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Bio-Tribo-Acoustic Emissions: Condition Monitoring of a Simulated 
Joint Articulation 

K.A. Olorunlambe a,b, D.G. Eckold a, D.E.T. Shepherd b, K.D. Dearn a,* 

a Mechanical Innovation and Tribology Group, Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK 
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A B S T R A C T   

Acoustic emissions have been used to interpret the frictional processes observed in a simulated metal-on-polymer 
joint replacement articulation during in vitro testing. The coefficient of friction profile is predicted from AE 
features using a nonlinear autoregressive neural network with an external input model, and the evolution of 
surface damage is identified using k-means clustering of the distribution of emission types from running-in to 
prolonged sliding states. The predicted coefficient of friction profiles were found to exhibit a similar response to 
the actual coefficient of friction profiles. Clustering showed that a higher percentage of continuous emissions are 
generated during the prolonged sliding stage, indicating sliding friction being the most dominant process during 
that state. The findings of this study provide a significant pathway toward achieving the potential of AE testing as 
a more intuitive and dynamic process of monitoring the tribological conditions of artificial joints and diagnosing 
the pathologies of the natural joints.   

1. Introduction 

Total disc replacement surgeries are usually carried out when joint 
pathologies such as degenerative disc disease become too severe to be 
treated using conventional methods. Tribological interactions are 
fundamental to the operation of these artificial joints, and wear is a 
principal means of failure, as shown in Table 1. The condition of arti
ficial joints is traditionally evaluated using CT (computed tomography) 
scans, X-rays and, in some cases, nuclear scanning tests. These diag
nostic methods are expensive, time-consuming, and harmful to health 
due to frequent radiation exposure [15,16,30,31,33,34]. Another 
concern with these traditional diagnostic methods is that signs of failure 
do not present early enough to prevent pathologies, causing patients to 
experience pain and leading to other medical complications due to the 
migration of wear debris into the bloodstream [1,10,27]. Wear debris 
from a polymer on metal joint replacements has also been shown to 
cause aseptic loosening in artificial joints [17]. Thus, there is a need for a 
simplified, dynamic, and faster way of non-invasively monitoring the 
condition of artificial joints to avoid these problems; acoustic emission 
(AE) testing can fulfil this need. 

Acoustic emission (AE) testing is a non-destructive test (NDT) 
method used in the detection of the onset and progression of mechanical 

flaws [21,41]. It involves using piezoelectric sensors to capture the high- 
frequency acoustic waves produced by materials undergoing damage 
due to mechanical loading. These acquired waves are passed through a 
pre-amplifier for amplification, followed by signal conditioning and 
event detection (Fig. 1). Some of the wear mechanisms AE has been used 
to detect include [41]:  

• in transmission systems - scuffing, pitting fatigue and bearing wear;  
• in machine tool monitoring - flank, abrasive and crater wear. 

AE has proven advantageous for analysing and understanding 
tribological interactions in mechanical systems. It has been used to 
distinguish between adhesive and abrasive wear modes in polymer- 
metal pairs, to distinguish between running-in, steady-state and rapid 
wear stages in metal-metal pairs, and to investigate the influence of 
various polymeric gear materials on the sound frequency spectrum 
[6,22,24]. Studies have also shown that a correlation can be found be
tween AE and wear rate, suggesting the possibility of being able to infer 
mass loss from AE parameters such as signal energy [7,8,20]. 

In orthopaedic applications, the AE test method has been used to 
study the tribology of human joints and monitor artificial joints' con
ditions. AE has been used to predict bone fracture [2,48] and to study 
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the in vivo friction and wear of the knee joints [19,48]. Shark et al. 
[49,50] used a bespoke joint acoustic analysis system (JAAS) to identify 
the differences between an osteoarthritic knee (more AE events and 
higher average signal level) and a healthy knee. Advanced statistical 
analysis by the authors and a study by Khan and Yoho [29] showed that 
the AE signals could discriminate between age and progression of 
osteoarthritis. Rowland et al. showed that AE signals correlate well with 
out-of-line wear (evaluated via post-test surface topographies and 
volumetric changes) of metal-on-metal hip implants [47]. This recent 
progress and development of the AE technology suggest a potential tool 
for condition monitoring of both natural and artificial joints to diagnose 
joint pathologies like osteoarthritis and artificial joint failure. 

The relationship between AE signals and the wear of artificial joints 
needs to be established to assess the potential of AE as a tool for con
dition monitoring of artificial joints. The difficulty with establishing this 
relationship is that wear of artificial joints is traditionally diagnosed 
during post retrieval analyses of failed implants. Since the causes of 
failure of implants can be related to wear and wear cannot happen 
without friction occurring between the articulating surfaces [36,51], an 
alternative is to establish a relationship between AE features and coef
ficient of friction to interpret the wear behaviour. The study by Patzer 
and Woydt [43] has shown that combining AE with the coefficient of 
friction tests can help improve the interpretation of wear behaviour. 

