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Abstract: Novel polyhydroxylated ammonium, imidazolium, and pyridinium salt organocatalysts
were prepared through N-alkylation sequences using glycidol as the key precursor. The most ac-
tive pyridinium iodide catalyst effectively promoted the carbonation of a set of terminal epoxides
(80 to >95% yields) at a low catalyst loading (5 mol%), ambient pressure of CO2, and moderate
temperature (75 ◦C) in batch operations, also demonstrating high recyclability and simple down-
stream separation from the reaction mixture. Moving from batch to segmented flow conditions
with the operation of thermostated (75 ◦C) and pressurized (8.5 atm) home-made reactors signifi-
cantly reduced the process time (from hours to seconds), increasing the process productivity up to
20.1 mmol(product) h−1 mmol(cat)

−1, a value ~17 times higher than that in batch mode.

Keywords: flow chemistry; organocatalysis; carbon dioxide; cyclic carbonates; mass transfer

1. Introduction

Over the past two decades, there has been a dramatic increase in the amount of CO2
being emitted into the atmosphere, resulting in global warming and subsequent environ-
mental harm [1]. Thus, the balance between anthropogenic emissions and removals from
the atmosphere is, today, actively pursued to achieve carbon neutrality in the near future [2].
Accordingly, many kinds of liquid and solid sorbents are being investigated for the develop-
ment of efficient carbon capture and storage (CCS) strategies [3]. In this scenario, reusing CO2
as a renewable C1 building block to produce added-value chemicals and fuels is becoming
a crucial goal for competitiveness, as CO2 refinery may compensate the costs and energy
consumption associated with its capture and transportation [4]. However, despite the great
interest of academia, industry, and policy makers in carbon capture and utilization (CCU)
methodologies, important challenges still need to be addressed including the achievement
of levels of process efficiency comparable to those of the petrochemical industry [5]. The
kinetic and thermodynamic stability of CO2 (intrinsic factor) is the major limitation of CO2
utilization as a chemical feedstock, which can be overcome by reacting high-energy substrates
such as epoxides and aziridines in the presence of extremely active catalysts. The chemical
efficiency of CO2 fixation, however, should also take into consideration extrinsic energetic,
environmental, and economic factors, thus making preferable the application of inexpensive
sustainable catalysts (organocatalysts [6,7] and non-noble metals [8]) with high recyclability,
and the operation at a moderate temperature and pressure of CO2 (<100 ◦C, <10 atm) [9–11].

Flow chemistry has recently been proven to have great potential as an enabling tech-
nology for the process intensification of gas–liquid reactions of CO2 [12–31]. In this reaction
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set-up, millimeter-sized droplets are generated as confined units with increased superficial
area determining an improved mass transfer rate across the gas–liquid interface, which is
often the rate-limiting step of gaseous CO2 reactions. Aside from enhanced kinetics, addi-
tional advantages of flow conditions in CCU strategies are the better heat transfer, safety,
and process reliability, easy control of pressure, facile scaling-out by extending the period of
product collection, and straightforward scale-up using the numbering-up approach [32,33].

The atom economical insertion of CO2 into epoxides to yield cyclic carbonates is
emerging as a strategic transformation for the chemical process industry because it has
been estimated that it will consume, together with the dry reforming of methane, up to
25% of waste CO2 produced annually [6]. Cyclic carbonates are used as high boiling point
aprotic solvents [34,35] and electrolytes in secondary batteries [36,37]; moreover, they are
valuable monomers for the production of polycarbonates and polyurethanes [38–42], and
intermediates for the synthesis of fine chemicals and pharmaceuticals [43,44]. A plethora
of homogeneous and heterogeneous catalytic systems have been proposed for this trans-
formation including metal complexes, metal oxides, organocatalysts, and simple alkaline
salts [6–8,45–49]; however, only a restricted number of these catalysts can be applied
without high temperature and pressure requirements, and be recycled using economical
downstream purification steps [9–11]. In light of this, various metal-based ionic liquids (ILs)
have been recently introduced in the literature, [50–53] showing good to excellent yields
and selectivity, typically by the application of high CO2 pressures (up to 50 bar). Addition-
ally, ILs based on quaternary ammonium, imidazolium, and pyridinium salts, eventually
immobilized on inorganic [54] and polymeric [55] solid supports, or prepared as hybrid ma-
terials, [56] have received considerable attention, showing advantageous features such as
uninflammability, low volatility, thermal stability, and flexible structure-tailorability [57–64].
In particular, it has been demonstrated that the presence of hydroxyl groups on the IL
moiety significantly increases the catalyst activity as a result of the synergistic effect of
hydrogen bonding with the oxygen atom of epoxides, which effectively contributes to the
ring-opening process promoted by the halide nucleophilic attack (Figure 1) [65–71]. On the
basis of the same mechanistic rationale, we propose herein a set of novel polyhydroxylated
ionic liquids, namely ammonium, imidazolium, and pyridinium organocatalysts, whose
activity and recyclability has been initially tested in the carbonation of terminal epoxides
under conventional batch conditions. Afterwards, following our interest in the develop-
ment of efficient technology platforms for the intensification of gas–liquid reactions (aerosol
reactors), [72,73] we further developed our study by moving from batch to segmented
flow processes with the detection of significant improvements in terms of reaction time
and productivity.
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2. Results and Discussion

