection above must
be nonempty (the existence of these 7, is the only reason why we may need to decompose the
initial collection Q into sub-collections that satisfy (a) and (b)).

For simplicity and without loss of generality, assume that A = {Q1,Q2,...,Qn} is minimaﬂ
and D = {e1,...,eq_ni2}. Consider the points

(717'"77d—n+2)x‘;_n+37"‘7$“3j) S Q]) 1 S] S n,
(z,...,7))€eQ, n+1<1<d+1,

By hypothesis, BL(L(z),p) < oo for the following collection of linear maps and exponents:

L;ZT(Ul,...,Ud_Fl):’UT+2’YTUd+1, 1ST§din+2v
1
Lgs('l)l,...,’l)d+1):U5+2$;’0d+1, d_n+3§8§d7
U1+ 2710441
r+1 r+1
Voo Vdmn+ 25T L gy greees® Vd—n+2 + 27Vd—n+2Vd+1
Lil+7~ mretdons ¢ )(Ula s ,’Ud+1) = m 2’7T+?+ - ) 1<r<n- 17
Vd—n+3 + 224", 1 3Vd+1
vg + 2:1:2+1vd+1
v + 2xll+lvd+1
1+1 )
$+l = . y n < l < d,

vd+2mfi+1vd+1
1
p={Z )

d—n+2
V= ﬂ ker(L)").
r=1

Define

Observe that dim(V') = n — 1. Indeed, if we start with a vector v = (vy,...,v441) of d+ 1
“free coordinates”, we lose one degree of freedom for each kernel in the intersection above, since
L} (v) = 0 gives a relation between v, and vgy1. We have d — n + 2 many of them, hence the
total degree of freedom is (d + 1) — (d — n 4+ 2) = n — 1, which is the dimension of V. On the
other hand, for every v € V we have by definition

L) (v) =0, 1<r<d-n-+2,

hence
d

> dim(L;V) <n -2
j=1

37Here we are assuming K; = Q;,2 < j < n.
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Also,
_ 0 .
r+1 r+1
Y15 Vd—n+2:T g4 35T ) O
LEl+r FEldengsrtd ) = g1 , 1<r<n-1,
Vd—n+3 + Lg—ny3Vd+1
1
vg + 23:2+ Vg1
thus

dim(Lg,V)<n—-2, 1<r<n-1.
Since dim(V') = n — 1, we have the trivial bound
dim(LgV)<n—-1, n<Il<d.

Altogether, these bounds imply

d d
% S dim(L;V) + 3 dim(Las V) | < % [(n=2)+(n—1)(n—2)+(d—n+1)(n—1)
=1 =1
1
— m-1a-1
<n-—1
= dim(V).

Our initial hypothesis, however, is that BL(L(z),p) < oo, therefore by Theorem we must
have

d d
. 1 . .
dim(V) < p Z dim(L;V) + Zdlm(Ld+gV) ,
j=1 (=1
which gives a contradiction. We conclude that Q is weakly transversal with pivot Q1. O

13.2. An application to Restriction-Brascamp-Lieb inequalities. The following conjec-
ture was proposed in [4] by Bennett, Bez, Flock and Lee:

Conjecture 13.7. Suppose that for each 1 < j < m, 3; : U; — R" is a smooth parametrization
of a nj-dimensional submanifold S; of R"™ by a neighborhood U; of the origin in R"7. Let

Ei0i(€) = [ D) da
Uj
be the associated (parametrized) extension operator. If the Brascamp-Lieb constant BL(L, p) is
finite for the linear maps L; = (d¥;(0))* : R™ — R™, then provided the neighborhoods U; of 0
are chosen to be small enough, the inequality

- 4 2p;
(113) / [T 1&g < TTgsl %0,
R™ j=1 j=1

holds for all gj € L*(U;), 1 <j < m.

Remark 13.8. The weaker inequality

m m
.| 2P ||2P
(114) [ G ) (T
) Jj= Jj=

involving an arbitrary € > 0 loss was established in [4].
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Remark 13.9. Very few cases of Conjecture are fully understood@ Recently, Bennett,
Nakamura and Shiraki settled the rank-1 case ny = ... = n,, = 1 as an application of their
results on Tomographic Fourier Analysiﬂ

Given their hybrid nature, estimates such as are called Restriction-Brascamp-Lieb in-
equalities.

Our goal here is to verify Conjecture in a special case. We chose to state the main result
of this subsection in a way that does not emphasize the origin in the domains of ;. The reason
for this choice is that it brings to light key geometric features of the problem.

We will need a result from [4] on the stability of Brascamp-Lieb constantslﬂ:

Theorem 13.10 ([4]). Suppose that (L°,p) is a Brascamp-Lieb datum for which BL(LC, p) <
oo. Then there exists 6 > 0 and a constant C' < oo such that

BL(L,p) < C
whenever |L — LY < 6.
Now we are ready to state and prove our result:

Theorem 13.11. Let I' and ; be the parametrizations from and , respectively. If,
for ¥ = (z,... ,xfj) € R%, the linear maps in satisfy

x 1 1
(115) BL(L(x),p) < oo for L(z) = (L}!,..., L5, ") and p = (d’ s d) ,
then there are small enough cube-neighborhoods U; C R (1 < i < d) of x} and V, C R? of 2*
(2 <t <d+1) for which (113)) holds.

Remark 13.12. Rephrasing Theorem [13.11] in terms of the original statement, it says that

Conjecture holds foﬂ

Ei:’}/i—(du-xl...,(Sdi'.%'ll,()), 1§’L§d

Yo =T — (z'=41)0), d+1</¢<2d.
m = 2d,

(11
p={yg)
Proof of Theorem [13.11] The argument is just a matter of putting the pieces together. By ({115])
and Theorem [13.10} there are small enough cube-neighborhoods U; C R (1 < i < d) of 2} and

V; CR% of 2 (2 < ¢ < d+ 1) for which (T15) still holdd™ Define

Ql ::U1><...><Ud,
Qr:=V, 2<(<d+1.