The work presented in this paper is a proof-of-concept study iden
tifying critical AE features to predict the coefficient of friction profile of 
simulated articulating joint replacement surfaces as a first step toward 
achieving the potential of AE as a tool for diagnosing orthopaedic pa
thologies. A bio-tribo-acoustic test methodology is used to acquire 
tribological and acoustic emission data synchronously. Hua, Fan and Jin 
used this method to correlate friction and sound pressure coefficient 

during bio-tribo-acoustic testing of ceramic orthopaedic biomaterials 
[23]. 

The novelty of this study lies in the use of time-dependent AE fea
tures to predict the coefficient of friction profile during bio-tribo- 
acoustic testing. The distribution of the different emission types from 
running-in to prolonged sliding stages is also investigated to understand 
the evolution of surface degradation. There is also a lack of adequate 
research on the potential of non-invasively monitoring the condition of 
artificial joints via an understanding of the tribological characteristics of 
the articulating joint replacement surface, highlighting the importance 
of this study. 

Predicting the evolution of the coefficient of friction profile and 
monitoring surface damage of a simulated joint articulation is a signif
icant first step toward applying the AE test method as a more dynamic 
and intuitive tool for monitoring the condition of orthopaedic implants. 

2. Materials and Methods 

2.1. Materials and Bio-Tribo-Acoustic Test Setup 

A tribo-acoustic test system consisting of a tribometer and an AE 

Table 1 
Total disc replacement failure mode, and their corresponding causes. Collated 
from [45].  

Failure Mode Cause of Failure 

Degradation Wear and corrosion 
Inflammation Presence of large UHMWPE wear particles 
Surface wear and damage Adhesive and abrasive wear 
Damaged UHMWPE core Plastic deformation and fracture of the rim 
Corrosion Fretting wear 
Osteolysis Micro-motion of implant and presence of wear debris  

Fig. 1. Illustration of the AE test system showing progression of signal from generation to acquisition and storage. A sample signal is also shown with the basic 
parameters labelled. 

Fig. 2. Tribo-acoustic test set up comprising of a high frequency reciprocating 
machine and AE measurement system. The AE sensor is placed directly on the 
polymer specimen to reduce the effect of attenuation. 
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acquisition system was designed for testing (Fig. 2). A series of tribo
logical tests were performed to represent a metal-on-polymer joint 
replacement articulation surface. Reciprocating sliding tests were per
formed on the TE77 High-Frequency Reciprocating Machine (Phoenix 
Tribology, Newbury, UK) using a disc-on-plate configuration. Ultra- 
high-molecular-weight polyethylene (UHMWPE) discs (supplied by 
Penta Precision, Portsmouth, UK) were used for the reciprocating upper 
specimen and medical-grade cobalt chromium molybdenum alloy 
(CoCrMo) (machined to a surface finish of less than 0.02 μm Ra) on the 
lower fixed specimen. Poly-ether-ether-ketone (PEEK, supplied by Penta 
Precision, Portsmouth, UK) was chosen as an alternative material for 
comparison purposes. PEEK has been historically used in spinal cages 
and has shown promise for use in cervical TDR devices and hip implants 
making it a good choice of biomaterial as a comparator [35,39,54]. 

The PEEK and UHMWPE discs (diameter of 10 mm and 4 mm in 
thickness) were machined to a surface finish of 1.16 μm Ra and 3.25 μm 
Ra (measured with the Alicona InfiniteFocusG5 Optical 3D Measurement 
System from Alicona Imaging Gmbh), respectively. Since test parame
ters were derived using a ball and socket Charite lumbar TDR implant as 
the exemplar joint (see Section 2.2), a sphere-on-plane configuration 
was initially considered, but calculations showed that a load of about 1 
N would be required on the TE77 to simulate a contact pressure that is 
close to that achieved in a ball-on-socket Charite lumbar TDR implant. 
Such a low load could make for unstable friction calculation, and, a 
minimum sphere diameter of 20 mm would be required, which is more 
than the 6 mm & 10 mm sphere diameters for the specimens used with 
the TE77. Hence, a disc-on-plate configuration was chosen as an alter
native. The calculations can be found in Appendix A. 

Polymeric test specimens were cleaned before and after each test 
following the method described in ASTM F732–17 [4]. The metallic 
specimens were washed in ethanol before and after each test. Tests were 
carried out at two frequencies (2 Hz and 4 Hz) for comparison purposes. 
There were three runs for each test condition making 12 tests in total. 
For each of the 12 tests, new test specimens were used. 