The synthesis of the polyhydroxylated ammonium iodide salt 3 was first addressed
by coupling dibutyl amine with glycidol 1 refluxing under acidic conditions to give the
intermediate amine 2 in satisfactory yield (72%; Scheme 1). Afterwards, following standard
procedures for the N-alkylation of tertiary amines, the diol 2 was refluxed in alcoholic
solvent (EtOH) with iodoethanol, affording an inseparable mixture of the target salt 3 (32%)
and the by-product 4 (68%), as detected using 1H NMR spectroscopy and further confirmed
with MS analysis (Table 1, entry 1). Lowering the temperature to 60 ◦C improved the
reaction selectivity toward 3 at the expense, however, of the efficiency conversion (21%;
entry 2). Similar unsatisfactory results were also registered using different polar aprotic
solvents (DMF, THF) and temperatures (entries 4–5). The unexpected reaction outcome
was explained by hydriodic acid elimination from iodoethanol promoted by 2 yielding 4
and acetaldehyde (Scheme 1). Fortunately, we observed that neat conditions (75 ◦C, 48 h)
could suppress the side-reaction path, affording the desired polyhydroxylated ammonium
salt 3 as the sole product in quantitative yield and 95% purity (1H NMR analysis; entry 8).
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Scheme 1. Synthesis of polyhydroxylated ammonium iodide salt 3 and side-reaction path. Solvent
and temperature variations are reported in Table 1.

Table 1. Optimization of ammonium salt 3 synthesis.

Entry 1 Solvent Temp. (◦C) 3 (%) 2 4 (%) 2

1 EtOH reflux 32 68
2 EtOH 60 21 <5
3 DMF 80 24 76
4 DMF 70 18 27
5 THF reflux 41 59
6 neat 25 <5 -
7 neat 60 49 -
8 neat 75 >95 -

1 Conditions: 2 (2.5 mmol), 2-iodoethanol (2.5 mmol). 2 Detected with 1H NMR of the crude reaction mixture with
durene as internal standard.
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Next, with the aim of verifying the effect of halide variation on the efficiency of epoxide
ring-opening (vide infra), the optimized double N-alkylation sequence was applied to the
synthesis of the polyhydroxylated ammonium bromide salt 5 using bromoethanol for
quaternarization (Scheme 2). The same protocol was also employed with little modification
to produce the bifunctional organocatalyst 8 featuring the designed polyhydroxylated
imidazolium moiety.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 19 
 

 

 

Scheme 2. Synthesis of polyhydroxylated (a) ammonium- and (b) imidazolium-based organocata-

lysts 5 and 8. 

The access to the target pyridinium salts 14 and 16 (Scheme 3) initially required the 

set-up of a practical procedure for the synthesis of the alkylating agent 9 starting from 

glycidol, which was identified in this study as the common precursor for introducing the 

1,2-propanediol group in the final organocatalysts. The iodide 9 is a known compound 

and it is typically produced in three steps from glycerol [74]; on the basis of previous ob-

servations [75], the straightforward and regioselective conversion of glycidol into the vic-

inal halohydrin 9 was achieved in satisfactory yield (75%) using lithium iodide in combi-

nation with acetic acid under mild reaction conditions. Our synthetic plan proceeded with 

the synthesis of the intermediate N-alkyl-4-amine pyridines 13 and 15 featuring the hy-

droxyalkyl chain with a different degree of free rotation. Gratifyingly, microwave-heating 

(130 °C, 3 h) of the mixtures of 4-chloropyridine 10 with excess of either methylamino-

ethanol 11 or prolinol 12 gave pyridines 13 and 15, respectively, in almost quantitative 

yields after simple evaporation of unreacted 11/12. Finally, the completion of the synthetic 

sequence from 13/15 was straightforward, affording the polyhydroxylated pyridinium 

salts 14 and 16 by N-alkylation with iodide 9 under the previously optimized neat condi-

tions. 

Scheme 2. Synthesis of polyhydroxylated (a) ammonium- and (b) imidazolium-based organocatalysts
5 and 8.

The access to the target pyridinium salts 14 and 16 (Scheme 3) initially required the
set-up of a practical procedure for the synthesis of the alkylating agent 9 starting from
glycidol, which was identified in this study as the common precursor for introducing the
1,2-propanediol group in the final organocatalysts. The iodide 9 is a known compound
and it is typically produced in three steps from glycerol [74]; on the basis of previous
observations [75], the straightforward and regioselective conversion of glycidol into
the vicinal halohydrin 9 was achieved in satisfactory yield (75%) using lithium iodide
in combination with acetic acid under mild reaction conditions. Our synthetic plan
proceeded with the synthesis of the intermediate N-alkyl-4-amine pyridines 13 and 15
featuring the hydroxyalkyl chain with a different degree of free rotation. Gratifyingly,
microwave-heating (130 ◦C, 3 h) of the mixtures of 4-chloropyridine 10 with excess of
either methylamino-ethanol 11 or prolinol 12 gave pyridines 13 and 15, respectively,
in almost quantitative yields after simple evaporation of unreacted 11/12. Finally, the
completion of the synthetic sequence from 13/15 was straightforward, affording the
polyhydroxylated pyridinium salts 14 and 16 by N-alkylation with iodide 9 under the
previously optimized neat conditions.