Now we apply Theorem to conclude that the collection @ = {Q1,...,Q4+1} can be
decomposed into O(1) weakly transversal collections Q' of d + 1 cubes, each one having a cube

Q) C Q1 as pivot.

38Most of them being very elementary situations, as mentioned in [4].

398ee [10] for a more detailed exposition of this approach.

40Theorem says that the map L — BL(L,p) is locally bounded for a fixed p, and this is enough for our
purposes. On the other hand, it was shown in [3] that the Brascamp-Lieb constant is continuous in L. It was
later shown in [2] that BL(L,p) is in fact locally Hélder continuous in L.

4Observe that we are just translating the domain of the ¥’s back to the origin.

220ur maps L; are sufficiently smooth for the stability theorem to be applied. The entries of the matrices
that represent them are polynomials.
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Figure 5. Unveiling the geometric features of the problem when d = 2. The
cubes we find from Theorem [13.10] are weakly transversal, which gives us access
to our earlier results.

To each such sub-collection we apply the endpoint estimate from Section |10] (all we need to
apply it is weak transversality), which finishes the proof.
O

14. FURTHER REMARKS

Remark 14.1. It was pointed out to us by Jonathan Bennett that the d-dimensional estimates
for tensors are equivalent to certain 1-dimensional mixed norm bounds. We present this
remark in the following proposition:

Proposition 14.2 (Bennett). For all p,q > 1, the estimate

(116) €aglle . S lally
1o d+1

holds for tensors g(x) = gi(x1) - ... ga(zq) if and only if

(117) 1€ fl paaga S IS llp-
27761

holds.

Proof. Assume first that (116]) holds for tensors. Then
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~ 1

d dgq
el = | [ | [ 1676 @10 ] d&]

1
dq

— _/jljl [/ |51f(77j7§2)|qd77j:| d&e

1

dq

- / H / Ealf ® .- ® ). - na)|1d 77 des

—ef®...® P
<lf®...o

S s
which proves (117)). Conversely, assuming that (117)) holds for all f € LP(]0,1]) yields

1€a(g1 ® ... ®ga)|ld = / 1€191(&1, &av)|T - - - - |E19a(&as ) |7dEr - .. - dEap

d
N /H [/ ‘glgj(gj’gdﬂ)qdfj] d&d+1
j=1

d d
< H [/ [/ €19, €J7€d+1)|qd§]:| dfd+1]
—HHglgall di g

Legyabe;

=

Estimates such as ((117) can be verified directly by interpolation. Taking sup in &, gives

(118) 1€ gz Se If 2o,
Conjecture for d = 1 follows from
(119) ||51f|\L§2+§1 Se Ifllzaqo,

for all e > 0. Using mixed-norm Riesz-Thorin interpolation with weights ~ d +1 for and

d+1 for , one obtains ) for p = (d+1) and ¢ 2(d+1) + ¢, which shows by the
previous clalm

The reader will notice that our proof for the case k£ = 1 of Theorem [L.5| has a similar idea in
its core: we interpolate (at the level of the sets X!+la) between two estlmates similar to (118|)
and . On the other hand, we have not found an extension of Bennett’s remark to the case
2 <k <d+1, in which we still need to interpolate locally instead of globally and assume that
only one function has a tensor structure.

Remark 14.3. In [33] the authors obtain the following off-diagonal type bounds:
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Theorem ([33]). ME, 4 satisfies
IME2.a(g1; g2)ll2 < ll91ll2 - lg2ll ass

IME2.algr g2)ll2 S 1l ass - [lgll2-

In general, under the extra hypothesis that either g; or go is a full tensor, one can obtain all
k-linear off-diagonal type bounds like LP x ... x LP* — L? by a straightforward adaptation of
the argument presented in Section [0} We chose not to include them in this manuscript.

Remark 14.4. Under the assumption that g; are full tensors

g9j(@1, ... xa) = gja(x1) - ..~ gja(za), 1<) <k,
the methods of this work allow to prove Conjecture We will not cover the details of this

result here, but the idea is simply to interpolate between the p = 2 result and the case k =1
for tensors.

APPENDIX A. SHARP EXAMPLES

The goal of this first appendix is to discuss the sharpness of Theorems and We
remark that sharp examples already exist in the literature, notably in the context of the bilinear
problem for the sphere in Foschi and Klainerman’s work [14], and in the multilinear case for
surfaces of any signature in Hickman and Iliopoulou’s paper [19]. Our examples, however,
exploit different ideas than those present in [14] and [19] in the sense that they are robust
enough to address weakly transversal configurations of caps and give sharp results in such cases
as well.

The first part of this appendix is about Theorem [I1.2] whereas in the second one we prove
that, to attain the sharp range of Conjecture [I.2]in general, transversality can not be replaced
by the concept of weak transversality that we introduce.

A.1. Range optimality. The main result of this subsection is the following:

2(d+|7][+2)

k@ 18 necessary for Theorem |(11.9 to hold.

Proposition A.1. The condition p >

Our examples are constructed based on one-dimensional considerations. For the benefit of
simplifying the notation, smoothing the exposition to the reader and to establish a clear link
with Conjecture we present them in the |7| = k — 1 case, which is the smallest possible
value for the corresponding |7| of a given collection of transversal cubes (up to decomposing it
into weakly transversal collections, see Claim . It will be clear, however, how to work out
the general case of arbitrary |7|, and we will point that out along the proof of Claim [A.3

Consider the caps that project onto the following transversal domains via x — |z|%:

Ul = [07 1]d7
Uj = (2,372 x [4,5] x [0,1]779F! 2 <j <k

Observe that these caps are transversal as Wel]ﬁ, therefore the following argument for the
case || = k — 1 of Proposition also shows that the range of Conjecture is necessary.

We present the examples separately to distinguish their features. For k = d + 1 we will take
appropriately placed cubes, whereas for 2 < k < d we will take slabs (boxes with edges of two
different scales).

Claim A.2. Let k=d+ 1, § > 0 small and let Ag be given by
Ay =0,
AP =[2,24 672 x [4,4+ 0] x 0,647, 2<j<d+1.