Tests were conducted with Oxoid quarter strength Ringer's solution 
(supplied by a member of ThermoFisher Scientific, Oxoid Limited, 
Hampshire, UK) serving as the lubricating medium at a temperature of 
37 ± 2 ◦C. The solution was prepared by dissolving one tablet in 500 ml 
distilled water and sterilised in an autoclave at 121 ◦C for 15 min. The 
prepared Ringer's solution was drip-fed onto the contacting surface at 
0.1 ml per minute. The Ringer's solution tablet was made from sodium 
chloride, potassium chloride, calcium chloride 6H2O and sodium bi
carbonate 0.05. Temperature has also been known affect AE signals [9], 
but these effects are ignored since the temperature for all tests was kept 
constant. 

2.2. Test Parameters 

Hertzian contact mechanics were employed to calculate an equiva
lent load to be applied on the TE77 rig [25]. The maximum contact 
pressure is calculated based on loading and displacement conditions 
stated in the British Standard for wear of total intervertebral spinal disc 
prostheses [11], using the geometry of a ball and socket Charite lumbar 
TDR device (see Fig. B.15 in the appendix). The load conditions can be 
found in Table 2. 

The maximum sliding velocity a lumbar spinal implant is subjected 

to during long-term wear testing on a spine simulator was calculated 
using simple harmonic motion equations and motion values from the BS 
ISO 18192-1 standard [11]. An equivalent stroke length for the TE77 
was 1.0996 mm using the maximum sliding velocity (6.909 mms− 1) and 
a frequency of 2 Hz. With such a low stroke length, only fretting wear 
would occur, and there is an added risk of fluid entrapment due to the 
large diameter of the disc (10 mm). A stroke of 12.5 mm was chosen 
instead to obtain an average sliding velocity of 50 mm/s, which is the 
recommended value for a linear reciprocating wear motion in the 
standard for wear testing of polymeric materials used in total joint 
prostheses (see Annex A1 of [4]). This stroke resulted in a total sliding 
distance of 360 m at 0.05 ms − 1. Tests with increased frequency (4 Hz) 
were conducted to determine how AE features differ during severe 
sliding resulting in an average sliding velocity of 100 mms − 1 with a 
total sliding distance of 720 m at 0.1 ms − 1. A summary of all test 
parameters can be found in Table 3. 

2.3. AE Signal Acquisition and Analysis 

An AE system consisting of a sensor, preamplifier and a PCI-2 
Analogue to Digital converter from Mistras Group Inc. (Cambridge, 
UK) was used to acquire AE signals. A miniature Nano30 sensor (reso
nant frequency 300 kHz; operating range 125–750 kHz) was placed 
directly on the polymeric disc (Fig. 2) to detect analogue AE signals 
whilst reducing attenuation. These were then passed through the pre
amplifier (60 dB gain and frequency range of 10–900 kHz) before being 
converted into a digital signal by the AEWin PCI-2 card at a sampling 
frequency of 2 MHz. Ultrasonic gel acted as a coupling gel to ensure 
continuous contact between the polymer surface and the AE sensor. 

AE signals from tests with zero load and no contact between speci
mens for three different threshold values (10, 25 and 35 dB) were ana
lysed to assess the effect of background noise. The Fast Fourier 
Transform, FFT, plots (Fig. 3) show that the maximum FFT magnitude 
reached is lowest for tests with a 35 dB threshold setting. Hence, 35 dB 
was set as the amplitude threshold value for AE acquisition. 

AE acquisitions were post-processed using the NOESIS Advanced 
Acoustic Emission Analysis Software (Mistras Group Inc. Cambridge, 
UK) and MATLAB for feature extraction and further statistical analysis. 
Feature extraction setting was kept similar to the acquisition set up apart 
from the threshold, which was increased to 40 dB as initial observation 
of the acquired signals (see Fig. B.16) shows that some systemic noise 
was still present in the data. 

2.4. Time Series Neural Network Analysis 

Artificial neural networks (ANN) are computational architectures 
modelled after the brain's architecture [14]. To further explore the 
relationship between time-dependent AE features and the coefficient of 
friction (CoF) profile, a nonlinear autoregressive neural network with 
external inputs (NARX) was deployed to predict CoF. NARX is a dynamic 

Table 2 
Equivalent TE77 load calculated based on loading conditions in BS ISO 18192-1 
[11]. Average load was chosen as test load (shown here in red font).  

Load Maximum Contact 
Pressure 

Equivalent TE77 
Load 

600 N 6.5 MPa 510 N 
2000 N 9.7 MPa 760 N 
1300 N (average load) 8.4 MPa 660 N  

Table 3 
Summary of Test Parameters.  