The catalytic activity of the novel bifunctional organocatalysts 3, 5, 8, 14, and 16
(10 mol%) was tested at ambient temperature and pressure in the model conversion of
styrene oxide 17a into styrene carbonate 18a (Table 2). In agreement with the order of
nucleophilicity of halide anions and their coordination ability of an acidic hydrogen (inter-
mediate I, Figure 1) [6], iodide ammonium salt 3 outperformed the bromide counterpart 5
affording 18a in 30% yield with complete selectivity (entries 1–2). Among the iodide salts
3, 8, 14, and 16, the polyhydroxylated pyridinium organocatalyst 16 emerged as the most
effective promoter (18a: 44%; entry 5), somehow substantiating the importance of some
rigidity in the hydroxyalkyl chain for transition state stabilization (16 vs. 14).
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Entry 1 Catalyst Conv. (%) 2 Sel. (%) 2 18a (%) 2

1 3 30 >99 30
2 5 5 >99 5
3 8 27 >99 27
4 14 35 >99 35
5 16 44 >99 44

1 17a (2.00 mmol), CO2 (1 atm, balloon), neat conditions. 2 Detected with 1H NMR of the crude reaction mixture
with durene as internal standard.

Different conditions were then screened with the selected organocatalyst 16 to improve
the process productivity (Table 3). Increasing the temperature up to 75 ◦C allowed the
full conversion of 17a with complete selectivity towards 18a (16: 10 mol%; reaction time:
16 h; entries 1–3). Satisfyingly, the same reaction outcome was reproduced by halving the
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catalyst loading to 5 mol% (entry 4), while a further decrease in the 16 amount (2 mol%) or
a shorter reaction time (12 h) resulted in significantly lower conversions (entries 5–6). Based
on previous findings [23,70], DMF and H2O were tested as additives, detecting, however, a
marked drop in reaction efficiency (entries 7–8). It is important to emphasize that under the
optimized conditions of entry 4, the reaction mixture at the initial time is heterogeneous,
becoming completely homogeneous as the reaction progresses. Therefore, keeping in mind
the ultimate goal of process intensification by the application of flow conditions, EtOH
(50 mol%) was utilized to obtain full solubilization of catalyst 16 (entry 9); opportunely,
only a minimal decrease in the yield of cyclic carbonate 18a (92%) was observed. Overall,
the resultant productivity (P, which also corresponds to TOF, Equation (1)) of the optimal
batch process (entry 4) was 1.2 mmol(18a) h−1 mmol(16)

−1.

P =
mol (product)

time . mol (catalyst)
(1)

Table 3. Optimization study with catalyst 16 under batch conditions.
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Entry 1 16 (mol%) Temp. (◦C) Time (h) Conv. (%) 2 Sel. (%) 2 18a (%) 2

1 10 25 16 44 >99 44
2 10 50 16 62 >99 62
3 10 75 16 >95 >99 95
4 5 75 16 >95 >99 95
5 2 75 16 74 >99 74
6 5 75 12 88 >99 88

7 3 5 75 16 15 >99 15
8 4 5 75 16 48 >99 48
9 5 5 75 16 92 >99 92

1 17a (2.00 mmol), CO2 (1 atm, balloon), neat conditions. 2 Detected with 1H NMR of the crude reaction mixture
with durene as internal standard. 3 Additive: DMF (5.00 mmol). 4 Additive: H2O (50 mol%). 5 Additive: EtOH
(50 mol%).

The recyclability of the polyhydroxylated pyridinium 16 was investigated over six runs
(Figure 2). Upon reaction completion, catalyst recovery consisted of the simple addition of
EtOAc. Operating in this way, the catalyst precipitated and the product was collected upon
centrifugation. Gratifyingly, only a moderate conversion decrease (~3%) was observed
after the fifth recycle, mainly because of the partial loss of catalyst during the recovery and
washing steps.

The generality and efficacy of the method was tested through a brief substrate scope
study, which was conducted with terminal epoxides 17a–g at atmospheric pressure and
mild temperature (Scheme 4). In addition to the styrene oxide derivates 17a,b, the epoxides
displaying an alkyl chain 17c–g could also be converted into the corresponding cyclic
carbonates 18a–g in good to excellent yields (80% to >95%).
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Scheme 4. Substrate scope (batch procedure).

At this stage of the study, driven by our interest in process intensification by the
application of flow techniques [76–88], we next investigated the transition of the model
carbonation of styrene oxide from batch to segmented flow conditions [89,90]. The in-house
assembled flow apparatus consisted of a 4.42 mL spiral capillary reactor (FEP tubing;
0.75 mm ID) placed inside a thermostated bath (75 ◦C). The coil was connected to an HPLC
pump and a CO2 cylinder by means of a standard T junction, where the gas and liquid
streams were mixed. The exact CO2 volume was delivered into the reactor by a mass flow
controller (MFC), while a back-pressure regulator (BPR) maintained a constant pressure of
CO2 (8.5 atm) throughout the system (Scheme 5 and Supplementary Material Figure S1).
Initial experiments were performed to identify a stable segmented flow regime by variation
of the liquid and gas flow rates, always keeping a molar excess of CO2 over styrene oxide.
Approximately, each segment length was found to be in a range of 0.5 to 1.0 mm. The
residence time (tr) was calculated as the ratio of reactor volume over the total gas and liquid
flow rate. After some experimentation, two set of conditions (A and B) were optimized with
a constant CO2 flow rate of 3.00 mL min−1 and liquid flow rates of 0.10 and 0.07 mL min−1

corresponding to CO2/17a molar ratios of 1.02 and 1.45, respectively. Significantly, after
the attainment of the steady-state regime (ca. 2 min), condition A provided 18a with an
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instant conversion of 81% (1H NMR of the outlet stream) in only 85 s of residence time,
thus resulting in a process productivity of 16.3 mmol(18a) h−1 mmol(16)

−1. In accordance
with our expectations, the reduction in the liquid flow rate to 0.07 mL min−1 (condition B)
further increased the reaction conversion (>95%) with almost the same residence time
(86 s), affording 18a with a productivity of 20.1 mmol(18a) h−1 mmol(16)

−1. This value
is about 17-fold higher than that measured in batch-mode and it was explained by the
improved mass transfer of CO2 at the gas–liquid interphase due to the increased pressure
and segmented flow regime.
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Scheme 5. Production of styrene carbonate 18a under segmented flow conditions.