43For general |7| we would have to start with a different collection of cubes with the appropriate total degree
of transversality.
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0 .
Define f3 = ]lA;5_. Then

s,
T 172 .

Therefore, letting 6 — 0 implies p > 2 % is a necessary condition for the (d+1)-linear extension
conjecture to hold for this choice of U;’s and for all f; that are full tensors.

—5(d+1)

Claim A.3. Let2<k<d+1, 6 >0 small and let B;S be given by
BY = (0,521 x [0, 54— k+1,
BY = (2,24 6272 x [4,44 6%] x [0,6%]F77 x [0,8)47F L, 2 <j <k
Define g? = ]lB;?- Then

k
|11 €093
k
IT5=1 19312
2(d+k+1)

Therefore, letting 6 — 0 implies p > B(deh=T) is a necessary condition for the k-linear
extension conjecture to hold for this choice of U;’s and for all g; that are full tensors.

I

H
8 .

Figure 6. Cases k =3 and k = 4 when d = 3

6§(d+k—1)—%(d+k+1).

Before proving the claims, we need the following lemma:s:

Lemma A.4 (Scale-1 phase-space portrait of 62”“2). There exists a sequence of smooth bumps

(¢n)nez such that:
(i) supp(pn) C [n—1,n+1], n € Z,
(it) |tpg)(az)] < Cy uniformly in n € Z and such that
o2z _ Z ATina g, ().
nez

Proof. See [28], Proposition 1.10 on page 23. O

Rescaling with ¢ > 0, the corresponding phase space portrait of e2mitz? g

eZTritJ: _ 27rz(\far Z e47rzn\far )
nezZ
Observe that ¢i(z) = @,(Vtx) is adapted to the Heisenberg box [%, "—\‘}';] x [0,v/1], but
strictly supported on [71 %] This way, we can write
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(120) 2 =N " By ()
nez
where @, ; is adapted to the Heisenberg box [\7, %} x [2nv/t, (2n + 1)V

Proof of Claim[A.2 Motivated by the uncertainty principle, the first step is to analyze the
behavior of the extension operator &y; applied to f;S on a box whose sizes are reciprocal to the

ones of supp( f]‘-s ). More precisely, we will show that |Ey, ( fj‘-S )| = 69 on such boxes.

1
If6<ﬁ,

gUl (f{s)(gl, c )£d7 H |:/ —2TrZ§jIje—27r'Ltarj d.CCj:|

f[ [/ M (Do 4 (24) + q)l,t(xj)]d$j:| ’

since supp(®n¢) N [0,0] = 0 if n € Z\{0,1}. If |§z;] < % (N is a big number to be chosen
later), we then have:
(121)

d
|€U1(fis)(§17'-'7‘5d7 H

I

/ TIGT (Do 4(5) + Do ()] day

19
[@o,¢(w5) + 1 ¢(x))|dr;| — /0 [6_2ﬂ£jxj — 1] - [®o¢(z5) + q’l,t(%’)]‘)

()

)

where N is picked so that [e=2¢%i — 1] is close enough to zero to make

— ‘/05[<1>0¢(xj) + @1 ¢(z;)]dz;

dominate each factor above. Since A; 2 60 (recall that ®g; and ®;, are adapted to Heisenberg
boxes of size \[ tand § < \[) we conclude that if |£;| < § for 1 < j < d and |t| < 5, then

0, (D) (Er, -, €art)] > 6%
If ¢ is a bump supported on [—1, 1], we have just proved that

(122) [0 (F) (€ ) 2 0%05(61) - ds(6a) b2 (8),
where ¢5(€) := ¢(0x). Analogously, if 6 <

Eu (f3) (&1 Ear )

446 ) L d ) )
— |:/ 6271'1&1931627rzt11dx1:| . H |:/ 67271'1&3:] 2mt1:]dx]:|
4 0

f’

j=2
448 d
= [/ o 2mit1z1 (Z D, (1) ) da:1] H [/ o~ 2miEjT; (@0 +(2;) + P14(;)]d; |,
4 neZ j=2
I I

There are at most O(1) integers n such that supp(®,) N [4,4 + 0] # 0, and they cluster
around |4v/t]. Without loss of generality, one can assume that n = 4v/t so that the main
contribution for I; comes from ®, 5, whose Heisenberg box is [4,4 + %] x [8t,8t + v/t]. The

modulation e~2™%i%i shifts this box vertically by —&;, and I is negligible if the boxes [4,4 +



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 61

%] [8t — &, 8t + v/t — &1] and [0, 6] x [0, §] are disjoint in frequency, so we need |¢& — 8t| <

to have a significant contribution to I;. In that case,

446 .
L] > / e P, 1 (11)da| 2 6.
4

The analysis of I for j > 2 is the same as the one for the factors of Ery, (f?). We conclude

that if [&; — 8| < 5, 1] S § for 2 < j < d and [t| < §5, then

‘€U2(f§)(£17 s 7§d7t)‘ > 5d-

As before,

€, (FD) (€1, -+, Eart)] 2 8%05(E1 — 8t) - @5(&2) - . - Ps(Ea) s (2).

The extensions &y, (fj‘s) for 3 < j < d+ 1 are treated in the same way we treated Ey, (f9).
The conclusion is that
(123)

0, (D) (Er, - & t)] 2 0%s(E —At) .. bs(Ej—a — 4t) - P (=1 — 8) - D5 (&) - - .- Do (Ea)bg2 (1),

forall2 <j <d+1.
Let £ = (&1,...,&4). From and . we obtain

(124)

d+1 d

I 160, () (& 1)) 2 o4e+D [%2 (t) H¢5(£z)]
j=1 =1

d
H Gs(E —4t) - ... Ps(Eja — 4t) - b5 (Ej—1 — 8t) - Bs(&5) - - b5 (Ea)psz(t)

Now we analyze the support of the product of the right-hand of (124]). Notice that we have
at least one bump like ¢5(&;) for every 1 < j < d+1, so [§] S l is a necessary condition for
the product not to be zero. On the other hand, the cond1t10ns

