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A B S T R A C T

In many real-world engineering systems, the performance or reliability of the system is characterised by a
scalar variable. The distribution of this performance variable is important in many uncertainty quantification
problems, ranging from risk management to utility optimisation. In practice, this distribution usually cannot
be derived analytically and has to be obtained numerically by simulations. To this end, standard Monte Carlo
simulations are often used, however, they cannot efficiently reconstruct the tail of the distribution which
is essential in many applications. One possible remedy is to use the Multicanonical Monte Carlo method,
an adaptive importance sampling scheme. In this method, one draws samples from an importance sampling
distribution in a nonstandard form in each iteration, which is usually done via Markov chain Monte Carlo
(MCMC). MCMC is inherently serial and therefore struggles with parallelism. In this paper, we present a new
approach, which uses the Sequential Monte Carlo sampler to draw from the importance sampling distribution,
which is particularly suited for parallel implementation. With both mathematical and practical examples, we
demonstrate the competitive performance of the proposed method.
1. Introduction

Real-world engineering systems are unavoidably subject to uncer-
tainty, rising from various sources: material properties, geometric pa-
rameters, external perturbations and so on, and these uncertainty fac-
tors can certainly affect the system performance and reliability (i.e., the
ability of a system to perform its intended functions). In the context of
reliability engineering (RE), it is vital to characterise and quantify the
impact of such uncertainties on the system performance or reliability,
which constitutes a central task in the field of uncertainty quantifica-
tion (UQ). Mathematical models and simulations are important tools
to assess how engineering systems are impacted by uncertainty. Within
these, the system performance or reliability is often characterised by a
scalar variable y, which we will now refer to as the performance variable.
This performance variable can be expressed by a performance function
𝑦 = 𝑔(𝐱), where 𝐱 is a multi-dimensional random variable represent-
ing all the uncertainty factors affecting the system; the performance
function is usually not of analytical form and needs to be evaluated by
simulating the underlying mathematical model. A typical example is in
structural engineering, where the performance variable 𝑦 represents the
deformation of some key components.

Several advanced Monte Carlo techniques have been developed in
reliability engineering to provide a variance-reduced estimator for a
specific quantity associated with the distribution of 𝑦, such as the
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probability of a given random event, or failure probability. These in-
clude the cross-entropy method [1,2], subset simulation [3], sequential
Monte Carlo [4], and Hierarchical partitioning strategy [5].

Whilst many methods exist for the purpose of estimating failure
probability, for example, using failure probability functions [6,7], re-
search into techniques for reconstructing the full distribution associated
with the performance variable 𝑦 is limited.

Obtaining the complete distribution of the performance variable
is important in many UQ and RE problems, ranging from risk man-
agement to utility optimisation, where these problems may demand
various statistical information of the performance 𝑦: for example, in
robust optimisation, the interests are predominantly in the mean and
variance [8], in risk management, one is interested in the tail probabil-
ity as well as some extreme quantiles [9], and in utility optimisation,
the complete distribution of the performance variable is required [10].
To this end, methods that can efficiently reconstruct the probability
distribution of the performance variable directly are strongly desirable,
however, they receive little research, in part because of the high
computational cost associated with such methods.

Motivated by this, we propose an adaptation to an existing method
for reconstructing the probability distribution of 𝑦, which has a sig-
nificantly lower computational cost than existing methods, by taking
advantage of parallel computing.
vailable online 20 April 2023
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In our previous works [11,12], we proposed using the Multicanoni-
cal Monte Carlo (MMC) method for computing the distribution of 𝑦. The
MMC method is a special adaptive importance sampling (IS) scheme,
which was initially developed by Berg and Neuhaus [13,14] to explore
the energy landscape of a given physical system.

In the MMC method, one splits the state space of the performance
variable of interest into a set of small bins and then iteratively con-
structs a so-called flat-histogram distribution that can assign equal
probability to each of the bins. This allows for the construction of the
entire distribution function of the performance variable, significantly
more efficiently than using standard MC.

A key characteristic of MMC is that, within each iteration, samples
are drawn from an IS distribution in a nonstandard form, which is usu-
ally done via Markov chain Monte Carlo (MCMC). MCMC is inherently
serial [15], in that it relies on the convergence of a single Markov
chain to its stationary distribution, and therefore often struggles with
parallelism. As a result, the MMC method implemented with MCMC
(referred to as MMC-MCMC hereafter) cannot take advantage of high-
powered parallel computing. There are further limitations to MCMC
– detailed in Section 2.4 – which reduce the overall efficiency of the
MMC-MCMC method.

Many alternative sampling methods exist, for example, Hamiltonian
Monte Carlo [16], and are well summarised in a recent review paper by
Tabandeb et al. [17]. However, they are not all readily parallelisable,
with the exception of the Sequential Monte Carlo sampler. As such,
we propose using the Sequential Monte Carlo sampler (SMCS), to draw
samples from the IS distributions in each MMC step. The SMCS method,
first developed in [18], can fulfil the same role as MCMC in that, by
conducting sequential IS for a sequence of intermediate distributions, it
can generate (weighted) samples from an arbitrary target distribution.

The reason that we choose to implement MMC with the SMCS
method is two-fold: first, since SMCS is essentially an IS scheme, it is
easily parallelisable; second, SMCS can take advantage of a sequence of
intermediate distributions, allowing it to be effectively integrated into
the MMC scheme. Both points will be elaborated on later.

The rest of the paper is organised as follows. In Section 2, we
present the Multicanonical Monte Carlo method and in Section 3, the
Sequential Monte Carlo sampler. We bring these techniques together in
Section 4 to present the proposed Multicanonical Sequential Monte Carlo
Sampler and then apply this to various numerical examples in Section 5.
Finally, Section 6 provides concluding remarks.

2. Multicanonical Monte Carlo method

2.1. Problem setup and the Monte Carlo estimation

We start with a generic setup of the problems considered here. Let
𝐱 be a 𝑑-dimensional random vector following distribution 𝑝𝐱(⋅) and let

be a scalar variable characterised by a function 𝑦 = 𝑔(𝐱). We want
o determine the probability density function (PDF) of 𝑦, given by 𝜋(𝑦),
here we assume that both 𝐱 and 𝑦 are continuous random variables.

We now discuss how to estimate the PDF using the standard MC
imulation. For the sake of convenience, we assume that 𝜋(𝑦) has

bounded support 𝑅𝑦 = [𝑎, 𝑏] and if the support of 𝜋(𝑦) is not bounded,
we choose the interval [𝑎, 𝑏] that is sufficiently large so that P(𝑦 ∈
𝑎, 𝑏]) ≈ 1. We first decompose 𝑅𝑦 into 𝑀 bins of equal width 𝛥 centred
t the discrete values {𝑏1,… , 𝑏𝑀} and define the 𝑖th bin as the interval

𝐵𝑖 = [𝑏𝑖 − 𝛥∕2, 𝑏𝑖 + 𝛥∕2]. This binning implicitly defines a partition of
he input space 𝑋 into 𝑀 domains {𝐷𝑖}𝑀𝑖=1, where

𝑖 = {𝐱 ∈ 𝑋 ∶ 𝑔(𝐱) ∈ 𝐵𝑖} (1)

s the domain in X that maps into the 𝑖th bin 𝐵𝑖 (see Fig. 1).
A key consideration when using MMC is the optimal choice of bin

idth. It has been empirically found that adjacent bins should have
robability within one order of magnitude [19].
2

While 𝐵𝑖 are simple intervals, the domains 𝐷𝑖 are multidimensional
egions with possibly tortuous topologies. Therefore, an indicator func-
ion is used to classify whether a given 𝐱-value is in the bin 𝐷𝑖 or not.
ormally, the indicator function is defined as,