The continuous production of cyclic carbonates 18b–g was finally examined under
the optimized flow conditions, affording remarkable conversion efficiencies (>85%) and
productivities in the range of 17.2–20.1 mmol(18) h−1 mmol(16)

−1 (Table 4).

Table 4. Production of cyclic carbonates 18 under segmented flow conditions.

Entry 1 18 Conv. (%) 2 P 3

1 18a >95 20.1
2 18b 90 18.0
3 18c >95 20.0
4 18d 86 17.2
5 18e 91 18.1
6 18f >95 20.0
7 18f 92 18.4

1 17, 16 (5 mol%), EtOH (50 mol%), pressure: 8.5 atm; temperature: 75 ◦C; residence time: 86 sec; CO2 flow rate:
3 mL min−1; liquid flow rate: 0.07 mL min−1. See Scheme 5 and Figure S1 for the flow apparatus. 2 Instant
conversion in the steady-state regime as determined with 1H NMR analysis. 3 Productivities (P) are measured in
mmol(18) h−1 mmol(16)

−1.
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3. Materials and Methods

Commercially available reagents were purchased from commercial sources and used
without any subsequent purification. The solvents used for reactions were distilled from
appropriate drying agents and stored over 3 Å molecular sieves. 1H-NMR and 13C-NMR
spectra were recorded on Varian Mercury Plus 300 (Varian Inc., Palo Alto, CA, USA)
and Varian Mercury Plus 400 (Varian Inc., Palo Alto, CA, USA) spectrometers in CDCl3,
DMSO-d6, and D2O at room temperature. 13C{1H} NMR spectra were recorded in 1H
broad-band decoupled mode, and chemical shifts (δ) are reported in parts per million
relative to the residual solvent peak. Flash column chromatography was performed on
silica gel 60 (230−400 mesh). High-resolution mass spectra (HRMS) were recorded in
positive ion mode with an Agilent 6520 HPLC-Chip Q/TF-MS nanospray instrument
(Agilent Technologies, Santa Clara, CA, USA) using a time-of-flight, a quadrupole, or a
hexapole unit to produce spectra.

3.1. Procedures for the Synthesis of Intermediates 2, 6, 9, 13, 15 and Organocatalysts 3, 5, 8, 14, 16

3-(Dibutylamino)propane-1,2-diol (2). Glycidol (15.0 mmol) in THF (10 mL), HCl 37%
(1 mL), and dibutyl amine (5 mmol) was added to a round-bottom flask with a refrigerator
on top. The mixture was stirred and refluxed overnight. Once the dibutyl amine was
completely reacted, the product was purified by acid/base extraction with DCM. The
reaction crude was solubilized in DCM and then extracted with a solution of HCl 1M; the
organic layer was removed and the aqueous phase was basified with NaOH 1M solution
and re-extracted with DCM. The organic layer was treated with anhydrous sodium sulphate
and filtered, and the solvent was removed using a rotary evaporator and high-vacuum
pump. By following this procedure, 3-(dibutylamino)propane-1,2-diol 2 was obtained as a
yellow viscous oil (3.60 mmol, 72% yield). 1H NMR (500 MHz, CDCl3) δ 5.73–5.59 (m, 3H),
5.45 (dd, J = 11.1, 4.5 Hz, 1H), 4.59–4.42 (m, 3H), 4.42–4.31 (m, 3H), 3.47–3.33 (m, 4H),
3.33–3.18 (m, 4H), 2.87 (t, J = 7.4 Hz, 6H). 13C{1H} NMR (126 MHz, CDCl3): δ 67.3, 65.0,
57.0, 54.3, 29.2, 20.7, 14.1. HRMS (ESI) m/z: [M + H]+ calcd for C11H26NO2

+ 204.1958,
found 204.1952.

N-Butyl-N-(2,3-dihydroxypropyl)-N-(3-hydroxypropyl)butan-1-aminium iodide (3). Com-
pound 2 (2.50 mmol) and 2-iodoethanol (2.50 mmol) were added to a 10 mL vial equipped
with a small magnetic bar. The vial was sealed, and an argon atmosphere inside the
reaction vial was created by three cycles of vacuum and argon pumping. The mixture
was vigorously stirred for 48 h at 75 ◦C to obtain the desired product. No additional
purification step is needed. By following this procedure, N-butyl-N-(2,3-dihydropropyl)-
N-(3-hydroxypropyl)butan-1-aminium iodide (3) was obtained as a very viscous brown
liquid (2.50 mmol, quant.) with a purity of ca. 95% (1H NMR analysis). 1H NMR (300 MHz,
DMSO-d6) δ 5.31 (d, J = 5.3 Hz, 1H), 5.20 (t, J = 5.3 Hz, 1H), 5.04 (t, J = 5.3 Hz, 1H),
4.03–3.88 (m, 1H), 3.87–3.71 (m, 2H), 3.63–3.55 (m, 1H), 3.50–3.35 (m, 5H), 3.32–3.11 (m, 3H),
3.01 (broad s, 1H), 1.78–1.46 (m, 4H), 1.36–1.17 (m, 4H), 0.95–0.83 (m, 6H). 13C{1H} NMR
(101 MHz, DMSO-d6) δ 66.0, 64.1, 62.8, 61.8, 60.6, 59.8, 59.8, 56.5, 55.0, 23.6, 19.6, 19.0, 13.9.
HRMS (ESI) m/z: [M]+ calcd for C13H30NO3