[F1BS

&5 — 8t <

| = | =

together imply [t| < %, which is much more restrictive than the [¢| < < that comes from the
support of the bump ¢s2(t). We conclude that the right-hand side of (124]) is supported on the
box

1 1 .
REZ{(§177€th)ERd+17 |t|§g7 ’63‘557 1§j§d}
Finally,
d+1 ) 1
HH Eu f Hp S 5d(d+1) i ‘Ryp

(125) gl ~ o

5%75(#1)

Vv

and the claim follows. O
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Proof of Claim[A.3 The outline of the following argument is the same as the one used in
previous proof. Let & = (&1,...,&). If 6% < \[,

-1r 2 d
gUl gl 5 t _ H /5 27m§J1‘]€ 2mt:}cg dx]] ) H l:/‘S 6_2”51”6_2“w?d$1}
j=1 70 1=k -/0
k-1 52 d E)
- / e 2T Dy 4 (x5) + ‘1>1,t($j)]dxj] 11 [/ e (Z q)n’t(xl)> dsnz],
j=1 L0 1=k /0 nez

)
since supp(®,+) N [0,0%] = 0 if n € Z\{0,1}. If § < ﬁ (which is stronger than the previous

condition 6% < %), we can eliminate most @, in (%) as well:

k—1 52 d A
()& =] [/ e 2T (B 4 (25) + D1 ¢ (5 d%] 11 {/ T (D 4 (1) + ‘I’l,t(iﬁl)]dxz] :
j=1 0 =k

If |¢;zj| < & (for N big enough), we then have:
€0, (91) (€, 1)]

k—1

I

62
/ —2mg T [@o,t(z5) + P14(z;)]dxj]| -
0

/ —2m§ay (Po,t(z1) + @1t (2)]day |,

j=1
> §2(k=1)+(d—k+1)

— 5d+k—1
by the same argument presented when we analyzed (121). We conclude that if |£;] < 6% for
1<j<k—1,1§| <5 for k<I<dand|t| < 5, then"]
€0 (91) (€, 8)] 2 64FF
Using the same notation from the proof of Claim we have just proved that
(126) €0, (90) (6, 1)) 2 0%52(€1) - - - - b2 (Er)Ps (k) - - - - - bs(wa) - Ps2 (),
where ¢5(§) := ¢(dx) and ¢ is a bump supported on [—1, 1]. Analogously, if § < %,

Eu,(93) (& 1)

[ r4+42 - d )
_ / —27rz§1:51 —27rzta:1da7 H / 27rz§]ac]€ 27th:(: ida | - H [/ 6_27ri£lxl€_27ritx12d$l:|
- J
4 =2 1=k -/0

[ 4462
= / e 2mig1z1 Z ‘I)nt -Tl
4

62
] [ e (30 (1) + <I>1,t(xj)]dxj]

L neZ
My M;
d 5
<I1 [/ e~ 2mET (B, (a7) + %,t(ﬂcz)}dxz] .
1=k L0 —
M,

As in the proof of Claim the main contribution for M; comes from ®, /5 ,, whose Heisen-
berg box is [4,4 4+ %] x [8t, 8t ++/t]. The modulation e~27%i%i ghifts this box vertically by —¢1,

and M; is negligible if the boxes [4, 4—|— %] [8t — &1, 8t ++/t — & ] and [0, 6%] x [0, 6%] are disjoint
in frequency, so we need |&; — 8t < 62 to have a significant contribution to M;. In that case,

4For general |7|, we would have |7| conditions of type |¢;] < sz and (d — |7]) like |&] < 5.
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4462 ,
My > / IO, 1 (21)dn | 2 62
4

The analysis of M; for 2 < j < k—1 and of M; for k <1 < d k+1 are the same as the
one for the factors of Ey, (¢9). We conclude that if [£; — 8t < 55, ] S 52 for2 <j<k-—1,

1§ S 5 for k<1< dand|t| < 5, then

|E, (93) (€, )] > a0+,

As before,

10, (99) (6, 1)] 2 6%5(&1 — 8t) - Pg2(E2) ... - Pg2(Eh1) - D5 (k) - - . - Ps(Ea)bs2 (t).

The extensions &y, (g?) for 3 < j < k are treated in the same way. The conclusion is that

(127) €0, (9D)(&: 1) Z 0%s(€1 —4t) - .- P5(&j—2 — 41) - P5(&5—1 — 81) - d5(&5) - - - - Ps(Ea)ps2 (1)

for all 2 < j < k. From and (| we obtain
(128)

k

[T1€0, (90 0

Jj=1

k—1 d
2 GMaHR=D) [w )HW(&)-H@(&)}
= n=~k
k-1
H <H P52 (En — 42) ) “ ps2(§j—1 — 8t) - H‘d)é?(fm (H o5 (&r ) b52(t)

j=2

Notice that we have at least one bump like ¢42(&;) for every 1 < j <k —1 and at least one
o5(&) for k <1<d,so|§]| S 52 and |§] < 3 are necessary conditions for the product not to be
zero. On the other hand, the conditions

1
|§j’f5 55

1
\ﬁj“8t1§55§

together imply |¢| < 52, which does not add any new information compared to the one coming
from the bump ¢s2(¢) (this is the main dlﬂ'erence between the analysis in Claims |A.2] E 2land [A.3 -
We conclude that the right-hand side of (128)) is supported on the box

1 1 . 1
{6 R S5 ISy 15i<k-1 S5 ksi<d).
Finally,
k 5
HH;’:1 ngng o old+k=1)k ‘S:H%
(129) gl ~ 55
S (d+k271)k B (d+l;+1)

and the claim follows.
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A.2. Transversality as a necessary condition in general. A natural question is: given k
cubes Uj, 1 < j < k, is it possible to prove

k k
11 v95 <119l
j=1

p
2(d+k+1)
R(d+k—1)

The answer is no and we will address it in this second part of the first appendix. As a

consequence, we conclude that Theorem is sharp under weak transversality, as observed in
Remark [L.8

We will treat the case k = 3 and d = 2 for simplicity, but a similar construction holds in
general. If three boxes Uy, Uy, U3 C R? are not transversal, there is a line that crosses them.
Assume without loss of generality that Uy = [0,1]?, Us = [2,3]? and Uz = [4, 5]2. We will show
that

for p > and all g; € LQ(Uj) if the Uj’s are assumed to be weakly transversal?