𝐷𝑖
(𝐱) =

{

1, if 𝐱 ∈ 𝐷𝑖;
0, otherwise

(2)

r equivalently {𝑦 = 𝑔(𝐱) ∈ 𝐵𝑖}. By using this indicator function, the
robability that 𝑦 is in the 𝑖th bin, i.e. 𝑃𝑖 = P{𝑦 ∈ 𝐵𝑖}, can be written
s an integral in the input space:

𝑖 = ∫𝐷𝑖

𝑝(𝐱)𝑑𝐱 = ∫ 𝐼𝐷𝑖
(𝐱)𝑝(𝐱)𝑑𝐱 = E[𝐼𝐷𝑖

(𝐱)]. (3)

e can estimate 𝑃𝑖 via a standard MC simulation. Namely, we draw 𝑁
.i.d. samples {𝐱1,… , 𝐱𝑁} from the distribution 𝑝(𝐱) and calculate the
C estimator of 𝑃𝑖 as

̂𝑀𝐶
𝑖 = 1

𝑁

𝑁
∑

𝑗=1
𝐼𝐷𝑖

(𝐱𝑗 ) =
𝑁𝑖
𝑁

, for 𝑖 = 1, … ,𝑀, (4)

where 𝑁𝑖 is the number of samples that fall in bin 𝐵𝑖.
Once we have obtained {𝑃𝑖}𝑀𝑖=1, the PDF of 𝑦 at the point 𝑦𝑖 ∈ 𝐵𝑖 –

or a sufficiently small 𝛥 – can be calculated as 𝜋(𝑦𝑖) ≈ 𝑃𝑖∕𝛥.

.2. Flat histogram importance sampling

The MC approach can be improved through the use of Importance
ampling. Here IS is used to artificially increase the number of samples
alling in the tail bins of the histogram. Given an IS distribution 𝑞(𝐱),
q. (3) can be re-written as

𝑖 = ∫ 𝐼𝐷𝑖
(𝐱)[ 𝑝(𝐱)

𝑞(𝐱)
]𝑞(𝐱)𝑑𝐱 = E𝑞[𝐼𝐷𝑖

(𝐱)𝑤(𝐱)] (5)

here 𝑤(𝐱) = 𝑝(𝐱)∕𝑞(𝐱) is the IS weight and E𝑞 indicates expectation
ith respect to the IS distribution 𝑞(𝐱). The IS estimator for 𝑃𝑖 can then
e written as follows:

̂ 𝐼𝑆
𝑖 =

[

1
𝑁

𝑁
∑

𝑗=1
𝐼𝐷𝑖

(𝐱𝑗 )𝑤(𝐱𝑗 )
]

(6)

for each bin 𝑖 = 1,… ,𝑀 .
As is well known, key to the successful implementation of IS is

identifying a good IS distribution 𝑞(𝐱), which is particularly chal-
lenging for the present problem, as we are interested in multiple
estimates (i.e. 𝑃1,… , 𝑃𝑀 ) rather than a single one, as in conventional
IS problems.

The solution provided by MMC is to use the so-called uniform weight
flat-histogram (UW-FH) IS distribution. The UW-FH IS distribution is
designed to achieve the following two goals. First, it should allocate
the same probability to each bin, that is, assuming 𝑥 ∼ 𝑞(𝑥),
∗
𝑖 ∶= P(𝑦 = 𝑔(𝐱) ∈ 𝐵𝑖) = 1∕𝑀,

or all 𝑖. Intuitively, this property allows all bins to be equally visited
y the samples generated from the IS distribution. Second, it should
ssign a constant weight to all samples falling in the same bin, that
s, 𝑤(𝐱) = 𝛩𝑖 for all 𝐱 ∈ 𝐷𝑖, where 𝛩𝑖 is a positive constant. Loosely
peaking, the second property ensures that all samples falling in the
ame bin are equally good.

The UW-FH distribution can be expressed in the form of:

(𝐱) ∝
⎧

⎪

⎨

⎪

⎩

𝑝(𝐱)
𝑐𝛩𝛩(𝐱) , 𝐱 ∈ 𝐷,

0, 𝐱 ∉ 𝐷,
(7)

where 𝛩(𝐱) = 𝛩𝑖 for 𝐱 ∈ 𝐷𝑖, 𝑖 = 1,… ,𝑀 , and 𝑐𝛩 is a normalising
constant. It is easy to see that,

𝑃 ∗
𝑖 = ∫𝐷𝑖

𝑞(𝐱)𝑑𝐱 =
∫𝐷𝑖

𝑝(𝐱)𝑑𝐱

𝑐𝛩𝛩𝑖
=

𝑃𝑖
𝑐𝛩𝛩𝑖

. (8)

Recall that 𝑃 ∗
𝑖 = 1∕𝑀 for all 𝑖, so it follows 𝛩𝑖 ∝ 𝑃𝑖, i.e. 𝛩𝑖 is

roportional to the sought probability 𝑃 , and 𝑐 =
∑𝑀 𝑃𝑖 .
𝑖 𝛩 𝑖=1 𝛩𝑖
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Fig. 1. Schematic illustration of the connection between 𝐵𝑖 and 𝐷𝑖.
Source: This figure is reprinted from [11].
2.3. Multicanonical Monte Carlo

The UW-FH distribution, given by Eq. (7), cannot be used directly
as 𝛩𝑖 depends on the sought-after unknown 𝑃𝑖. The MMC method
iteratively addresses this, starting from the original input PDF 𝑝(𝐱).

Simply put, starting with 𝑞0(𝐱) and 𝛩0,𝑖 = 𝑝 for all 𝑖 = 1,… ,𝑀 ,
where 𝑝 =

∑𝑀
𝑖=1 𝑃𝑖, the MMC method iteratively constructs a sequence

of distributions (for 𝑡 ≥ 1),

𝑞𝑡(𝐱) ∝
⎧

⎪

⎨

⎪

⎩

𝑝(𝐱)
𝑐𝑡𝛩𝑡(𝐱)

, 𝐱 ∈ 𝐷;

0, 𝐱 ∉ 𝐷.
(9)

where 𝛩𝑡(𝐱) = 𝛩𝑡,𝑖 for 𝐱 ∈ 𝐷𝑖 and 𝑐𝑡 is the normalising constant for
𝑞𝑡. Ideally, we want to construct 𝑞𝑡 in a way that it converges to the
actual UW-FH distribution as 𝑡 increases. The key here is to estimate
the values of {𝛩𝑡,𝑖}𝑀𝑖=1. It is easy to see that when 𝑞𝑡 is used as the IS
distribution, we have 𝑃𝑖 = 𝑐𝑡𝑃 ∗

𝑖 𝛩𝑡,𝑖.
That is, in the 𝑡th iteration, one draws 𝑁 samples {𝐱𝑗}𝑁𝑗=1 from the

current IS distribution 𝑞𝑡(𝐱), then updates {𝛩𝑡+1,𝑖}𝑀𝑖=1 using the following
formulas,

𝐻̂𝑡,𝑖 =
𝑁∗

𝑡,𝑖

𝑁
(10a)

𝑃𝑡,𝑖 = 𝐻̂𝑡,𝑖 𝛩𝑡,𝑖 (10b)

𝛩𝑡+1,𝑖 = 𝑃𝑡,𝑖 (10c)

where 𝑁∗
𝑡,𝑖 is the number of samples falling into region 𝐷𝑖 in the 𝑡th

iteration. Note that in Eq. (10b) we neglect the normalising constant
𝑐𝑡 as it is not needed in the algorithm, which will become clear later.
The process is then repeated, until the resulting histogram is sufficiently
‘‘flat’’ (see e.g. [20]).

