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Hypercontractivity for global functions and sharp thresholds

Peter Keevash* Noam Lifshitz † Eoin Long ‡ Dor Minzer§

Abstract

The classical hypercontractive inequality for the noise operator on the discrete cube plays a crucial
role in many of the fundamental results in the Analysis of Boolean functions, such as the KKL (Kahn-
Kalai-Linial) theorem, Friedgut’s junta theorem and the invariance principle of Mossel, O’Donnell and
Oleszkiewicz. In these results the cube is equipped with the uniform (1/2-biased) measure, but it is desir-
able, particularly for applications to the theory of sharp thresholds, to also obtain such results for general
p-biased measures. However, simple examples show that when p is small there is no hypercontractive
inequality that is strong enough for such applications.

In this paper, we establish an effective hypercontractivity inequality for general p that applies to
‘global functions’, i.e. functions that are not significantly affected by a restriction of a small set of co-
ordinates. This class of functions appears naturally, e.g. in Bourgain’s sharp threshold theorem, which
states that such functions exhibit a sharp threshold. We demonstrate the power of our tool by strengthen-
ing Bourgain’s theorem, making progress1 on two conjectures of Kahn and Kalai, and proving a p-biased
analogue of the seminal invariance principle of Mossel, O’Donnell, and Oleszkiewicz.

In this 2023 version of our paper we will also survey many further applications of our results that
have been obtained by various authors since we arXived the first version in 2019.

1 Introduction

The field of analysis of Boolean functions is centered around the study of functions on the discrete cube
{0, 1}n, via their Fourier–Walsh expansion, often using the classical hypercontractive inequality for the
noise operator, obtained independently by Bonami [17], Gross [35] and Beckner [10]. In particular, the
fundamental KKL theorem of Kahn, Kalai and Linial [43] applies hypercontractivity to obtain structural
information on Boolean valued functions with small ‘total influence’ / ‘edge boundary’ (see Section 1.2);
such functions cannot be ‘global’: they must have a co-ordinate with large influence.

The theory of sharp thresholds is closely connected (see Section 1.3) to the structure of Boolean func-
tions of small total influence, not only in the KKL setting of uniform measure on the cube, but also in the
general p-biased setting. However, we will see below that the hypercontractivity theorem is ineffective for
small p. This led Friedgut [29], Bourgain [29, appendix], and Hatami [38] to develop new ideas for proving
p-biased analogues of the KKL theorem. The theme of these works can be roughly summarised by the
statement: an effective analog of the KKL theorem holds for a certain class of ‘global’ functions. However,
these theorems were incomplete in two important respects:
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†Einstein Institute of Mathematics, Hebrew University, Jerusalem, Israel.
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1Both these conjectures were open when we arXived this paper in 2019. One of them was solved in 2022; the other is still open.
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• Sharpness: Unlike the KKL theorem, they are not sharp up to constant factors.

• Applicability: They are only effective in the ‘dense setting’ when µp(f) is bounded away from 0 and
1, whereas the ‘sparse setting’ µp(f) = o(1) is needed for many important open problems.

Main result

The fundamental new contribution of this paper is a hypercontractive theorem for functions that are ‘global’
(in a sense made precise below). This has many applications, of which the following are included in this
paper (subsequent applications will be discussed in Section 1.6).

• We strengthen Bourgain’s Theorem by obtaining an analogue of the KKL theorem that is both quan-
titively tight and applicable in the sparse regime.

• We prove a variant form of the Kahn-Kalai Isoperimetric Conjecture concerning the structure of func-
tions that are close to optimal for the edge-isoperimetric inequality.

• We obtain a sharp threshold result for global monotone functions in the spirit of the Kahn-Kalai
Threshold Conjecture.2

• We obtain a p-biased generalisation of the seminal invariance principle of Mossel, O’Donnell and
Oleszkiewicz [63] (itself a generalisation of the Berry-Esseen theorem from linear functions to poly-
nomials of bounded degree), thus opening the door to p-biased versions of its many striking appli-
cations in Hardness of Approximation and Social Choice Theory (see O’Donnell [64, Section 11.5])
and Extremal Combinatorics (see Dinur–Friedgut–Regev [21]).