1Ev, (h1) - Euy (h2) - Evs (hs)llp S [[Pall2 - [|h2ll2 - sl
only if p > %. The trilinear extension conjecture for d = 2 states that p > 1 is the sharp range
under the transversality hypothesis.

Claim A.5. Define the sets D? by

s [VZ-0% Va+a? 56
Dl = ) X1=35,5]
2 2 2°2
5 |5vV2—6% 5y2+ 42 56
DQ: ’ X1=5:51>
2 2 2°2
s |9v2—6% 9v2+ 42 56
D = , x |=2.21.
2 2 2°2
Define h? :=1ps. Then
J
3 )
‘Hj_lnghJH 53-8
2 p
Ty 123112
Proof. The proof is analogous to the ones of Claims[A.2] and [A.3] O

Let the rhombuses Dj be given as follows:

(0 - (v

Dy = Conv ((2f 0); (—‘/§ \[),(ﬂ —i) (3v2, 0))

D; = Conv ((0,0) (£ V2 (V2 V2 V2, 0)>

\)

2 2

(2, -

\V)

Ds = Conv ((4\f 0); (@\2/ 92 \f) (5v2, 0)>

Observe that D? - ﬁj for § > 0 small enough. Extend the domain of h? to ﬁj so that it is
0 on ﬁj\D;?.
Let T be a 7 counterclockwise rotation and let

HY(z) := hS o T7 ().

Notice that T takes lN)j to Uj, as shown in the picture below.
Since LP norms are invariant under rotations, we have
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| I 4l
D] H D) H D}

Figure 7. The function h?.

U

AN

AN

U,

AN

Figure 8. H]‘-S is supported on U;.

|- 26,17

3 ~
[T 152
from Claim E* Letting 6 — 0 shows that we need p > %, so the sharp range p > 1 can not
be obtained if the boxes Uy, Us, Ug are not transversal.

9
2

o

4

Remark A.6. As expected, the functions H;s do not have a tensor structure with respect to
the canonical basis. If this was the case, our methods would have allowed us to prove that the
corresponding trilinear extension operator maps L? x L? x L? to L'.

APPENDIX B. TECHNICAL RESULTS

Here we collect a few technical results used throughout the paper.

Theorem B.1. For0 <~y <d, 1 <p<q < o0, (md%:%—d_%, we have
(130) 1 1yl zaway < Apg - [1f Lo way-
Proof. Proposition 7.8 in [27] O

Theorem B.2 (Nonstationary phase). Let a € C§° and

I\ = /R ) 2™ g () de.
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If Vo # 0 on supp(a), then
()] < C(N,a,9)A™"
as X\ — oo, for arbitrary N > 1.

Proof. Lemma 4.14 in [27]. O

Theorem B.3 (Stationary phase). If Vo(&y) = 0 for some & € supp(a), Vo # 0 away from
& and the Hessian of ¢ at the stationary point & is nondegenerate, i.e., det D2¢ (&) # 0, then
forallA>1

I(\)] < C(N,a,$)A" 2.
Proof. Lemma 4.15 in [27]. O
We now restate and prove the main claim from Section

Claim B.4. Given a collection Q = {Q1,...,Qr} of transversal cubes, each Q; € Q can be
partitioned into O(1) many sub-cubes

Q= U Qui

so that all collections O made of picking one sub-cube Qp; per Q;

Q={Q1,...,Qx}, Qi €{Qu}i

are weakly transversal.

Proof. For each 1 < j < d, consider the set A; of endpoints of the intervals 7;(Q1), ..., 7;(Qx).
Using these endpoints to partition this collection of intervals, one can assume that there are
three cases for two cubes ), and Qs:

(1) 7r]‘(Qr) N 7r]‘(Qs) =0.

(2) m(Qr) = m;(Qs).

(3) mj(Qr) N7;(Qs) = {prs}, where p, s is an endpoint of both 7;(Q,) and 7;(Qs).

We can go one step further and assume that all 7;(Q) that intersect a given m;(Q,) (but
distinct from it) do so at the same endpoint. Indeed, if 7;(Qs,) N 7;(Qr) = {p}, 7j(Qsy) N
7j(Qr) = {q} and 7;(Q,) = [p, q], we can simply split 7;(Q,) in half and obtain intervals that
satisfy this property.

Now we choose a point x;, in every interval 7;(Q,):

(1) If mj(Qr) Nmj(Qs) = 0 for all s # r, let z;, be ¢j,, the center of m;(Q).
(2) If 7;(Q,) intersects some 7;(Qs,) at p, any other m;(Qs,) that intersects 7;(Q,) also
does it at p. In this case choose z;, = x; = p for all s such that 7;(Q,) N 7;(Qs) # 0.

Let us now show that, after the reductions above, the transversal set of cubes Q is weakly
transversal. More precisely, for a fixed 1 <[ < k, we will show that there is a set of (k — 1)
canonical directions that together with @); satisfy . Let 7} € Q; for 1 < ¢ <k be given in
coordinates by

Th = (T14, T2, -+ -, Tdg)-

The normal vector to P? at Ez is
v = (=221, —2224, . . ., —2Tqy, 1).

Then the cubes in Q are transversal if and only if the matrix

—2%171 —2.%'1’2 e _2=T1,k

—2.%'271 —2%‘2’2 s —2.%'27]C

_2$d,1 —2xd72 e _233d,k
1 1 C 1

has rank k for all z;, € m;(Q;), 1 <j<d,1<i<kE.
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By Lemma[B.5|(proven at the end of this appendix), there are (k—1) rows R;, = (—2x;, 1, ..., —2%;, &)

of the above matrix, 1 <n < k — 1, such that

Ti 1 F Tip 1

Tiy_y 0 F Tip_y -1

Tiy 1 F Tiy 141

Tif 41 7 Ty k-

Because of the choices we made, x;, ; # ;,,, implies m;, (Q;) N7, (Qr) = (0, which finishes
the proof.
O

Finally, we state and prove the auxiliary linear algebra lemma used in the proof of Claim

B.4
Lemma B.5. Let M be the (d+ 1) x k matriz

a1 ar2 -+ ark
a1 a2 -+ a2k
M=1: : :
ad1 Aad2 - A4k
1 1 - 1
and assume that it has rank k. For each column C; = (a1, ...,aq,,1) there are (k — 1) rows

Ri, = (ai1,---,ai,k), 1 <1< k—1, such that

Qiy,j 7é Qiy 1y

Qig,j 7 Qigly

Qig_q,j # Qig_1,lk—1>

where (11,1, ...,lk—1) is some permutation of (1,2,...,5—1,7+1,... k).