+ 248.2226 found 248.2232.
N-Butyl-N-(2,3-dihydroxypropyl)-N-(3-hydroxypropyl)butan-1-aminium bromide (5). Com-

pound 2 (2.50 mmol) and 2-bromoethanol (2.50 mmol) were added to a 10 mL vial equipped
with a small magnetic bar. The vial was sealed, and an argon atmosphere inside the reaction
vial was created by three cycles of vacuum and argon pumping. The mixture was vigorously
stirred for 48 h at 75 ◦C to obtain the desired product. No purification steps are needed. By
following this procedure, N-butyl-N-(2,3-dihydroxypropyl)-N-(3-hydroxypropyl)butan-1-
aminium bromide (5) was obtained as a very viscous brown liquid (2.50 mmol, quant.) with
a purity of ca. 95% (1H NMR analysis). 1H NMR (300 MHz, DMSO-d6) δ 5.33 (d, J = 5.2 Hz,
1H), 5.21 (t, J = 5.2 Hz, 1H), 5.04 (t, J = 5.2 Hz, 1H), 4.04–3.90 (m, 1H), 3.89–3.73 (m, 2H),
3.73–3.52 (m, 1H), 3.50–3.34 (m, 6H), 3.31–3.12 (m, 2H), 3.03 (s, 1H), 1.81–1.46 (m, 4H),
1.38–1.16 (m, 4H), 0.96–0.81 (m, 6H).13C{1H} NMR (101 MHz, DMSO-d6) δ 66.0, 64.1, 62.7,
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61.8, 60.6, 59.8, 59.8, 56.5, 55.0, 23.6, 19.6, 19.0, 13.9. HRMS (ESI) m/z: [M]+ calcd for
C13H30NO3

+ 248.2226 found 248.2229.
3-(1H-Imidazol-1-yl)propane-1,2-diol (6). Glycidol (15.0 mmol) in acetonitrile (10 mL),

DIPEA (10 mmol), and imidazole (10 mmol) were added to a round-bottom flask with a
refrigerator on top. The mixture was stirred and refluxed overnight. Once the reaction was
complete, the purification took place through flash chromatography using an automatic
flash chromatographer CombiFlash. The elution gradient was from 100% A to 100% B
in 45 CV, then 100% B in 10 CV (A: AcOEt + 2% NH4OH, B: AcOEt/MeOH = 9/1 +
2% NH4OH). By following this procedure, 3-(1H-imidazol-1-yl)propane-1,2-diol (6) was
obtained as a pale yellow viscous oil (5.70 mmol, 57% yield). 1H NMR (500 MHz, D2O) δ
7.68 (s, 1H), 7.18 (s, 1H), 7.03 (s, 1H), 4.19 (dd, J = 13.7, 3.0 Hz, 1H), 4.06–3.98 (m, 2H), 3.60
(dd, J = 11.8, 5.0 Hz, 1H), 3.53 (dd, J = 11.8, 5.0 Hz, 1H).13C{1H} NMR (126 MHz, D2O): δ
138.2, δ 127.2, 120.5, 70.6, δ 62.4, δ 49.0. HRMS (ESI) m/z: [M + H]+ calcd for C6H11N2O2

+

143.0815 found 143.0816.
1-(2,3-Dihydroxypropyl)-3-(2-hydroxyethyl)-1H-imidazol-3-ium iodide (8). Compound 6

(1.40 mmol) and 2-iodoethanol (1.40 mmol) were added to a 10 mL vial equipped with a
small magnetic stir bar. The vial was hermetically sealed, and an argon atmosphere inside
the reaction vial was created by three cycles of vacuum and argon pumping. The mixture
was stirred for 24 h at 75 ◦C to give the final product. No purification steps are needed.
By following this procedure, 1-(2,3-dihydroxypropyl)-3-(2-hydroxyethyl)-1H-imidazol-3-
ium iodide (8) was obtained as a very viscous brown liquid (1.40 mmol, quant.) with
a purity of ca. 95% (1H NMR analysis). 1H NMR (300 MHz, DMSO-d6) δ 9.05 (s, 1H),
7.69 (d, J = 9.4 Hz, 2H), 5.29 (d, J = 5.0 Hz, 1H), 5.14 (t, J = 5.0 Hz, 1H), 4.93 (t, J = 5.0 Hz,
1H), 4.30 (dd, J = 13.8, 2.7 Hz, 1H), 4.21 (t, J = 5.0 Hz, 2H), 4.07 (dd, J = 13.8, 8.2 Hz, 1H),
3.83–3.68 (m, 3H), 3.46–3.36 (m, 1H), 3.26–3.17 (m, 1H). 13C{1H} NMR (101 MHz, DMSO-d6)
δ 137.2, 123.5, 122.8, 70.1, 63.2, 59.8, 52.6, 52.0. HRMS (ESI) m/z: [M]+ calcd for C8H15N2O3