2.4. The limitation of MCMC

To implement the MMC method, one must be able to generate
samples from the IS distribution 𝑞𝑡(⋅) at each iteration. Typically, this
is done using Markov Chain Monte Carlo (MCMC). Simply speaking,
MCMC constructs a Markov Chain that converges to the target distribu-
tion. It is convenient to use as it only requires the ability to evaluate the
target PDF up to a normalising constant (and therefore the knowledge
of 𝑐𝑡 in Eq. (9) is not needed). The core of MCMC is to construct a single
Markov chain converging to its stationary distribution, which often
takes a very large number of iterations (known as the burn-in period)
to be achieved. The process cannot be easily accelerated by parallel
processing. We note here that there are some MCMC variants, e.g. [21],
that attempt to exploit parallel implementation; however, to the best
of our knowledge, none of these methods can take full advantage of
modern parallel computing power. For example, the multi-chain MCMC
algorithms can be implemented in parallel but every single chain
still requires a long burn-in period before it converges to the target
distribution. As a result, MMC-MCMC cannot fully exploit the potential
provided by high-performance parallel computing available nowadays.
In this work, we want to provide an alternative implementation of
MMC, which is based on the sequential Monte Carlo sampler.
3

3. Sequential Monte Carlo sampler

First proposed in [18], SMCS is an IS method for drawing samples
from a sequence of distributions {𝑞𝑡(⋅)}𝑇𝑡=1. It is a generalisation of the
particle filter [22], where weighted samples are generated in a sequen-
tial manner. Several extensions to this method have been proposed,
e.g. [23–26], with the latest advances being summarised in two recent
reviews [27,28].

Suppose we have samples following distribution 𝑞𝑡−1(⋅) but want
them to follow 𝑞𝑡(⋅) instead, we can use SMCS. First, a forward Kernel is
applied to each of the current samples – sometimes with an acceptance
criterion – and then a weight is calculated for each new sample. Finally,
if the effective sample size across all the samples is below a certain
threshold (usually less than half the total number of samples) the
proposed samples are resampled. These new weighted samples follow
the distribution 𝑞𝑡(⋅).

We present the SMCS method in a recursive formulation, largely
following the presentation of [18,29]. Suppose that at time 𝑡 − 1, we
have an IS distribution 𝛾𝑡−1(𝐱𝑡−1), from which we can generate, or
already have, an ensemble of 𝑁 samples {𝐱𝑡−1}𝑁𝑗=1. To implement SMCS,
we first choose two conditional distributions 𝐾𝑡(⋅|𝑥𝑡−1) and 𝐿𝑡−1(⋅|𝑥𝑡),
referred to as the forward and backward kernels respectively. Using
𝐿𝑡−1(⋅|𝑥𝑡), we are able to construct a joint distribution of 𝐱𝑡−1 and 𝐱𝑡 in
the form of

𝑟𝑡(𝐱𝑡−1, 𝐱𝑡) = 𝑞𝑡(𝐱𝑡)𝐿𝑡−1(𝐱𝑡−1|𝐱𝑡) (11)

such that the marginal distribution of 𝑟𝑡(𝐱𝑡−1, 𝐱𝑡) over 𝐱𝑡−1 is 𝑞𝑡(𝐱𝑡). Now,
using 𝛾𝑡−1(𝐱𝑡−1) and the forward Kernel 𝐾𝑡(𝐱𝑡|𝐱𝑡−1), we can construct an
IS distribution for 𝑟𝑡(𝐱𝑡−1, 𝐱𝑡) in the form of

𝛾(𝐱𝑡−1, 𝐱𝑡) = 𝛾𝑡−1(𝐱𝑡−1)𝐾𝑡(𝐱𝑡|𝐱𝑡−1). (12)

One can draw samples from this joint IS distribution 𝛾(𝐱𝑡−1, 𝐱𝑡) using
{𝐱𝑡−1}𝑁𝑗=1 and the forward kernel 𝐾𝑡, to obtain an ensemble
{(𝐱𝑗𝑡−1, 𝐱

𝑗
𝑡 )}

𝑁
𝑗=1 from 𝛾(𝐱𝑡−1, 𝐱𝑡). The corresponding weights are computed

as

𝑤𝑡(𝐱𝑡−1∶𝑡) =
𝑟𝑡(𝐱𝑡−1, 𝐱𝑡)
𝛾(𝐱𝑡−1, 𝐱𝑡)

=
𝑞𝑡(𝐱𝑡) 𝐿𝑡−1(𝐱𝑡−1|𝐱𝑡)
𝛾𝑡−1(𝐱𝑡−1) 𝐾𝑡(𝐱𝑡|𝐱𝑡−1)

= 𝑤𝑡−1(𝐱𝑡−1)𝛼(𝐱𝑡−1, 𝐱𝑡)
(13a)

where

𝑤𝑡−1(𝐱𝑡−1) =
𝑞𝑡−1(𝐱𝑡−1)
𝛾𝑡−1(𝐱𝑡−1)

,

𝛼𝑡(𝐱𝑡−1, 𝐱𝑡) =
𝑞𝑡(𝐱𝑡) 𝐿𝑡−1(𝐱𝑡−1|𝐱𝑡)
𝑞𝑡−1(𝐱𝑡−1) 𝐾𝑡(𝐱𝑡|𝐱𝑡−1)

(13b)

As such the weighted ensemble {𝐱𝑗𝑡−1∶𝑡, 𝑤
𝑗
𝑡 }

𝑁
𝑗=1 follows the joint distribu-

tion 𝑟𝑡(𝐱𝑡−1∶𝑡) and as such, {𝐱𝑗𝑡 , 𝑤
𝑗
𝑡 }

𝑁
𝑗=1 follows the marginal distribution

𝑞𝑡. By repeating this procedure we can obtain weighted samples from
the sequence of distributions {𝑞𝑡}𝑇𝑡=1.

For the SMCS method, the choice of forward and backward kernels
are essential. While noting that there are a number of existing meth-
ods for determining the forward kernel, we adopt the MCMC kernel
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proposed in [18], which is closely related to the Metropolis step in
MCMC as the name suggests. Specifically, the forward kernel (more
precisely the process for generating samples from the forward kernel) is
constructed as follows. A proposal distribution 𝑘(𝐱𝑡|𝐱𝑡−1) is chosen and
with a sample from the previous iteration 𝐱𝑗𝑡−1, we draw a sample 𝐱∗𝑡
from 𝑘(𝐱𝑡|𝐱

𝑗
𝑡−1), and then accept (or reject) 𝐱∗𝑡 according to the following

acceptance probability:

𝑎𝑡(𝐱∗𝑡 |𝐱
𝑗
𝑡−1) = min

{

𝑞𝑡(𝐱∗𝑡 )

𝑞𝑡(𝐱
𝑗
𝑡−1)

𝑘(𝐱𝑗𝑡−1|𝐱
∗
𝑡 )

𝑘(𝐱∗𝑡 |𝐱
𝑗
𝑡−1)

, 1

}

. (14)

That is, we set

𝐱𝑗𝑡 =
{

𝐱∗𝑡 , with probability 𝑎𝑡(𝐱∗𝑡 |𝐱
𝑗
𝑡−1)

𝐱𝑗𝑡−1, otherwise.
(15)

Once a forward Kernel 𝐾𝑡(𝐱𝑡|𝐱𝑡−1) is chosen, one can determine an
optimal choice of 𝐿𝑡−1 by:

𝐿𝑜𝑝𝑡
𝑡−1(𝐱𝑡−1|𝐱𝑡) =

𝑞𝑡−1(𝐱𝑡−1)𝐾𝑡(𝐱𝑡|𝐱𝑡−1)
𝑞𝑡(𝐱𝑡)