Proof. Let us first consider the case k = d + 1. We have to show that for all columns Cj the
first k — 1 rows satisfy the property of the lemma. Observe that the product

1 | | 1 1

a1 a2 o Ark -1 0 --- 0 0 0

a2,1 az2 o A2k 0 -1 --- 0 0 0

MA = : : : :
ag—-1,1 QAg—12 *°° Gk—1k O 0 . _.1 O O
Lol 0 0 0 -1 0

kxk matrix A
is a rank k£ matrix equal to

(@11 —a12) (@11 —ai3) e (11 —agg—1) (@11 — a1 k) ai

(a2 — azp) (a2 —az3) e (ag1 —agk—1) (a2 —ag k) as

(a31 — asp2) (az1 —as3) ne (a31 — ask—1) (a31 —asp) as
(agp—11 — ar—12) (ag—11—ax—13) - (ag—11— @h—1k—1) (Ak—1,1 — Ak—1k) Gk—11

0 0 0 0 1
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By computing the Laplace expansion with respect to the last row, we conclude that det (M A)
is equal to

(a1,1 - al,z) (a1,1 - CL1,3) T (CL1,1 - al,kfl) (G1,1 - al,k)

(a2,1 - a2,2) (a2,1 - CL2,3) T (CL2,1 - a2,k71) (G2,1 - a2,k)

det | (as1—as2) (azp—as3) -+ (az1 —azk-1) (az1 — ag)
(ag—11 —ar—12) (ak—11 —ax—13) - (ap—11 — Gh—1k—1) (Ak—1,1 — Qh—1k)

The entries of this matrix are

Tij = a1 — a1, 1<, <k—1
The column C] has the property of the lemma if and only if there is some permutation 7 of
(1,2,...,k — 1) such that

Ty x(1) = @11 — A1 g(1)41 7 0
Ton(2) = @21 — A2 r(2)41 7 0

Tho1m(k—1) = Gk—11 — Ch—1,m(k—1)41 7 O-

If this was not the case, for all such permutations 7 of (1,2,...,k — 1) at least one among
Ty r(1)s L2,7(2)s - - - Th—1,x(k—1) Would be zero. Hence
det(MA) = Z sen(m) + Ty (1) - T—1m(k—1) = 0,
TESKk_1

a contradiction. A similar argument shows that any other column also has this property.
The case £k < d + 1 can be reduced to the previous one. Indeed, the rank k condition
guarantees that there is a k x & minor of M that has rank k. There are two possibilities:

(1) There is a k x k minor of rank k that has a row of 1’s.
This is identical to the case k = d + 1 and we conclude that the rows that generate
this minor are the ones that satisfy the property of the lemma.
(2) No k x k minor of rank k has a row of 1’s.
Here the rows of all non-singular minors are among the first d ones of M. Let R;,

1 <1<k, be k rows of M that generate such a minor M:

Qi1 Qi ,2 T Qiy k
Qis,1 Qiy,2 T Qiy k
M = :
Qi1 Qig_1,2 "0 Qg k
aik,l aik,Q e aik,k

Proceed as in the case k = d + 1 and multiply M by the matrix A to obtain

(aiy 1 — aiy 2) (aiy1—ay3) o (@1 — ai k) iy 1

(@iy1 — @iy 2) (aip1 —aip3) o (@i — Gink) iy 1

T (@1 = @iy 2) (Gis1 —aigz) -0 (Gig1 —aigk) i
(aik—lyl - a’ik7172) (aik—lyl - a’ik7173) T (aikq,l - aik—l,k) Agp_q,1

(@i — @iy 2) (@i — ai3) o (@1 — ai k) iy, 1

By computing the Laplace expansion along the last column of M A, we conclude that
at least one (k — 1) x (k — 1) minor obtained from the first (k — 1) columns of M A is
non-singular. We argue again as in the k = d+ 1 case to find the £ — 1 rows that satisfy
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the property of the lemma for the column C. An analogous argument works for any
other column of M, but these k — 1 special rows may vary from column to column.

O

Let us recall some of the terminology from the proof of Theorem in Section A subset
A C Q has the property (P) if

(1) Q1€ A
(2) A is not weakly transversal with pivot Q1.

We say that A C Q is minimal if A" C A has the property (P) if and only if A’ = A. Since
Q itself has the property (P), it must contain a minimal subset of cardinality at least 2.

Claim B.6. Let A = {Q1,Ko,...,K,} be a minimal set of n cubeﬁ. There is a set D of
(d —n+2) canonical directions v for which

(131) (@) N () A0, Y 2<j<n.

Proof of Claim[B.g If n =2, then Q1N Ky # 0 and the claim follows directly. If n > 2, observe
that A" = {Q1, K»,...,K,_1} is weakly transversal with pivot @1, otherwise A would not be
minimal. Hence there are 1 < jy,...,jn—2 < d distinct such that

7 (Q1) Ny (K2) = 0,
(132)

T o (Q1) N s, 5 (Kn—1) = 0.
Let D :={e1,...,eq}\{€j,---,€j,_»}. In what follows, we will show that (131)) holds for this
set of directions. Notice that if
(133) m(Q1) Nm(Ky,) =10

for some [ € D, then A would be weakly transversal with pivot @1 (because together with
verify the definition of weak transversality), which is false by hypothesis. Hence
holds for j = n.