Parameter Value (s) 

Load 660 N 
Frequency 2 Hz, 4 Hz 
Stroke Length 12.5 mm 
Sliding Velocity 50 mm/s, 100 mm/s 
Test Duration 2 h 
Preamplifier gain 60 dB 
Threshold 35 dB 
Sampling rate 2 MHz 
Peak definition time (PDT) 400 μs 
Hit definition time (HDT) 400 μs 
Hit lockout time (HLT) 1000 μs 
Maximum hit duration 1000 ms 
Band pass filter 100–400 kHz  
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form of ANNs based on the linear ARX, commonly used in time series 
analysis [13,40,42]. It effectively solves nonlinear time series problems 
[42], making it suitable for this study. The NARX model equation is 
shown in Eq. (1), where y(t), the predicted value of the model, is pre
dicted using its' previous values, y(t-1) to y(t-ny), and the corresponding 
previous values of an external input signal, x(t-1) to x(t-nx). There are 
two forms of NARX architecture: series-parallel and parallel architecture 
[42]. The series-parallel NARX architecture was chosen for this study 
because the availability of the previous values of y(t) makes the network 
more accurate. The Neural Net Time Series App in MATLAB version 
R2021a was used for training and testing the NARX models. 

NARX model equation 

y(t) = f
(
y(t − 1) , y(t − 2) ,…, y

(
t − ny

)
,x(t − 1) ,x(t − 2) ,…, x(t − nx)

)
(1) 

Herein, y(t) is the coefficient of friction recorded throughout the test 
and x(t) is a 3-element vector consisting of the three time-dependent AE 
features – absolute energy, average signal level, and AE root mean 
square value. The Neural Net Time Series App in MATLAB version 
R2021a was used for training and testing the NARX models. An illus
tration of the NARX network is shown in Fig. 4. There will be differences 
in how the two polymeric materials behave when sliding against the 
CoCrMo plate due to different material properties; hence, two NARX 
models were built - one for PEEK and the other for UHMWPE. Both 
models were trained using the Levenberg-Marquardt training function 
with ten neurons in the hidden layer. Training data were randomly 
divided into three splits- training data (70%), validation data (15%) and 
test data (15%). Performance was evaluated using mean squared error 
(MSE) and R2 values. A low MSE and high R2 value indicate good 
training performance. 

2.5. Clustering of AE Data 

Clustering is an unsupervised pattern recognition technique used to 
group data sets into two or more clusters based on similarities and dif
ferences noticed between the data points. This study employed the k- 
means clustering method. This method clusters data by minimising the 
sum of squared Euclidean distances from all cluster vectors to its centre 
[38]. In order to understand the distribution of AE signals across the two 
test stages, acquired hits were clustered and then categorised into one of 
the three emission types – burst (hits with high amplitude and short 
duration), continuous (hits with low amplitude and long duration) and 
mixed mode (mixture of burst and continuous). Since the three emission 
types can be distinguished using duration and amplitude values [41], 
they were the AE features fed into the clustering algorithm, and the 
initial number of k clusters was set to three emission types. The 
silhouette index (S.I.) plot was then used to determine if it was the 
optimal number of clusters. 

2.6. Wear Scar Surface Analysis 

Images of the worn surfaces of the polymeric specimens were ob
tained using an InfiniteFocusG5 Optical 3D Measurement System (sup
plied by Alicona Imaging Gmbh, Austria). The wear scar images of the 
polymeric specimens were taken at a magnification of 20× with the 
polariser turned off to improve the quality of the image. The pseudo 
colour view was selected so that regions of high height (z value) could be 
easily identified, enabling the identification of essential wear induced 
surface features that were later related to AE features. 

3. Results and Discussion 

3.1. Using AE to Predict the Coefficient of Friction Profile 

The three time-dependent AE features: root mean square value 

Fig. 3. Fast Fourier Transform plots of waveforms at three different threshold 
values. The 35 dB FFT plot has the least peak magnitude. 

Fig. 4. NARX Neural Network. Obtained from MATLAB.  
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(RMS), average signal level (ASL) and absolute energy (AbsE), all exhibit 
similar transient responses to that of the coefficient of friction (Fig. 5 & 
Fig. 6) for both polymeric specimens at the two test frequencies. These 
trends suggest a strong potential for using time-dependent AE features to 
predict CoF. Other studies investigating the potential of AE as a tool for 
predicting tribocorrosion processes in dental implants and for the early 
detection of failure modes in total hip replacements also found that the 
coefficient of friction and absolute energy of the AE signal exhibits 
similar transient responses [5,30]. The predicted coefficient of friction 
can also be used to infer the wear behaviour of test specimens since 
previous studies have shown that the coefficient of friction of PEEK and 
UHMWPE can be directly related to wear rate [26,44]. 

The similar transient responses of all three time-dependent AE fea
tures to the coefficient of friction profile for both PEEK and UHMWPE 
(Fig. 5 & Fig. 6) make them suitable as the external input for the NARX 
neural network model. The training performance and training response 
is shown in Fig. 7 and Fig. 8. 