+

187.1077 found 187.1071.
3-Iodopropane-1,2-diol (9). LiI (80.0 mmol, 10 g) was added to a solution of glycidol

(50.0 mmol) and acetic acid (150 mmol) in anhydrous THF (40 mL), and the solution was
kept at room temperature and stirred in argon atmosphere for 40 min. The mixture was
diluted with distilled water and extracted with two aliquots of ethyl acetate (2 × 20 mL).
The organic layer was treated with anhydrous sodium sulphate and filtered, and the
solvent was removed using a rotary evaporator and high-vacuum pump. By following
this procedure, 3-iodopropane-1,2-diol (9) was obtained as a yellow amorphous solid
(50.0 mmol, quant.) 1H NMR (400 MHz, D2O) δ 3.59–3.42 (m, 3H), 3.25 (dd, J = 10.8, 4.5 Hz,
1H), 3.15 (dd, J = 10.8, 4.5 Hz, 1H). 13C{1H} NMR (101 MHz, D2O) δ 70.6, 64.4, 8.6. HRMS
(ESI) m/z: [M + H]+ calcd for C3H8IO2

+ 202.9563 found 202.9554 [74].
2-(Methyl(pyridin-4-yl)amino)ethan-1-ol (13). Chloropyridine hydrochloride (5.00 mmol)

and N-methylethanolamine (62.5 mmol) were added to a round-bottom flask. The mixture
was stirred at 120◦C for 24 h. Once the reaction was complete, the excess of unreacted
amine was vacuum-evaporated, and then the product was purified by extracting the free
amine with DCM from a basic environment (K2CO3). The organic layer was treated with
anhydrous sodium sulphate and filtered, and the solvent was removed using a rotary
evaporator and high-vacuum pump. By following this procedure, 2-(methyl(pyridin-4-
yl)amino)ethan-1-ol (13) was obtained as a white amorphous solid (3.50 mmol, 70% yield).
1H NMR (400 MHz, CDCl3) δ 8.12 (dd, J = 5.1, 1.6 Hz, 2H), 6.52 (dd, J = 5.1, 1.6 Hz, 2H),
3.83 (t, J = 5.7 Hz, 2H), 3.54 (t, J = 5.7 Hz, 2H), 3.04 (s, 3H), 2.70 (broad s, 1H).13C{1H} NMR
(126 MHz, CDCl3): δ 149.0, 106.7, 59.6, 53.6, 38.2. HRMS (ESI) m/z: [M + H]+ calcd for
C8H13N2O+ 153.1022 found 153.1024.

1-(2,3-Dihydroxypropyl)-4-((2-hydroxyethyl)(methyl)amino)pyridin-1-ium iodide (14). Com-
pound 13 (0.25 mmol) and 3-iodopropane-1,2-diol 9 (0.25 mmol) were added to a 10 mL
vial equipped with a small magnetic bar. The vial was hermetically sealed, and an argon
atmosphere inside the reaction vial was created by three cycles of vacuum and argon
pumping. The mixture was stirred for 24 h at 75 ◦C to give the final product. No pu-
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rification steps are needed. By following this procedure, 1-(2,3-dihydroxypropyl)-4-((2-
hydroxyethyl)(methyl)amino)pyridin-1-ium iodide (14) was obtained as a very viscous
yellow liquid (0.25 mmol, quant.) with a purity of ca. 95% (1H NMR analysis). 1H NMR
(300 MHz, DMSO-d6) δ 8.13 (dd, J = 12.5, 7.5 Hz, 2H), 7.12 (d, J = 5.2 Hz, 1H), 6.96 (d,
J = 7.5 Hz, 1H), 5.24 (d, J = 5.2 Hz, 1H), 4.92 (dd, J = 12.0, 6.2 Hz, 2H), 4.27 (d, J = 10.6 Hz,
1H), 4.01 (dd, J = 13.6, 8.2 Hz, 1H), 3.73 (broad s, 1H), 3.63 (s, 4H), 3.53–3.40 (m, 2H), 3.15 (s,
3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 156.6, 143.5, 142.8, 108.0, 107.6, 70.6, 63.1, 60.0,
58.4, 54.2. HRMS (ESI) m/z: [M]+ calcd for C11H19N2O3

+ 227.1390 found 227.1380.
(1-(Pyridin-4-yl)pyrrolidin-2-yl)methanol (15). 4-Chloropyridine hydrochloride (0.70 mmol)

and prolinol (8.75 mmol) were added to a 5 mL vial equipped with a magnetic stir bar.
The vial was hermetically sealed and inserted into a microwave. The reaction mixture was
stirred and irradiated for 3 h at 120 ◦C. After this time, the crude was transferred into a
round-bottom flask and attached to a high-vacuum pump in order to remove the unreacted
excess of prolinol. After 24 h, the crude was diluted in dichloromethane and washed with
a 1M solution of K2CO3. The organic layer was concentrated at the rotary evaporator and
the flask was attached to the high-vacuum pump for an additional 24 h. By following
this procedure, (1-(pyridine-4-yl)pyrrolidine-2-yl)methanol (15) was obtained as a brown
amorphous solid (0.70 mmol, quant.). 1H NMR (300 MHz, CDCl3) δ 8.16 (d, J = 5.0 Hz, 2H),
6.48 (d, J = 5.0 Hz, 2H), 3.98–3.83 (m, 1H), 3.70 (dd, J = 11.0, 4.2 Hz, 1H), 3.60 (dd, J = 11.0,
6.9 Hz, 1H), 3.48–3.43 (m, 1H), 3.28–3.08 (m, 1H), 2.20–1.90 (m, 6H). 13C{1H} NMR (101 MHz,
CDCl3) δ 149.6, 107.4, 62.6, 59.6, 48.1, 28.3, 23.2. HRMS (ESI) m/z: [M + H]+ calcd for
C10H15N2O+ 179.1179 found 179.1181.