Let us argue by induction that, if holds for 1 <m < n —1 cubes K, Kq,,...,Kq,, |,

then it’s possible to find a new one K, , for which (131)) also holdﬂ This will be achieved by
the following algorithm: consider the set

A" = {Q1, Ky, Kays .., Ko, 1 }-

By the minimality of A, A” is weakly transversal with pivot ()1, hence there are 1 <
T1,...,"m < d distinct such that

Try (Ql) N 7y (Kn) = @,

Mg (Ql) N FTQ(KOQ) = (Z)’
(134)

Frm(Ql) N Wrm(Kam,l) = 0.

Property (P) for A implies r; € {jl,...,jn,g}m Then there is jg, such that r; = jg,,
therefore

(135) g, (Q1) N i, (Kpyy1) = 0,
gy (@)N s, (Kn) = 0.
450bserve that Q@1 is the only “Q” cube in this collection. The others are labeled by Kj.

46We are done if there are m = n—1 for which (131)) holds, therefore we assume the strict inequality m < n—1.
470therwise we face the same problem that appeared in (133]).
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Since Kpg, 1 appears in , it is one among Ko, ..., K,_1, hence Kg 41 # K,. We are
done if Kg, 11 ¢ A”: indeed, if
(136) m(Q1) Nm(Kpg 1) =0
for some [ € D, then
(7, (Q1) Ny, (K2) =0,

Trjﬁlﬂ(Ql) N Mg, —1 (KB1) = @v
m(Q1) Nm(Kp 1) =0,

137
(137) 77]’,81+1(Q1) N 7rj51+1(KB1+2) =0,

Mjr—2 (Ql) N7, o (Kn—l) = (.
Tig, (Q1)N Mg, (Kp) = 0,

and A would be weakly transversal with pivot @1 (by definition again), which contradicts
property (P). This way, we would find a new (not in A”) cube Kpg, 41 for which (131)) also
holds.

On the other hand, if Kg, 1 = Ko, for some K,, € A"\{K,}, then we simply switch the
projections m;, and m,, ., in (132) (they are distinct because jg, = r1 # 74,41) and consider
the conditions

'77-]'1 (Ql) N T, (KQ) = ®7

Wjﬂl—l(Ql) N ﬂ-j/il—1(K51) =0,
7TT(11+1 (Ql) N 71-T¢11+1 (Katn) = (Z)’

138
( ) 7Tjﬁ1+1(Q1) N 7rj31+1(K51+2) = ®7

Mo (Q1) N T,y (Kp—1) =10

T, (Ql) N Mg, (Kn) =0,

where the last condition is taken from (135)). Since jg, # 74,+1, property (P) for A again implies
that 74,41 = jg,. Notice that 82 # 81 because r1 = jg, and ry # rg,4+1. This way, from (132)),

(139) {7%2(@1) N7y, (Kapr1) =0,

g, (Q1) N7, (Ko, ) = 0.
The index jg, is one of the elements in the set {ji,...,Jg,—1,78 41, - -+ Jn—2}, hence Kg, 11

is in the set {Ko,...,Kp,, Kg,42,...,Kn_1}. As before, we are done if Kg,11 ¢ A”. If not,
Kp,11 = Ka,, for some K, € ALK, Ko, } and we switch the projections Tjs, a0d Tpy

in (138)) to find some B3 ¢ {f1, B2} such that
T, (Q1) N7js. (Kpyt1) = 0,
Mg, (Ql) N Mg, (Kan) = 0.

We keep doing that until we find some Kpg,4; ¢ A”. This is guaranteed to happen since there
are n — 1 cubes K, but only m < n — 1 of them in A”. The conclusion is that

m <n —1 cubes Kj satisfy (131) == m + 1 cubes K satisfy (131)),
therefore ([131]) holds for 2 < j < n. O

(140)



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 71

REFERENCES

[1] J. Bennett, Aspects of multilinear Harmonic Analysis related to transversality, preprint,
2014.
[2] J. Bennett, N. Bez, S. Buschenhenke, M. G. Cowling, T. C. Flock, On the nonlinear
Brascamp-Lieb inequality, Duke Math. J., 169 (2020) 3291-3338.
[3] J. Bennett, N. Bez, M. G. Cowling, T. C. Flock, Behaviour of the the Brascamp-Lieb
constant, Bull. Lond. Math. Soc. 49 (2017), 512-518.
[4] J. Bennett, N. Bez, T. C. Flock, S. Lee, Stability of the Brascamp-Lieb constant and appli-
cations, Amer. J. Math. 140 (2018), 543-569.
[5] J. Bennett, A. Carbery, T. Tao, On the multilinear restriction and Kakeya conjectures.
Acta Math., 2006.
[6] J. Bennett, A. Carbery, M. Christ and T. Tao, The Brascamp-Lieb inequalities: finiteness,
structure and extremals, Geom. Funct. Anal. 17 (5) (2008), 1343-1415.
[7] J. Bennett, A. Carbery, M. Christ and T. Tao, Finite bounds for Hélder-Brascamp-Lieb
multilinear inequalities, Math. Res. Lett. 17 (4) (2010), 647-666.
[8] 1. Bejenaru, The almost optimal multilinear restriction estimate for hypersurfaces with
curvature: the case of n — 1 hypersurfaces in R"~1, preprint, 2020.
[9] J. Bourgain, Besicovitch type mazimal operators and applications to Fourier analysis.
Geom. Funct. Anal., 1(2), 1991.
[10] J. Bennett, S. Nakamura, Tomography bounds for the Fourier extension operator and ap-
plications, Math. Ann. 380 (2021), 119-159.
[11] J. Bennett, S. Nakamura, S. Shiraki, Tomographic Fourier extension identities for subman-
ifolds of R™, preprint, 2022.
[12] C. Fefferman, Inequalities for strongly singular convolution operators. Acta Math., 124,
1970.
[13] C. Fefferman, The multiplier problem for the ball. Ann. of Math., 94, 1971, 330-336.
[14] D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equa-
tions, Ann. Sci. E cole Norm. Sup. (4) 33 (2000), no. 2, 211-274. MR 1755116 (2001g:35145).
[15] L. Guth, Restriction estimates using polynomial partitioning I. J. Amer. Math. Soc. 29
(2016), no. 2, 371-413.
[16] L. Guth, Restriction estimates using polynomial partitioning II. Acta Math., 221, 2018.
[17] L. Guth, J. Hickman, and M. Iliopoulou, Sharp estimates for oscillatory integral operators
via polynomial partitioning. Acta Math., to appear, Preprint: arXiv:1710.10349.
[18] L. Hormander, Oscillatory integrals and multipliers on FLP, Ark. Mat. 11 (1973), 1-11.
[19] J. Hickman and M. Iliopoulou, Sharp LP estimates for oscillatory integral operators of
arbitrary signature. Mathematische Zeitschrift, 301(1), 1143-1189, 2022.
[20] J. Hickman and K. Rogers, Improved Fourier restriction in higher dimensions. Camb. J.
Math., 7(3), 2019.
[21] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local exis-
tence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268.
[22] S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in
R3*1 Annals of Mathematics 142 (1995), 39-119.
[23] S. Klainerman and M. Machedon, Estimates for null forms and the spaces Hy 5, Int. Math.
Res. Not. (1996), no. 17, 853-865.
[24] J. Lee, An endpoint estimate of the bilinear paraboloid restriction operator, preprint, 2021.
[25] P. Mattila, Fourier Analysis and Hausdorff Dimension. Cambridge University Press, 2015.
[26] A. Moyua, A. Vargas, L. Vega, Schrodinger mazimal function and restriction properties of
the Fourier transform. International Math. Research Notices, 16, 1996.
[27] C. Muscalu, W. Schlag, Classical and Multilinear Harmonic Analysis I. Cambridge Uni-
versity Press, New York NY 2013.
[28] C. Muscalu, W. Schlag, Classical and Multilinear Harmonic Analysis II. Cambridge Uni-
versity Press, New York NY 2013.
[29] C. Oh, An improved bilinear restriction estimate for paraboloid in R3, preprint, 2021.