=
𝑞𝑡−1(𝐱𝑡−1)𝐾𝑡(𝐱𝑡|𝐱𝑡−1)

∫ 𝑞𝑡−1(𝐱𝑡−1)𝐾𝑡(𝐱𝑡|𝐱𝑡−1)𝑑𝐱𝑡−1
,

(16)

where the optimality is achieved through yielding the minimal esti-
mator variance [18]. In reality, this optimal backward kernel usually
cannot be used directly as the integral on the denominator cannot be
calculated analytically. However, when the MCMC kernel is used, an
approximate optimal kernel can be derived from Eq. (16):

𝐿𝑡−1(𝐱𝑡−1|𝐱𝑡) =
𝑞𝑡(𝐱𝑡−1)𝐾𝑡(𝐱𝑡|𝐱𝑡−1)

𝑞𝑡(𝐱𝑡)
, (17)

he detailed derivation can be found in [18]. When Eq. (17) is used,
he incremental weight function 𝛼𝑡(𝐱𝑡−1, 𝐱𝑡) in Eq. (13b), reduces to the
ollowing:

𝑡(𝐱𝑡−1, 𝐱𝑡) =
𝑞𝑡(𝐱𝑡−1)
𝑞𝑡−1(𝐱𝑡−1)

. (18)

Note that, interestingly only the previous sample is used in the weight
calculation when Eq. (17) is used. In our method, we use the MCMC
kernel and Eq. (17) as the forward and backward kernels respectively.

To alleviate sample degeneracy, a key step in SMCS is the resam-
pling of samples according to their associated weights. The resampling
algorithms are well documented, e.g. [30], and are not discussed here.
In SMCS, typically resampling is conducted when the effective samples
size (ESS) [31] is lower than a prescribed threshold value 𝐸𝑆𝑆min. To
conclude, we provide the complete procedure of SMCS in Algorithm 1,
to generate 𝑁 samples from the target distribution 𝑞𝑡(⋅).

Algorithm 1 Sequential Monte Carlo Sampler
input: weighted ensemble {(𝑥𝑗𝑡−1, 𝑤

𝑗
𝑡−1)}

𝑁
𝑗=1

for 𝑗 = 1 to 𝑁
(a) draw x∗𝑡 from 𝑘(⋅|x𝑗𝑡−1)
(b) calculate the acceptance probability 𝑎(x∗𝑡 , x

𝑗
𝑡−1) using Eq. (14)

(c) determine x𝑗𝑡 using Eq. (15) and 𝑎(x∗𝑡 , x
𝑗
𝑡−1)

(d) calculate 𝛼𝑗𝑡 using Eq. (18)
(e) compute 𝑤𝑗

𝑡 = 𝑤𝑗
𝑡−1𝛼

𝑗
𝑡

end for
normalize the weights calculated
calculate ESS
if 𝐸𝑆𝑆 < 𝐸𝑆𝑆min

resample the ensemble and set 𝑤𝑗
𝑡 = 1∕𝑁 for 𝑗 = 1, ..., 𝑁

end if

As one can see from Algorithm 1, the SMCS algorithm is easily paral-
elizable, which is the main advantage over MCMC for our purposes. In
ddition, since SMCS is designed for sampling from a sequence of target
4

S

distributions, it can naturally take advantage of the similarity between
two successive target distributions, like the warped distributions in two
consecutive iterations of MMC, which will be further demonstrated in
Section 4.

4. Multicanonical sequential Monte Carlo sampler

Our proposed algorithm, termed as the Multicanonical Sequential
onte Carlo Sampler (MSMCS) uses SMCS to generate the samples

n each MMC iteration. As has been shown in Section 3, SMCS can
aturally be used to generate samples from a sequence of target distri-
utions and is therefore well suited for MMC, where the biasing distri-
utions within each MMC iteration can be considered as a sequence of
istributions. Though the implementation seems straightforward, there
re still some issues that need to be addressed within the proposed
SMCS method.

In the standard MMC method, using MCMC (denoted by MMC-
CMC), the samples generated are unweighted and as such, the update

rocedure for 𝛩’s – determined by the proportion of samples landing
n each bin – is based on the samples being unweighted. However,
s SMCS produces weighted samples, we need to adapt the MMC
rocedure to account for this, by altering the update procedure for
he Theta distributions. Specifically, we change how the value of 𝐻̂𝑡,𝑖 –
he estimator of 𝑃𝑖 – is determined. The update procedure, when using
nweighted samples, is determined by Eq. (10). When SMCS is used, the
pdate procedure needs to be modified, specifically Eq. (10a) becomes,

̂ 𝑡,𝑖 =
𝑁
∑

𝑗=1
𝐼𝐷𝑖

(𝐱𝑗 ) 𝑤(𝐱𝑗 ). (19)

Another issue is that, for SMC to be effective, two successive distri-
utions cannot be too far apart from each other; otherwise, the samples
re very likely to be rejected in the Metropolis step. Within the MMC
ethod, there is no guarantee that the IS distributions obtained in

wo successive iterations are close to each other. For example, in our
umerical experiments, we have observed that, for high-dimensional
roblems, such an issue appears frequently in the first MMC step, due
o the difference in the initial distribution 𝑞0(𝐱) and subsequent target
istribution 𝑞1(𝐱).

To address this issue, we propose including a simulated tempering
rocess in the method. Namely, we introduce a set of intermediate
istributions in between 𝑞𝑡 and 𝑞𝑡+1, which we can apply SMCS to.
ote that the difference in the IS distributions can be attributed to
ifferences in the 𝛩-functions (i.e. 𝛩𝑡(𝑥) and 𝛩𝑡+1(𝑥)), as per Eq. (9).
e choose a strictly increasing sequence of scalars {𝛼𝑘}𝐾𝑘=1 with 𝛼0 = 0

nd 𝛼𝐾 = 1, such that the intermediate 𝛩-functions are

𝑘(𝐱) = 𝛼𝑘 𝛩𝑡+1(𝐱) + (1 − 𝛼𝑘) 𝛩𝑡(𝐱). (20)

t follows that the sequence of intermediate distributions {𝑞𝑘}𝐾𝑘=0 can
e defined accordingly via Eq. (9) and we apply SMCS to this sequence
f distributions ultimately yielding samples from the target distribution
𝑡+1(𝑥). One can see that when 𝑞𝑡 and 𝑞𝑡+1 are close to each other, SMCS
an efficiently generate samples from 𝑞𝑡+1 via the forward kernel and
he samples from 𝑞𝑡, so this tempering process is not needed. However,
or two consecutive IS distributions that are far apart, we found that
hilst introducing more intermediate steps increases the computational

ime for generating samples according to the next target distribution
𝑡+1(𝐱), overall the MMC converges faster, offsetting this increased cost.
herefore, in our algorithm, tempering is only triggered when certain
rescribed conditions are satisfied (e.g. ‖𝛩𝑡(𝐱) − 𝛩𝑡+1(𝐱)‖ exceeds a
hreshold value).

We have presented the proposed MSMCS method in a MMC frame-
ork: namely, we want to implement MMC for a given problem,
here the samples are drawn from the target distribution 𝑞𝑡 using

MCS. Alternatively, we can also understand the method from a SMCS
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Fig. 2. Chi-square distribution with 20 degrees of freedom computed by MSMCS and MMC-MCMC, compared to the analytical solution. The results are plotted on both the linear
scale (left column) and the logarithmic scale (right column). The first row contains the approximated and analytical PDFs of y. The second and third rows show the absolute and
relative errors of MMC compared to the analytical solution, respectively.
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perspective: that is, the SMCS method is used in a particular problem
where the sequence of distributions is constructed via MMC.