1-(2,3-Dihydroxypropyl)-4-(2-(hydroxymethyl)pyrrolidin-1-yl)pyridin-1-ium iodide (16). Com-
pound 15 (0.25 mmol) and 3-iodopropane-1,2-diol 9 (0.25 mmol) was added to a 10 mL vial
equipped with a small magnetic stir bar. The vial was hermetically sealed, and an argon
atmosphere inside the reaction vial was created by three cycles of vacuum and argon pumping.
The mixture was stirred for 24 h at 75 ◦C. No purification steps are needed. By following
this procedure, 1-(2,3-dihydroxypropyl)-4-(2-(hydroxymethyl)pyrrolidin-1-yl)pyridin-1-ium
iodide (16) was obtained as a very viscous brown liquid (0.25 mmol, quant.) with a purity
of ca. 95% (1H NMR analysis). 1H NMR (300 MHz, DMSO-d6) δ 8.16 (t, J = 6.3 Hz, 2H),
7.06 (dd, J = 7.8, 2.8 Hz, 1H), 6.86 (dd, J = 7.8, 2.8 Hz, 1H), 5.25 (d, J = 5.4 Hz, 1H), 4.96 (dt,
J = 13.1, 5.4 Hz, 2H), 4.29 (d, J = 12.3 Hz, 1H), 4.14 (d, J = 5.1 Hz, 1H), 4.03 (dd, J = 13.6,
7.8 Hz, 1H), 3.75 (broad s, 1H), 3.58 (t, J = 10.8 Hz, 1H), 3.51–3.35 (m, 4H), 3.31–3.21 (m, 1H),
2.23–1.71 (m, 4H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 154.0, 143.5, 142.9, 108.8, 108.4,
70.8, 63.2, 61.3, 61.1, 60.1, 49.2, 28.0, 22.8. HRMS (ESI) m/z: [M]+ calcd for C13H21N2O2

+

253.1547 found 253.1551.

3.2. General Procedure for the Synthesis of Styrene Carbonates 18a–g under Batch Conditions

Epoxide 17 (2.00 mmol) and catalyst 16 (5 mol%) were added to a 10 mL vial equipped
with a small magnetic stir bar. A CO2 atmosphere inside the reaction vial was created by
three cycles of vacuum and CO2 pumping and maintained by a carbon dioxide balloon
connected via a needle. The mixture was stirred for 16 h at room temperature, then diluted
with EtOAc to precipitate the catalyst 16, and centrifuged to recover the cyclic carbonate 18
in the solution, which was purified using column chromatography.

4-Phenyl-1,3-dioxolan-2-one (18a). By following the general procedure, 18a (318 mg,
1.94 mmol, >95%) was obtained as a viscous colorless oil after short column chromatog-
raphy on silica gel (9:1 cyclohexane/EtOAc). 1H NMR (500 MHz, CDCl3) δ 7.48–7.41 (m,
3H), 7.36 (dd, J = 7.8, 1.8 Hz, 2H), 5.67 (t, J = 8.0 Hz, 1H), 4.80 (t, J = 8.0 Hz, 1H), 4.34 (t,
J = 8.0 Hz, 1H). 13C{1H} NMR (126 MHz, CDCl3) δ 154.8, 135.8, 129.7, 129.2, 125.9, 78.0, 71.2.
HRMS (ESI) m/z: [M + H]+ calcd for C9H9O3

+ 165.0546 found 165.0539 [23].
4-(4-Chlorophenyl)-1,3-dioxolan-2-one (18b). By following the general procedure, 18b

(356 mg, 1.70 mmol, 85%) was obtained as a viscous pale yellow oil after column chro-
matography on silica gel (9:1 cyclohexane/EtOAc). 1H NMR (300 MHz, CDCl3) δ 7.43 (d,
J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 5.66 (t, J = 8.0 Hz, 1H), 4.80 (t, J = 8.6 Hz, 1H), 4.31
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(dd, J = 8.6, 8.0 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 154.5, 135.8, 134.2, 129.5, 127.2,
77.0, 71.0. HRMS (ESI) m/z: [M + H]+ calcd for C9H8ClO3

+ 199.0156 found 199.0163 [91].
4-(But-3-en-1-yl)-1,3-dioxolan-2-one (18c). By following the general procedure, 18c

(276 mg, 1.95 mmol, >95%) was obtained as a viscous colorless oil after short column
chromatography on silica gel (9:1 cyclohexane/EtOAc). 1H NMR (400 MHz, CDCl3)
δ 5.88–5.70 (m, 1H), 5.15–5.01 (m, 2H), 4.78–4.67 (m, 1H), 4.53 (t, J = 8.2 Hz, 1H), 4.08
(t, J = 8.2 Hz, 1H), 2.34–2.10 (m, 2H), 2.00–1.87 (m, 1H), 1.83–1.71 (m, 1H). 13C{1H} NMR
(101 MHz, CDCl3) δ 154.9, 136.0, 116.5, 76.3, 69.3, 33.1, 28.7. HRMS (ESI) m/z: [M + H]+

calcd for C7H11O3
+ 143.0703 found 143.0699 [23].