Table 4 shows the mean square error (MSE) and R2 values obtained 
after training both models. Both models have R2 values greater than 
90%, with PEEK having a slightly higher value than the UHMWPE 
model, implying that almost all variability is explained by both models 
indicating a good predictive capability. The trained network is then 
tested using data from the repeat bio-tribo-acoustic tests in open-loop 
feedback, and the results are presented in Table 5 with the training 
performance curves in Fig. 7: NARX Net Training Performance for PEEK 
(left) and UHMWPE (right)Fig. 7 and the response curves shown in 
Fig. 8. The test response curves are presented in Figure 9Figure 10. 

The shape of the predicted CoF curve displays similar characteristics 

to the true curve for all tests (see Fig. 9 and Fig. 10), and the difference 
between predicted and actual values is low, as evidenced by the low MSE 
values (see Table 5). During prediction, it is assumed that the relation
ship between acquired AE data is uniform across all tests for each 
polymer at both test frequencies. Uniformity is not always guaranteed, 
as repeatability, however, has been a limitation of AE testing [21]. PEEK 
and UHMWPE have different physical and acoustic properties, such as 
young's modulus and attenuation coefficients affecting the characteris
tics of AE signals acquired from both materials. The effect of these 
different material properties is explained further in Section 3.4. The 
strain waves generated in the polymer (due to loading) would differ for 
each test, causing acquired AE data to have different characteristics, 
hence the difference between predicted and actual CoF. NARX neural 
net test result for UHMWPE at 2 Hz exhibited the smallest R2 value 
(Table 5), and is reflected in Fig. 10, where the UHMWPE 2 Hz test curve 
has the most error between predicted and actual CoF values. There is a 
likelihood that the effect of the material and acoustic properties, in 
addition to the repeatability issues of AE testing, is more significant in 
the UHMWPE tests hence the low R2 values obtained compared to the 
PEEK tests. Despite these limitations, there is still a close similarity be
tween the predicted and actual CoF response curves (in addition to the 
R2 value of about 75% obtained for UHMWPE 4 Hz test predictions), 
thereby supporting the hypothesis that time-dependent AE features 
predict the coefficient of friction profile of a metal-on-polymer joint 
articulation surface during in vitro testing. This result has promising 
implications for the potential use of AE testing to evaluate the frictional 
(and, by extension, wear) behaviour of an artificial joint bearing surface 
in vivo when it will be impossible to carry out friction and wear tests. 

Fig. 5. RMS (blue line) & CoF (black line) plots for tests at 2 Hz and 4 Hz frequencies. Red dash line indicates transition from running-in (stage I, after lowest CoF is 
reached) to prolonged sliding. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2. AE Parameters at Different Test Stages 

The bio-tribo-acoustic tests can be split into two stages, as shown in 
Fig. 5. At the onset of sliding, CoF and RMS values are seen first to reach 
an initial maximum followed by a minimum. This initial increase is due 
to the collision of surface asperities at the onset of sliding, also known as 
the running-in stage [7]. The source of AE signals during running-in is 
the energy released during the initial collision and subsequent fracture 
of asperities, and the material deformation and crack formation that 
occurs within the contact region [6]. Stage 2 is where prolonged sliding 

occurs, as observed by the continued variation in CoF and RMS values. 
These variations are less severe than during running-in, indicating a 
slight change in friction over a significant period. Continued plastic 
deformation and crack propagation as sliding progresses is the pre
dominant source of AE at this stage. There is also the ploughing action of 
deformed asperities (for the UHMWPE specimens) and the presence of 
wear particles entrapped within the contacting surfaces (for the PEEK 
specimens) [24], hence the variation in underlying tribological pro
cesses and the recorded CoF and RMS values. 

K-means clustering was used to understand better the distribution of 

Fig. 6. Plots of average signal level (ASL) and absolute energy (AbsE) in relation to coefficient of friction (CoF).  

Fig. 7. NARX Net Training Performance for PEEK (left) and UHMWPE (right).  
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AE signals across the two test stages and to cluster and categorise AE 
signals into one of the three emission types. The silhouette index plots 
affirmed the choice of three clusters (Fig. 11), where most of the hits in 
all three clusters had silhouette values greater than 70%, proving that 
they belong to those clusters. It was assumed that the misclassified hits 

(hits with negative silhouette values) do not significantly affect the 
clustering results due to their small number. Cluster assignments for 
both polymeric materials at frequencies 2 Hz and 4 Hz are shown using 
the duration vs amplitude plots in Fig. 12. After post-processing of AE 
signals, the UHMWPE 2 Hz tests had more minor hits than the other tests 

Fig. 8. NARX Net Training Response for PEEK (top) and UHMWPE (bottom).  
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hence why their clusters are not as densely packed as the other tests. 
Each cluster has similar properties for both materials at the two test 

frequencies. Based on observation of the cluster properties in conjunc
tion with the features of the three emission types, the clusters are 
labelled as follows:  

• Burst Emission – Clusters with high amplitude and short duration 
hits. These are in cluster 3 for the PEEK 2 Hz tests, cluster 2 for the 

PEEK 4 Hz tests, cluster 2 for the UHMWPE 2 Hz tests and cluster 1 
for the UHMWPE 4 Hz tests. 