Within the MMC method, the computational cost is primarily driven
by the sample generation, as opposed to the calculation of the number
of weighted samples within each bin—which has a very low associated
cost. As such, the cost saving from our proposed algorithm largely
depends on the number of cores available to a researcher within
their High-powered computing, or parallel computing, facilities. For
example, MMC-SMCS implemented using 10 batches on 10 cores –
within each iteration – has a computation time c. 10 times lower
than standard MMC-MCMC. This cost-saving is demonstrated within the
third numerical example (see Section 5.3).

5. Numerical examples

In this section, we provide five numerical examples of increasing
complexity to demonstrate the performance of the proposed MSMCS
algorithm. By complexity, we are referring to the dimensionality of the
problem and the rarity of the performance variable values. Each nu-
merical example also demonstrates a different aspect of the advantages
our proposed method has over MMC-MCMC.

5.1. Chi-square distribution

In the first example, we consider the Chi-square distribution, a
continuous distribution with 𝑘-degrees of freedom, describing the dis-
tribution of a sum of squared random variables. In this example, we
demonstrate that MMC can be used to reconstruct the Chi-square distri-
bution with very low error compared to the true analytical distribution,
5

using both MCMC and SMCS. c
If 𝑥1,… , 𝑥𝑘 are independent zero-mean Gaussian random variables,
ith unit variance, then the sum of their squares,

=
𝑘
∑

𝑖=1
𝑥2𝑖 , (21)

s distributed according to the Chi-square distribution with 𝑘 degrees of
reedom, where we often use the notation: 𝑦 ∼ 𝜒2(𝑘). In this example,
e construct the Chi-square distribution for 𝑘 = 20 degrees of freedom,
here the analytical form of the PDF is available.

In both MMC-MCMC and MSMCS, we use 20 iterations with 5 × 103

amples per iteration, to allow for a fair comparison. Within each MMC-
CMC iteration, a single long chain of 5×103 samples with no burn-in

eriod is used.
The results are shown in Fig. 2, on both the linear and logarithmic

cales. We also show the absolute and relative errors compared to the
rue analytical solution. The results demonstrate that the MMC method
an reconstruct the Chi-square PDF with a low relative error compared
o the true analytical solution and that the MMC method can effectively
xplore the low-probability events with a relatively small total sample
ize. In addition, the results show that both the MSMCS and MMC-
CMC methods obtain comparable performance with regard to the

rror measures.

.2. Cantilever beam problem

We now consider a real-world engineering example: a cantilever
eam model studied in [1,32]. In this example, we impose a burn-
n period on MCMC, as is often required, to ensure all the samples
enerated by MCMC follow the MMC distribution in each iteration. As
utlined previously, this is not required for SMCS, where all samples

an be utilised.
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Fig. 3. Cantilever beam problem.

Table 1
The mean and variance of the random parameters.

Parameter 𝑤 𝑡 𝑋 𝑌 𝐸

Mean 4 4 500 1000 2.9 × 106

Variance 0.001 0.0001 100 100 1.45 × 106

As illustrated in Fig. 3, we define our beam with width 𝑤, height 𝑡,
length 𝐿, and elasticity 𝐸. We are interested in the beam’s reliability
when subjected to transverse load 𝑌 and horizontal load 𝑋. This is a
widely adopted testbed problem in reliability analysis, where the failure
of the system relates to the maximum deflection of the beam (𝑦), as
determined by the following equation:

𝑦 = 4𝐿3

𝐸𝑤𝑡

√

(

𝑌
𝑡2

)2
+
(

𝑋
𝑤2

)2
(22)

Following the problem set up of [1,32], we assume that the beam is
of fixed length 𝐿 = 100, with beam width 𝑤, height 𝑡, applied loads 𝑋
and 𝑌 , and elastic modulus of the material 𝐸 being random parameters,
which are all independently distributed following a normal distribu-
tion. The mean and variance of each normally distributed parameter
are provided in Table 1.

We compute the PDF of 𝑦 with three methods: plain MC, MMC-
MCMC and MSMCS. In the MC simulation, we use 108 full model
evaluations. In both MMC-MCMC and MSMCS, we use 20 iterations
with 5 × 104 samples in each iteration, to allow for a fair comparison.
Within each MMC-MCMC iteration, we use a single long-chain MCMC
and as such, it cannot be implemented in parallel. We also impose a
burn-in period of 15% on MCMC. We set 𝑅𝑦 = [5.35, 6.80] divided into
145 bins, each of width 0.01.

To compare the results, we plot the PDF obtained by the three
methods in Fig. 4. First, one can see that the results of the three
methods agree very well in the high probability region, indicating that
all the methods can correctly reproduce the sought PDF. The two MMC-
based methods are substantially more effective in the low probability
regions—the plain MC cannot reach the same level of rarity (e.g. at
𝑦 = 6.6) while using 100 times more samples. The two MMC methods
yield comparable results in this example but MSMCS has the advantage
of parallel implementation.

5.3. Metaball limit-state function

We now consider an example from component reliability analy-
sis [17], which has a changing topological structure. The limit-state
function of this example is a metaball, defined as [33]:

𝑔(𝐱) = 30
[4(𝑥1 + 2)2∕9 + 𝑥22∕25]

2 + 1

+ 20
[(𝑥1 − 2.5)2∕4 + (𝑥2 − 0.5)2∕25]2 + 1

− 5
(23)

where 𝑥1 and 𝑥2 are statistically independent and identically distributed
random variables with standard Gaussian distribution.

The specific geometry of this function is particularly challenging for
many sampling methods, in part, because it exhibits multiple regions
of high probability, as studied in the paper by Tabandeh et al. [17].
6

Table 2
The parameter values of the quarter car model.
𝑚𝑠 𝑚𝑢 𝑘𝑠 𝑘𝑢 𝑐

20 40 400 2000 600

We compute the PDF of 𝑔(𝐱) with three methods: plain MC, MMC-
MCMC and MSMCS. In both MMC-MCMC and MSMCS, we use 5
iterations with 15,000 samples per iteration and compare this to a MC
simulation with 75,000 samples.

To compare the results, we plot the PDF obtained by the three meth-
ods in Fig. 5. All three methods perform similarly in high-probability
regions, however, only MMC can reproduce the sought PDF in low-
probability regions.

One of the main advantages of our proposed method is that the
sampling within each MMC iteration can be implemented in parallel,
across multiple cores of a high-performance computer. To demonstrate
the computational time saved, we provide the computation time for
the MSMCS algorithm across varying numbers of cores, using the
previously detailed setup. The results of which are shown in Fig. 6.

5.4. Quarter car model

In our fourth example, we consider a further real-world example:
a quarter car model studied by Wong et al. [34]. In this example,
we implement MMC-MCMC in two alternate ways, to demonstrate the
computational efficiency gained by using MSMCS - see implementation
details.

Problem set up
The quarter-car model is used for vehicle suspension systems to in-

vestigate how they respond under a random road profile. As illustrated
in Fig. 7, we set up our model following [34], such that the sprung
mass 𝑚𝑠 and the unsprung mass 𝑚𝑢 are connected by a non-linear spring
(with stiffness 𝑘𝑠) and a linear damper (with damping coefficient 𝑐).
The unsprung mass interacts with the road surface via a non-linear
spring (with stiffness 𝑘𝑢). The displacement of the wheel 𝑧(𝑡) represents
the interaction of the quarter-car system with the road surface.