4-Butyl-1,3-dioxolan-2-one (18d). By following the general procedure, 18d (230 mg,
1.60 mmol, 80%) was obtained as a viscous colorless oil after column chromatography
on silica gel (9:1 cyclohexane/EtOAc). 1H NMR (400 MHz, CDCl3) δ 4.75–4.65 (m, 1H),
4.52 (t, J = 8.1 Hz, 1H), 4.07 (dd, J = 8.1, 7.1 Hz, 1H), 1.88–1.76 (m, 1H), 1.74–1.64 (m, 1H),
1.48–1.31 (m, 4H), 0.93 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 155.0, 77.0,
69.4, 33.6, 26.4, 22.2, 13.8. HRMS (ESI) m/z: [M + H]+ calcd for C7H13O3

+ 145.0859 found
145.0861 [23].

4-(Chloromethyl)-1,3-dioxolan-2-one (18e). By following the general procedure, 18e
(232 mg, 1.70 mmol, 85%) was obtained as a viscous colorless oil after column chromatogra-
phy on silica gel (9:1 cyclohexane/EtOAc). 1H NMR (400 MHz, CDCl3) δ 4.99–4.91 (m, 1H),
4.59 (dd, J = 8.9, 8.2 Hz, 1H), 4.41 (dd, J = 8.9, 5.7 Hz, 1H), 3.84–3.68 (m, 2H). 13C{1H} NMR
(101 MHz, CDCl3) δ 154.0, 74.2, 67.0, 43.5. HRMS (ESI) m/z: [M + H]+ calcd for C4H6ClO3

+

137.0000 found 136.9998 [23].
4-(Methoxymethyl)-1,3-dioxolan-2-one (18f). By following the general procedure, 18f

(250 mg, 1.90 mmol, 95%) was obtained as a viscous colorless oil after short column
chromatography on silica gel (9:1 cyclohexane/EtOAc). 1H NMR (300 MHz, CDCl3) δ
4.85–4.75 (m, 1H), 4.49 (t, J = 8.4 Hz, 1H), 4.38 (dd, J = 8.4, 6.1 Hz, 1H), 3.61 (qd, J = 10.9,
3.9 Hz, 2H), 3.43 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 154.9, 74.9, 71.4, 66.2, 59.7.
HRMS (ESI) m/z: [M + H]+ calcd for C4H9O4

+ 133.0495 found 133.0489 [92].
4-(Phenoxymethyl)-1,3-dioxolan-2-one (18g). By following general procedure, 18g (337

mg, 1.74 mmol, 87%) was obtained as a white amorphous solid after trituration in Et2O.
1H NMR (300 MHz, CDCl3) δ 7.31 (dd, J = 8.2, 7.3 Hz, 2H), 7.02 (t, J = 7.3 Hz, 1H), 6.91 (d,
J = 8.2 Hz, 2H), 5.09–4.98 (m, 1H), 4.66–4.50 (m, 2H), 4.20 (qd, J = 10.5, 3.9 Hz, 2H). 13C{1H}
NMR (101 MHz, CDCl3) δ 157.7, 129.7, 122.0, 114.6, 74.0, 66.8, 66.2. HRMS (ESI) m/z: [M +
H]+ calcd for C10H11O4

+ 195.0652 found 195.0660 [23].

3.3. General Procedure for the Synthesis of Cyclic Carbonates 18a–g under Segmented
Flow Conditions

Epoxide 17, ethanol (50 mol%), and organocatalysts 16 (5 mol%) were mixed in the
reservoir and the resulting solution was pumped through the thermostated reactor (75 ◦C) at
0.07 mL min−1. Simultaneously, a CO2 gas flow of 3.0 mL min−1 was delivered. Collection
and analysis using 1H NMR of the outlet stream (minute by minute with durene as internal
standard for conversion evaluation) was started 4 min after injection and maintained for
an additional 6 min. After this period, the collected reaction mixture was diluted with
EtOAc to precipitate the catalyst 16, and centrifuged to recover the cyclic carbonate 18 in
the solution, which was purified as described in the batch procedure (Section 3.2).

4. Conclusions

In summary, the chemical efficiency of the carbonation of terminal epoxides with CO2
to produce cyclic carbonates has been investigated by reporting a set of novel polyhy-
droxylated ionic liquids and operating segmented flow reactors. The selected pyridinium
iodide organocatalyst guaranteed high conversions at ambient pressure and moderate
temperature (75 ◦C), showing high reusability and simple downstream separation in batch
experiments. Transition to segmented flow conditions determined a ∼17-fold increase in
process productivity and a reduction in process time from hours to seconds, as a result of
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the improved CO2 mass transfer at the gas–liquid interphase due to the moderate increase
in pressure (8.5 atm) and the segmented flow regime. Therefore, we believe that the flow
methodology herein disclosed might represent a new opportunity for further advancements
in the process intensification of CO2 fixation into cyclic carbonates.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28041530/s1. Figure S1: Flow apparatus. Figures S2 and S3: 1H
and 13C NMR spectra of intermediates and organocatalysts (2, 3, 5, 6, 8, 9, 13, 14, 15,16); Figure S12–S18:
1H and 13C NMR spectra of cyclic carbonates (18a–18g).
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