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 72

[30] D. Oliveira e Silva, R. Mandel, The Tomas-Stein Inequality under the effect of symmetries,
preprint, 2021.

[31] Y. Ou, H. Wang, A cone restriction estimate using polynomial partitioning, J. Eur. Math.
Soc. 24 (2022), no. 10, pp. 3557-3595.

[32] T. Tao, A. Vargas , A bilinear approach to cone multipliers I: Restriction estimates. Geom.
Funct. Anal., 10, 2000.

[33] T. Tao, A. Vargas, L. Vega, A bilinear approach to the Restriction and Kakeya conjectures.
Journal of the American Mathematical Society, 11(4), 1998.

[34] T. Tao, Recent progress on the Restriction conjecture. Park City proceedings, 2003.

[35] T. Tao, A sharp bilinear restriction estimate on paraboloids. Geom. Funct. Anal., (13),
2003.

[36] T. Tao, Bochner-Riesz conjecture implies the restriction conjecture. Duke Math. J. 96,
363-375.

[37] H. Tanaka, An estimate for the Bochner-Riesz operator on functions of product type in R2.
Tokyo J. Math., 24 (2001), no. 2, 567-578.

[38] C. Thiele, Wave packet analysis. CBMS Regional Conference Series in Mathematics, vol.
105, Published for the Conference Board of the Mathematical Sciences, Washington, DC;
by the American Mathematical Society, Providence, RI, 2006.

[39] P. Tomas, A Restriction theorem for the Fourier transform. Bull. Amer. Math. Soc., (81),
1975.

[40] I. Satoru, Interpolation of operators in Lebesque spaces with mixed norm and its applications
to Fourier analysis. Tohoku Math. J., (2) 38, 1986, no. 3, 469-490.

[41] S. Shao, Sharp linear and bilinear restriction estimates for paraboloids in the cylindrically
symmetric case. Rev. Mat. Iberoam. 25 (2009), no. 3, 1127-1168.

[42] E. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals,
Princeton Material Series 43. Princeton University Press, New Jersey, 1993.

[43] E. Stein, S. Wainger, Problems in harmonic analysis related to curvature. Bull. Amer. Math.
Soc., 84 (6) (1978), 1239-1295.

[44] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of
solutions of wave equations. Duke Math. J. 44 (1977), no. 3, 705-714.

[45] H. Wang, A Restriction estimate in R® using brooms. preprint, 2018.

[46] T. Wolff, A sharp bilinear cone restriction estimate. Annals of Math, 153, 2001.

[47] A. Zygmund, On Fourier coefficients and transforms of functions of two variables.. Studia
Math., 50, 1974.

Camil Muscalu, DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853
E-mail address: camil@math.cornell.edu

Itamar Oliveira, DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853
E-mail address: oliveira.itamar.w@gmail.com



	1. Introduction
	2. Discrete models
	2.1. The linear model (k=1)
	2.2. The multilinear model (2kd+1)

	3. Transversality versus weak transversality
	4. Our approach and its building blocks
	5. Proof of Proposition 4.1 - Strichartz/Tomas-Stein for Ed (k=1, p=2)
	6. Proof of Proposition 4.3 - Conjecture 1.1 for E1 (k=1, d=1, p=4)
	7. Proof of Proposition 4.4 - Conjecture 1.2 for ME2,1 (k=2, d=1)
	8. Case k=1 of Theorem 1.5
	9. Case 2kd+1 of Theorem 1.5
	9.1. Understanding the core ideas in the k=d=2 case
	9.2. The general argument

	10. The endpoint estimate of the case k=d+1 of Theorem 1.5
	11. Improved k-linear bounds for tensors
	12. Beyond the L2-based k-linear theory
	13. Weak transversality, Brascamp-Lieb and an application
	13.1. A link between weak transversality and Brascamp-Lieb inequalities
	13.2. An application to Restriction-Brascamp-Lieb inequalities

	14. Further remarks
	Appendices
	Appendix A. Sharp examples
	A.1. Range optimality
	A.2. Transversality as a necessary condition in general

	Appendix B. Technical results
	References