The displacements of the sprung and the unsprung masses are de-
noted by 𝑥1 and 𝑥2 respectively. Mathematically, the model is described
by a two-degree-of-freedom ordinary differential equation (ODE) sys-
tem:

𝑚𝑠
𝑑2𝑥1
𝑑𝑡2

= −𝑘𝑠(𝑥1 − 𝑥2)3 − 𝑐
(

𝑑𝑥1
𝑑𝑡

−
𝑑𝑥2
𝑑𝑡

)

, (24a)

𝑚𝑢
𝑑2𝑥2
𝑑𝑡2

= 𝑘𝑠(𝑥1 − 𝑥2)3 + 𝑐
(

𝑑𝑥1
𝑑𝑡

−
𝑑𝑥2
𝑑𝑡

)

+ 𝑘𝑢(𝑧(𝑡) − 𝑥2). (24b)

In our problem, the uncertainty arises through the random road
profile 𝑧(𝑡) which is modelled as a zero-mean white Gaussian random
force with standard deviation 𝜎 = 1. For the sake of our model, all
other parameters are assumed to be fixed, taking the values as given
by Table 2.

We are interested in the maximum difference between the displace-
ments of the sprung and unsprung springs in a given interval [0, 𝑇 ], as
calculated by:

𝑦 = max
0≤𝑡≤𝑇

{|𝑥1(𝑡) − 𝑥2(𝑡)|}. (25)

In extreme scenarios when this displacement exceeds a certain value,
say 𝑦∗, the car’s suspension would break. We want to reconstruct the
entire probability density function (PDF) of y. With the PDF, we can
estimate the probability P(𝑦 > 𝑦∗) for any value of 𝑦∗ in the range of
interest.
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Fig. 4. Cantilever Beam PDF computed by MC, MSMCS and MMC-MCMC. The results are shown on both the linear scale (top) and the logarithmic scale (bottom).

Fig. 5. PDF computed by MC, MSMCS and MMC-MCMC. The results are shown on both the linear scale (top) and the logarithmic scale (bottom).

Fig. 6. Time, in seconds, to complete 5 iterations of the MSMCS algorithm with 15 000 samples per iteration, and varying numbers of cores.
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Fig. 7. Quarter car model.

Implementation details
We solve Eqs. (24) numerically using the 4th order Runge–Kutta

method where the step size is taken to be 𝛥𝑡 = 𝑇 ∕100, so the random
variable in this problem is effectively of 100 dimensions. We take 𝑇 = 1
and set initial conditions of Eqs. (24) to be

𝑥1(0) =
𝑑𝑥1
𝑑𝑡

(0) = 0, 𝑥2(0) =
𝑑𝑥2
𝑑𝑡

(0) = 0 (26)

We conduct a standard MC simulation with 106 samples. In both
MSMCS and MMC-MCMC, we use 20 iterations with 2 × 104 samples
in each iteration. The MSMCS method is easily parallelisable, meaning
that within each MMC iteration, one can update the new samples
completely in parallel according to the target MMC distribution, rather
than forming a single long chain—significantly improving the compu-
tational efficiency. To provide a fair computational comparison, for this
example, we conduct MMC-MCMC in two ways. In the first case, we use
a single long chain of length 2 × 104 - the most typical implementation
of MCMC, which is also how the MCMC is implemented in the first two
examples. In the second case, within each iteration we use 10 chains
each of length 2 × 103, to provide a fairer comparison to the parallel
implementation of MSMCS.

Results
The results of all three methods are shown in Fig. 8. The MC method

only estimated the PDF to the order of 10−6 (as expected), while the
MSMCS method estimated it to order 10−12. MMC-MCMC with a single
chain (referred to as MMC-MCMC-SC), also accurately reconstructed
the performance variable PDF, however MMC-MCMC with multiple
chains (referred to as MMC-MCMC-MC) with parallel implementation,
significantly underestimated the PDF values for values 𝑦 > 1.8. The
results indicate that due to the sequential nature of MCMC, running
multiple short chains substantially undermines the performance of the
method. Therefore, on the basis of parallel implementation, the MSMCS
method clearly outperforms MMC-MCMC.

5.5. Copula model

The development of rare event simulation techniques is also critical
for the risk management in financial markets. Therefore, the final
application we investigate is applying the MMC method to a Copula
model—one of the most widely used portfolio risk models. A copula
model allows one to separate the dependence structure of the port-
folio from the marginal densities of each variable – representing the
individual risks of each obligor – which can have different probability
distributions. We consider the Student’s t-copula model, proposed by
Bassamboo et al. [35].
8

Fig. 8. Quarter car model PDF computed by MC, MSMCS and MMC-MCMC. MMC-
MCMC-SC uses a single long chain. MMC-MCMC-MC uses ten shorter chains in parallel.
The results are shown on the logarithmic scale.

Problem set up
We follow the problem set up of [35,36]. Consider a portfolio of

loans consisting of 𝑛 obligors, we aim to find the distribution of losses
from defaults over a fixed time horizon, from which we can determine
large loss probabilities. Suppose the probability of default for the 𝑖th
obligor over the time horizon is 𝑝𝑖 ∈ (0, 1), for 𝑖 = 1,… , 𝑛, and that
in the event that the 𝑖th obligor defaults, a fixed and given loss of 𝑐𝑖
monetary units occurs. We begin by introducing a vector of underlying
latent variables 𝐗 = (𝑋1,… , 𝑋𝑛) such that the 𝑖th obligor defaults if 𝑋𝑖
exceeds a given threshold level 𝑥𝑖. This threshold 𝑥𝑖 is set according to
the marginal default probability of the 𝑖th asset, so that P(𝑋𝑖 > 𝑥𝑖) = 𝑝𝑖.

The portfolio loss from defaults is given by

𝐿(𝐗) = 𝑐1𝐼{𝑋1>𝑥1} +⋯ + 𝑐𝑛𝐼{𝑋𝑛>𝑥𝑛} (27)

where 𝐼{𝑋𝑖>𝑥𝑖} denotes the indicator function, which is equal to 1
if 𝑋𝑖 > 𝑥𝑖 and 0 otherwise. We let the common risk factor and
the individual idiosyncratic risks be independent normally distributed
random variables, that is,

𝑍 ∼ 𝑁(0, 1) and 𝜂𝑖 ∼ 𝑁(0, 𝜎2𝜂 ), for 𝑖 = 1,… , 𝑛. (28)

We choose 0 < 𝑝 < 1 and let

𝑋𝑖 =
𝑝𝑍 +

√

1 − 𝑝2𝜂𝑖
𝑇

, 𝑖 = 1,… , 𝑛, (29)

where 𝑇 is a non-negative random variable, independent of the other
risk factors.

For a positive integer 𝑘, let 𝑇 =
√

𝑘−1𝛤 (1∕2, 𝑘∕2) where 𝛤 represents
the PDF of the Gamma distribution [35]. Therefore, our latent variables
follow a multivariate t-distribution, whose dependence structure is
given by a t-copula with 𝑘 degrees of freedom.

Implementation details
We use the same set up as Chan et al. [36], that is, we set 𝜎2𝜂 = 9,

𝑥 =
√

𝑛 x 0.5, 𝑝 = 0.25, and 𝑐 = 1. We conduct a standard MC
simulation, with different sample sizes—as detailed in the result tables.
In both MMC-MCMC and MSMCS, we use 20 iterations with 1 × 104

samples in each iteration. We implement MMC-MCMC in two forms,
one with a single long chain – as it would typically be implemented –
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Table 3
Copula results using MC; MSMCS; and MMC-MCMC.