• Continuous Emission – Clusters with low amplitude and long dura
tion hits. These correspond to cluster 2 in PEEK 2 Hz tests and cluster 
3 in PEEK 4 Hz, UHMWPE 2 Hz & UHMWPE 4 Hz tests.  

• Mixed Emission – Clusters with mid-range amplitude and short to 
medium duration hits. These correspond to cluster 1 in PEEK 2 Hz, 
PEEK 4 Hz & UHMWPE 2 Hz tests and cluster 2 in UHMWPE 4 Hz 
tests. 

The example waveform of each emission type is presented in 
Fig. B.18. 

In addition to duration and amplitude, the peak frequency values 
exhibit significant differences for each emission type, as shown in Ta
bles 6, 7, 8 and 9, where the mean value and 95% confidence interval (C. 
I.) of the three AE features are presented. 

Fig. 13 shows the distribution of AE signal types across the two test 
stages for PEEK and UHMWPE at both test frequencies. All emission 
types are present in both test stages but different proportions. Most of 
the burst emissions are present in stage I (i.e., running-in) of the PEEK 2 
Hz tests (see Fig. 12a), whilst a higher percentage of the continuous 
emissions are present in stage II (i.e., prolonged sliding) for all tests. 
Burst emissions are generated due to damage formation, such as asperity 
fractures [3,53]. Since micro-crack formations characterise the running- 
in stage due to contact and fracture of asperities at the onset of sliding, 
which would cause an immediate release of high strain energy, it is no 
surprise that a higher percentage of the burst emissions are present 

Table 4 
NARX Neural Network Training Result Summary.   

PEEK UHMWPE 

MSE 7.78 × 10− 8 7.30 × 10− 8 

R2 value 0.9995 0.9858  

Table 5 
A summary of CoF prediction results with test data.   

PEEK UHMWPE  

2 Hz 4 Hz 2 Hz 4 Hz 

MSE 6.78 ×
10− 5 

6.39 × 10 
− 7 

0.0011 1.08 ×
10− 6 

Regression, R 0.9718 0.9979 0.5976 0.8691 
Mean CoF (Predicted) 
± Standard Deviation 

0.1079 ±
0.0150 

0.0510 ±
0.0088 

0.0251 ±
0.0062 

0.0190 ±
0.0017 

Mean CoF (Actual) ±
Standard Deviation 

0.1128 ±
0.0202 

0.0513 ±
0.0093 

0.0436 ±
0.0312 

0.0187 ±
0.0020  

Fig. 9. Test Response for PEEK Tests at 2 Hz (top) and 4 Hz (bottom).  
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during this stage of the PEEK 2 Hz tests. The force required to separate 
adhered particles or junctions as sliding progresses is another source of 
burst emissions during running-in. 

Unlike the PEEK 2 Hz tests, a higher percentage of burst emissions 
were generated during the prolonged sliding stage, not the running-in 
stage as expected. These signals are due to ploughing causing either 
deformed asperities during UHMWPE/CoCrMo tests [32] or the gener
ation of wear debris during PEEK/CoCrMo tests [52]. Both wear pro
cesses cause the release of sudden, instantaneous strain energy, thereby 

generating burst emissions. The definition of tribological processes 
softens when mixed emissions are measured, where both burst and 
continuous emissions cannot always be isolated. The most common is for 
them to coincide, thereby generating mixed emissions. 

The commonality between all tests is the higher percentage of the 
continuous emissions present in the prolonged sliding stage. Continuous 
emissions are generated when multiple signals overlap, making them 
indistinguishable, and the envelope of the signal amplitudes becomes 
constant [3,53]. These emissions are predominantly steady friction and 

Fig. 10. Test Response Curves for UHMWPE Tests at 2 Hz (top) and 4 Hz (bottom).  

Fig. 11. Silhouette plot showing silhouette values of hits in each cluster.  
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Fig. 12. Cluster Assignments.  

Table 6 
Mean and 95% confidence intervals (C.I.) of AE features in each cluster for PEEK 
at 2 Hz (Fig. 12a).  

AE Feature  Burst 
(Cluster 
3)  

Mixed 
(Cluster 
1) 

Continuous (Cluster 
2)  

Mean C.I. Mean C.I. Mean C.I. 

Duration, μs 208.73 187.92, 
231.52 

112.10 108.24, 
115.27 

901.20 896.32, 
905.91 

Amplitude, 
dB 

48.22 48.05, 
48.50 

41.06 41.04, 
41.08 

43.11 43.09, 
43.13 

Peak Fre- 
quency, 
kHz 

260.31 258.05, 
262.21 

222.82 221.71, 
223.88 

218.96 217.98, 
219.89  

Table 7 
Mean and 95% confidence intervals (C.I.) of AE features in each cluster for PEEK 
at 4 Hz (Fig. 12b).  