(a) 𝑘 = 4 & 𝑛 = 250

Large loss threshold (b) Sample size Probability estimate

MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5 × 105 7.36 × 10−2 7.27 × 10−2 1.69 × 10−1 7.31 × 10−2

0.2 5 × 105 1.72 × 10−2 1.63 × 10−2 5.96 × 10−2 1.71 × 10−2

0.25 5 × 105 8.08 × 10−3 8.13 × 10−3 3.29 × 10−2 8.05 × 10−3

0.3 5 × 105 3.21 × 10−3 3.24 × 10−3 1.71 × 10−2 3.28 × 10−3

(b) 𝑘 = 8 & 𝑛 = 250

Large loss threshold (b) Sample size Probability estimate

MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5 × 106 1.45 × 10−2 1.39 × 10−2 2.24 × 10−3 1.42 × 10−2

0.2 5 × 106 9.49 × 10−4 9.43 × 10−4 1.66 × 10−4 9.49 × 10−4

0.25 5 × 106 2.38 × 10−4 2.49 × 10−4 4.29 × 10−5 2.46 × 10−4

0.3 5 × 106 4.04 × 10−5 3.98 × 10−5 1.04 × 10−5 4.01 × 10−5

(c) 𝑘 = 12 & 𝑛 = 250

Large loss threshold (b) Sample size Probability estimate

MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5 × 107 9.77 × 10−3 9.82 × 10−3 5.96 × 10−5 9.78 × 10−3

0.2 5 × 107 7.49 × 10−3 7.63 × 10−3 1.04 × 10−6 7.53 × 10−3

0.25 5 × 107 1.05 × 10−5 1.02 × 10−5 1.22 × 10−7 1.03 × 10−5

0.3 5 × 107 1.12 × 10−6 1.34 × 10−6 1.65 × 10−8 1.21 × 10−6

(d) 𝑘 = 16 & 𝑛 = 250

Large loss threshold (b) Sample size Probability estimate

MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5 × 108 9.40 × 10−4 9.36 × 10−4 2.50 × 10−6 9.43 × 10−4

0.2 5 × 108 6.91 × 10−6 6.90 × 10−6 9.58 × 10−9 6.86 × 10−6

0.25 5 × 108 6.22 × 10−7 6.18 × 10−7 6.04 × 10−10 6.19 × 10−7

0.3 5 × 108 4.40 × 10−8 4.37 × 10−8 3.67 × 10−11 4.51 × 10−8

(e) 𝑘 = 20 & 𝑛 = 250

Large loss threshold (b) Sample size Probability estimate

MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5 × 108 2.83 × 10−4 2.88 × 10−4 1.39 × 10−7 2.76 × 10−4

0.2 5 × 108 7.98 × 10−7 7.61 × 10−7 1.35 × 10−10 7.73 × 10−7

0.25 5 × 108 5.40 × 10−8 4.92 × 10−8 2.99 × 10−12 5.32 × 10−8

0.3 5 × 108 0 5.72 × 10−9 1.02 × 10−13 5.63 × 10−9

(f) 𝑘 = 12 & 𝑛 = 500

Large loss threshold (b) Sample size Probability estimate

MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5 × 108 9.61 × 10−5 9.42 × 10−5 5.08 × 10−12 9.52 × 10−5

0.2 5 × 108 1.34 × 10−6 1.39 × 10−6 7.15 × 10−13 1.38 × 10−6

0.25 5 × 108 1.36 × 10−7 1.57 × 10−7 4.37 × 10−13 0.84 × 10−7

0.3 5 × 108 1.00 × 10−8 1.29 × 10−8 2.54 × 10−13 1.27 × 10−8

(g) 𝑘 = 12 & 𝑛 = 1000

Large loss threshold (b) Sample size Probability estimate

MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 3 × 108 1.96 × 10−6 1.88 × 10−6 2.54 × 10−13 1.91 × 10−6

0.2 3 × 108 3.67 × 10−8 3.58 × 10−8 6.29 × 10−14 3.72 × 10−8

0.25 3 × 108 2.39 × 10−9 2.24 × 10−9 4.18 × 10−14 2.28 × 10−9

0.3 3 × 108 0 3.25 × 10−10 7.24 × 10−15 3.19 × 10−10
p
c
C
𝑏
a
l
a
e
d
d
t
s

and one with parallel chains (100 chains each of length 100), which
provides a fairer comparison to a parallel implementation of MSMCS.
Neither MCMC case uses a burn-in period.

Results
We are interested in the probability of large losses, defined as the

loss function value 𝐿(𝐗) > 𝑙, where 𝑙 = 𝑏𝑛 for different sample sizes 𝑛
nd different threshold values 𝑏. We vary either the degrees of freedom
or the sample size 𝑛, and for each of these scenarios, we determine

he probability that the loss exceeds 𝑙 = 𝑏𝐱𝑛, for 𝑏 = 0.1, 0.2, 0.25, 0.3.
he results are presented in Table 3.

As the MMC method reconstructs the whole loss distribution, we
nly require seven simulations to be performed, from which the loss
9

e

robability for any 𝑏-value can be obtained. This is a significant
omputational saving, compared to other existing methods, like the
onditional-MC in [36], which would require a new simulation for each
-value. Our results show that the MMC method – with both MCMC
nd SMCS – produces significant computational savings for estimating
arge loss probabilities, given a Copula model. Both MMC-MCMC (with
single long chain, denoted by MMC-MCMC-SC) and MSMCS, are very

ffective here—although, MMC-MCMC (with multiple parallel chains,
enoted by MMC-MCMC-MC) performs poorly, particularly in the high-
imensional setting, clearly illustrating the advantage of MSMCS in
he parallel implementation. Finally, as shown by comparison to the
tandard MC, MMC is a very effective method for a Copula model and

stimating large loss probabilities.
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6. Conclusion

In summary, we have proposed a new method to obtain the full
distribution of a performance variable by incorporating the MMC and
SMCS methods. Specifically, the method uses SMCS instead of MCMC
to draw samples from the warped distributions in each iteration of
MMC. We have demonstrated that the proposed MSMCS method can
outperform both the standard MMC-MCMC, in the sense that SMCS
is easily parallelisable and so it can take full advantage of parallel
high-powered computing, while MCMC, due to its sequential nature,
requires a (often very long) burn-in period, which in fact is the reason
that the implementation with multiple short chains does not perform
well. We believe that our proposed algorithm has wide applicability,
improving the computational efficiency associated with finding failure
probabilities or reconstructing the whole probability distribution of
interest.

One weakness of the proposed method is that MCMC is easier to
implement than SMCS and involves simpler computations—so MMC-
MCMC is marginally faster than MSMCS to run. However, if one can
use a parallel implementation, then MSMCS significantly outperforms
MMC-MCMC, as shown in the numerical examples. More importantly,
both approaches to MMC can struggle in high-dimensional settings,
where the generation of a new sample is likely to get rejected, which
should be dealt with by developing and utilising more effective pro-
posal distributions, for example, that based on the Hamiltonian dynam-
ics [37].

CRediT authorship contribution statement

Robert Millar: Writing – review & editing, Writing – original draft,
alidation, Methodology, Investigation, Formal analysis, Conceptual-

zation. Hui Li: Writing – review & editing. Jinglai Li: Writing –
eview & editing, Writing – original draft, Supervision, Methodology,
nvestigation, Formal analysis, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

eferences

[1] Li J, Li J, Xiu D. An efficient surrogate-based method for computing rare failure
probability. J Comput Phys 2011;230(24):8683–97.

[2] El Masri M, Morio J, Simatos F. Improvement of the cross-entropy method in
high dimension for failure probability estimation through a one-dimensional
projection without gradient estimation. Reliab Eng Syst Saf 2021;216:107991.

[3] Au S, Beck J. A new adaptive importance sampling scheme for reliability
calculations. Struct Saf 1999;21(2):135–58.