AE Feature  Burst 
(Cluster 
2)  

Mixed 
(Cluster 
1) 

Continuous (Cluster 
3)  

Mean C.I. Mean C.I. Mean C.I. 

Duration, μs 679.61 676.57, 
682.22 

100.99 100.20, 
101.76 

1134.9 1132.37, 
1137.16 

Amplitude, 
dB 

67.83 67.73, 
67.92 

44.87 44.85, 
44.89 

45.69 45.66, 
45.72 

Peak Fre- 
quency, 
kHz 

238.58 238.14, 
239.00 

246.28 246.15, 
246.40 

240.23 240.00, 
240.46  

Table 8 
Mean and 95% confidence intervals (C.I.) of AE features in each cluster for 
UHMWPE at 2 Hz (Fig. 12c).  

AE Feature  Burst 
(Cluster 
2)  

Mixed 
(Cluster 
1) 

Continuous (Cluster 
3)  

Mean C.I. Mean C.I. Mean C.I. 

Duration, μs 50.78 48.71, 
52.91 

3.88 3.62, 
4.18 

282.47 263.05, 
306.03 

Amplitude, 
dB 

45.84 45.71, 
46.00 

41.15 41.11, 
41.20 

43.55 42.87, 
44.51 

Peak Fre- 
quency, 
kHz 

231.45 230.14, 
232.59 

210.96 209.53, 
212.56 

218.99 209.02, 
229.22  

Table 9 
Mean and 95% confidence intervals (C.I.) of AE features in each cluster for 
UHMWPE at 4 Hz (Fig. 12d).  

AE Feature  Burst 
(Cluster 
1)  

Mixed 
(Cluster 
2) 

Continuous (Cluster 
3)  

Mean C.I. Mean C.I. Mean C.I. 

Duration, μs 154.68 151.66, 
157.79 

42.94 42.33, 
43.63 

503.98 500.81, 
506.92 

Amplitude, 
dB 

51.24 51.15, 
51.33 

42.63 42.61, 
42.65 

46.04 45.99, 
46.09 

Peak Fre- 
quency, 
kHz 

219.34 218.69, 
220.03 

214.49 214.04, 
214.89 

229.07 228.79, 
229.32  
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plastic deformation of surface asperities, mainly during prolonged 
sliding. 

The two test stages can be related to the everyday motion of the 
natural and artificial joints, with the running-in stage representative of 
the static friction expected at the start of a movement (e.g., starting to 
stand), during which a more significant amount of force would be 
exerted whilst the prolonged sliding stage is representative of the period 
of the actual motion (e.g., walking). 

The above findings suggest that frictional events and plastic defor
mation that generates continuous emissions can be vital for monitoring 
the tribological behaviour of two contacting surfaces during sliding. The 
distribution of continuous emissions identifies test stages and, by 
extension, the most dominant surface damage occurring. 

3.3. AE and Wear 

The wear mechanism experienced by the test specimens is predom
inantly adhesive with a polymer sliding against a smooth metal surface 
[6], confirmed by wear scar imaging (see Fig. 14), whereby the peak 
regions (regions with high z value), presenting in the centre of the 
contact zone, indicate where adhesion has taken place. Studies have 
shown that the frequency of AE signals can also be used to infer wear 
behaviour [18]. It has been reported that the AE frequency spectra due 
to sliding friction have a frequency band of 50 to 250 kHz [18], and the 
majority of hits from these tests had peak frequencies in the range of 150 
to 275 kHz (Fig. 15) proving that sliding friction is the most dominant 
source of detected AE hits. This effect is further evidenced by the fact 
that continuous emission hits, known to be primarily due to sliding 
friction, have average peak frequencies in the range of 220 to 240 kHz 
(see Table 6 to Table 9). 

3.4. Effect of Differing Material Properties 

It was observed that the PEEK tests produced more AE hits with 
higher intensities than the UHMWPE tests, which can be attributed to 
their different mechanical properties, which govern their sliding char
acteristics. PEEK has a higher young's modulus and ultimate tensile 
strength than UHMWPE, making it more resistant to deflection and 
plastic deformation. The same load would require more force to break 
PEEK asperities than those on the UHMWPE surface, generating more 
strain energy at the contact zone and producing AE hits with a higher 
intensity and more hits overall. These trends are in line with the study by 
Belyi et al. [6] where it was found that AE intensity is higher for poly
mers with a higher Young's modulus. 

Other factors that could explain the differences are the attenuation 
coefficient and speed of sound in both materials. Although the attenu
ation coefficient of PEEK (0.38 dB/mm) is higher than that of UHMWPE 
(0.24 dB/mm), sound moves faster in PEEK (2555 m/s) than in 
UHMWPE (1950 m/s) [12]. The low speed of sound coupled with the 
higher deformability of UHMWPE could lead to more loss of signal levels 
as it travels from the source to the sensor, which explains why AE signals 
from UHMWPE have less intensity than AE signals from PEEK. 