[4] Cerou F, Del Moral P, Furon T, Guyader A. Sequential Monte Carlo for rare event
estimation. Stat Comput 2012;22(3):795–808.

[5] Zhou J, Li J. An enhanced method for improving the accuracy of small failure
probability of structures. Reliab Eng Syst Saf 2022;228:108784.

[6] Liu W-S, Cheung SH. Reliability based design optimization with approximate
failure probability function in partitioned design space. Reliab Eng Syst Saf
2017;167:602–11.
10
[7] Yuan X, Qian Y, Chen J, Faes MG, Valdebenito MA, Beer M. Global failure
probability function estimation based on an adaptive strategy and combination
algorithm. Reliab Eng Syst Saf 2023;231:108937.

[8] Du X, Chen W. Sequential optimization and reliability assessment method for
efficient probabilistic design. J Mech Des 2004;126(2):225–33.

[9] Rockafellar RT, Uryasev S. Optimization of conditional value-at-risk. J Risk
2000;2:21–42.

[10] Hazelrigg GA. A framework for decision-based engineering design. J Mech Des
1998;120(4):653–8.

[11] Wu K, Li J. A surrogate accelerated multicanonical Monte Carlo method for
uncertainty quantification. J Comput Phys 2016;321:1098–109.

[12] Chen X, Li J. A subset multicanonical Monte Carlo method for simulating rare
failure events. J Comput Phys 2017;344:23–35.

[13] Berg BA, Neuhaus T. Multicanonical algorithms for first order phase transitions.
Phys Lett B 1991;267(2):249–53.

[14] Berg BA, Neuhaus T. Multicanonical ensemble: A new approach to simulate
first-order phase transitions. Phys Rev Lett 1992;68(1):9.

[15] Hafych V, Eller P, Schulz O, Caldwel A. Parallelizing MCMC sampling via space
partitioning. Stat Comput 2022;32(4):1–14.

[16] Betancourt M. A conceptual introduction to Hamiltonian Monte Carlo. 2017,
arXiv preprint arXiv:1701.02434.

[17] Tabandeh A, Jia G, Gardoni P. A review and assessment of importance sampling
methods for reliability analysis. Struct Saf 2022;97:102216.

[18] Del Moral P, Doucet A, Jasra A. Sequential monte carlo samplers. J R Stat Soc
Ser B Stat Methodol 2006;68(3):411–36.

[19] Bononi A, Rusch L, Ghazisaeidi A, Vacondio F, Rossi N, et al. A fresh
look at multicanonical Monte Carlo from a telecom perspective. In: Global
telecommunications conference, 2009. GLOBECOM 2009. IEEE. IEEE; 2009, p.
1–8.

[20] Iba Y, Saito N, Kitajima A. Multicanonical MCMC for sampling rare events: an
illustrative review. Ann Inst Statist Math 2014;66(3):611–45.

[21] VanDerwerken DN, Schmidler SC. Parallel markov chain monte carlo. 2013, arXiv
preprint arXiv:1312.7479.

[22] Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process
2002;50(2):174–88.

[23] Beskos A, Jasra A, Law K, Tempone R, Zhou Y. Multilevel sequential monte carlo
samplers. Stochastic Process Appl 2017;127(5):1417–40.

[24] Heng J, Bishop AN, Deligiannidis G, Doucet A. Controlled sequential monte carlo.
Ann Statist 2020;48(5):2904–29.

[25] Green PL, Devlin L, Moore R, Jackson R, Li J, Maskell S. Increasing the efficiency
of Sequential Monte Carlo samplers through the use of approximately optimal
L-kernels. Mech Syst Signal Process 2022;162:108028.

[26] South L, Pettitt A, Drovandi C. Sequential monte carlo samplers with independent
markov chain monte carlo proposals. Bayesian Anal 2019;14(3):753–76.

[27] Chopin N, Papaspiliopoulos O, et al. An introduction to sequential Monte Carlo,
Vol. 4. Springer; 2020.

[28] Dai C, Heng J, Jacob PE, Whiteley N. An invitation to sequential Monte Carlo
samplers. 2020, arXiv preprint arXiv:2007.11936.

[29] Wu J, Wen L, Green PL, Li J, Maskell S. Ensemble Kalman filter based Sequential
Monte Carlo sampler for sequential Bayesian inference. 2020, arXiv preprint
arXiv:2012.08848.

[30] Douc R, Cappé O. Comparison of resampling schemes for particle filtering. In:
ISPA 2005. Proceedings of the 4th international symposium on image and signal
processing and analysis, 2005. IEEE; 2005, p. 64–9.

[31] Doucet A, Johansen AM. A tutorial on particle filtering and smoothing: Fifteen
years later. In: Handbook of nonlinear filtering, Vol. 12. 2009, p. 3, (656–704).

[32] Wu Y-T, Millwater H, Cruse T. Advanced probabilistic structural analysis method
for implicit performance functions. AIAA J 1990;28(9):1663–9.

[33] Breitung K. The geometry of limit state function graphs and subset simulation:
Counterexamples. Reliab Eng Syst Saf 2019;182:98–106.

[34] Wong JY. Theory of ground vehicles. John Wiley & Sons; 2008.
[35] Bassamboo A, Juneja S, Zeevi A. Portfolio credit risk with extremal dependence:

Asymptotic analysis and efficient simulation. Oper Res 2008;56(3):593–606.
[36] Chan JC, Kroese DP. Efficient estimation of large portfolio loss probabilities in

t-copula models. European J Oper Res 2010;205(2):361–7.
[37] Neal RM. MCMC using Hamiltonian dynamics. In: Handbook of Markov Chain

Monte Carlo. Chapman and Hall/CRC; 2011, p. 139–88.

http://refhub.elsevier.com/S0951-8320(23)00230-2/sb1
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb1
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb1
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb2
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb2
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb2
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb2
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb2
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb3
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb3
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb3
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb4
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb4
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb4
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb5
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb5
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb5
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb6
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb6
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb6
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb6
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb6
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb7
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb7
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb7
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb7
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb7
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb8
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb8
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb8
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb9
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb9
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb9
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb10
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb10
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb10
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb11
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb11
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb11
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb12
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb12
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb12
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb13
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb13
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb13
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb14
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb14
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb14
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb15
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb15
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb15
http://arxiv.org/abs/1701.02434
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb17
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb17
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb17
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb18
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb18
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb18
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb19
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb19
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb19
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb19
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb19
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb19
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb19
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb20
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb20
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb20
http://arxiv.org/abs/1312.7479
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb22
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb22
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb22
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb22
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb22
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb23
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb23
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb23
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb24
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb24
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb24
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb25
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb25
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb25
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb25
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb25
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb26
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb26
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb26
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb27
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb27
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb27
http://arxiv.org/abs/2007.11936
http://arxiv.org/abs/2012.08848
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb30
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb30
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb30
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb30
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb30
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb31
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb31
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb31
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb32
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb32
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb32
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb33
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb33
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb33
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb34
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb35
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb35
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb35
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb36
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb36
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb36
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb37
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb37
http://refhub.elsevier.com/S0951-8320(23)00230-2/sb37

	Multicanonical sequential Monte Carlo sampler for uncertainty quantification
	Introduction
	Multicanonical Monte Carlo method
	Problem setup and the Monte Carlo estimation
	Flat Histogram Importance Sampling
	Multicanonical Monte Carlo
	The limitation of MCMC

	Sequential Monte Carlo sampler
	Multicanonical Sequential Monte Carlo Sampler
	Numerical Examples
	Chi-Square Distribution
	Cantilever Beam Problem
	Metaball Limit-State Function
	Quarter Car Model
	Problem Set Up
	Implementation Details
	Results

	Copula Model
	Problem Set Up
	Implementation Details
	Results


	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