It is worth noting that despite the difference in intensity levels, AE 
signals from both materials behave similarly, showing that differing 
material properties only affect the intensity of the signal. AE signals can 
infer bio-tribological characteristics irrespective of the material type. 

3.5. Clinical Usability 

Further research is currently being carried out to fully realise the 
potential of AE as a biotribological diagnostic tool. One immediate 
concern for using AE in vivo is the possible attenuation of signals due to 

Fig. 13. Distribution of AE signals across test stages.  
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soft tissue around the joints. Khan-Edmundson et al. investigated this 
and found that the maximum frequency at the skin surface is approxi
mately 20 kHz [28]. Using a similar approach to study the attenuation 
characteristics of total disc replacement devices can be helpful in the 
interpretation of in vivo test results. Rodgers et al. also compared in vivo 
and in vitro testing of total hip arthroplasty implants and found that 
although tissue attenuation caused a reduction in the magnitude of the 
signal for the in vivo tests, the characteristic frequencies were similar in 
both cases [46], highlighting the influence of attenuation is at a 
minimum. 

Although tests reported in this study are based on TDR devices, with 
some modifications, the technique could be applied to other artificial 
joints, such as hip and knee joint replacements, which is an exciting 
development for the monitoring of artificial joints. 

3.6. Limitations of the Study 

These results suggest an enormous potential for AE as a tool for 
monitoring artificial joint tribological behaviour. Still, it isn't without its' 
limitations. Further development work should now seek to better 
replicate the complex kinematics of a range of joint prostheses - either 
with bench test geometries closer to the devices or with actual implants. 
Exploration of the effects of wear throughout the device's lifetime would 

also be a further step toward a condition monitoring system. Further 
development of machine learning techniques and high-order analysis to 
observe the relationship between AE features and simulated damage 
modes may reveal additional insights. Ultimately, the method will 
require a transition from in-vitro to in-vivo and, in doing so, refinement of 
signal acquisition techniques, data processing and analysis. 

4. Conclusions 

In being able to successfully predict and interpret frictional processes 
in a representative metal-on-polymer articulating joint (during in vitro 
testing), this study has demonstrated the capability of the AE technique 
as a tool for understanding the tribological behaviour of an artificial 
joint in vivo. 

The following conclusions are reached.  

• Using a NARX neural network, time-dependent AE features can 
predict the CoF profile with an R2 value of over 90%.  

• The percentage of continuous emissions generated is significant for 
identifying the test stage and inferring surface damage evolution.  

• Differing biomaterial properties would not affect the biotribological 
interpretations of the signals generated. 

Fig. 14. Polymeric specimens wear scar images (regions of high z value indicate adhesion).  
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The ability to relate AE features to the evolution of wear and fric
tional processes provides a more intuitive and dynamic process of 
monitoring the tribological conditions of artificial joints, significantly 
impacting both patients and the healthcare industry – reducing exposure 
to radiation for patients and cost for healthcare institutes. 
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Appendix A. Test Geometry Determination 

At a maximum possible load of 2000 N [11], the maximum contact pressure of a ball and socket Charite Lumbar Spinal Implant (with ball radius 14 
mm and clearance of 0.35 mm [37] was calculated to be 9.7 MPa and a contact area radius of 9.91 mm using Hertzian contact mechanics [25]. The 
load and corresponding contact area radius required to achieve an equivalent contact pressure on the TE77 for a sphere-on-plane configuration can be 
found in Table A.10. A 20 mm diameter (and above) sphere is required to simulate a close enough maximum contact pressure on the TE77 and this is 
more than the 6 mm & 10 mm diameter ball the TE77 is configured for. Also, the resulting contact area radius simulated is much lower than that of the 
Charite Lumbar Spinal Implant bearing surface. Moreover, such a low load could make the friction calculation unstable. For these reasons, a disc-on- 
plate configuration was decided upon.  

Table A.10 
Load and Contact Mechanics for a TE77 sphere-on-plane configuration.  

Sphere Diameter, mm Force, N Maximum Contact 
Pressure, MPa 

Contact Area Radius, mm 

6 1 25.6 0.137 
10 1 18.2 0.162 
20 1 11.5 0.204  

Fig. 15. Peak Frequency Distribution Plots.  
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Appendix B. Additional Figures

Fig. B.16. Charite Implant Schematic. The Charite Implant was used to derive test parameters. UHMWPE core has a radius ranging from 10 mm to 14 mm and a 
clearance of 0.35 mm between the core and the endplates. 

Fig. B.17. Raw AE signal at (a) 37 dB and (b) 41 dB amplitudes. The 37 dB signal is noisier than the 41 dB signal.   
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Fig. B.18. Waveform plot of each emission type (red line indicates amplitude threshold). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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