1.1 Hypercontractivity of global functions

Before formally stating our main theorem, we start by recalling (the p-biased version of) the classical hy-
percontractive inequality. Let3 p ∈

(
0, 12

]
. For r ≥ 1 we write ∥ · ∥r (suppressing p from our notation) for

the norm on Lr({0, 1}n, µp).

Definition 1.1 (Noise operator). For x ∈ {0, 1}n we define the ρ-correlated distribution Nρ(x) on {0, 1}n:
a sample y ∼ Nρ(x) is obtained by, independently for each i setting yi = xi with probability ρ, or oth-
erwise (with probability 1 − ρ) we resample yi with P(yi = 1) = p. We define the noise operator Tρ on
L2({0, 1}n, µp) by

Tρ (f) (x) = Ey∼Nρ(x) [f (y)] .

Hölder’s inequality gives ∥f∥r ≤ ∥f∥s whenever r ≤ s. The hypercontractivity theorem gives an
inequality in the other direction after applying noise to f ; for example, for p = 1/2, r = 2 and s = 4 we
have

∥Tρf∥4 ≤ ∥f∥2
for any ρ ≤ 1√

3
. A similar inequality also holds when p = o(1), but the correlation ρ has to be so small that

it is not useful in applications; e.g. if f(x) = x1 (the ‘dictator’ or ‘half cube’), then ∥f∥2 =
√
µp(f) =

√
p

2Subsequent to the 2019 version of this paper, the Kahn-Kalai Threshold Conjecture has been proved, see [5, 27, 65]. The proof
techniques are completely different to ours, in that no Fourier Analysis is involved, although one can identify in their proof strategy
some elements of our notion of globality.

3The case where p > 1
2

is similar.
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and Tρf(x) = Ey∼Nρ(x)y1 = ρx1 + (1 − ρ)p, so ∥Tρf∥4 > (E[ρ4x41])1/4 = ρp1/4. Thus we need
ρ = O(p1/4) to obtain any hypercontractive inequality for general f .

Local and global functions

To resolve this issue, we note that the tight examples for the hypercontractive inequality are local, in the
sense that a small number of coordinates can significantly influence the output of the function. On the other
hand, many functions of interest are global, in the sense that a small number of coordinates can change the
output of the function only with a negligible probability; such global functions appear naturally in Random
Graph Theory [2], Theoretical Computer Science [29] and Number Theory [30]. Our hypercontractive in-
equality will show that constant noise suffices for functions that are global in a sense captured by generalised
influences, which we will now define.

Let f : {0, 1}n → R. For S ⊂ [n] and x ∈ {0, 1}S , we write fS→x for the function obtained from f
by restricting the coordinates of S according to x (if S = {i} is a singleton we simplify notation to fi→x).
We write |x| for the number of ones in x. For i ∈ [n], the ith influence is Ii(f) = ∥fi→1 − fi→0∥22, where
the norm is with respect to the implicit measure µp. In general, we define the influence with respect to any
S ⊂ [n] by sequentially applying the operators f 7→ fi→1 − fi→0 for all i ∈ S, as follows.

Definition 1.2. For f : {0, 1}n → R and S ⊂ [n] we let (suppressing p in the notation)

IS (f) = Eµp

[( ∑
x∈{0,1}S

(−1)|S|−|x| fS→x

)2
]
.

We say f has β-small generalised influences if IS [f ] ≤ β E[f2] for all S ⊆ [n] .

The reader familiar with the KKL theorem and the invariance principle may wonder why it is necessary
to introduce generalised influences rather than only considering influences (of singletons). The reason is
that under the uniform measure the properties of having small influences or small generalised influences
are qualitatively equivalent, but this is no longer true in the p-biased setting for small p (consider f(x) =
x1x2+···+xn−1xn

∥x1x2+···+xn−1xn∥ ).
We are now ready to state our main theorem, which shows that global4 functions are hypercontractive

for a noise operator with a constant rate. Moreover, our result applies to general Lr norms and product
spaces (see Section 3), but for simplicity here we just highlight the case of (4, 2)-hypercontractivity in the
cube.

Theorem 1.3. Let p ∈
(
0, 12

]
. Suppose f ∈ L2 ({0, 1}n , µp) has β-small generalised influences (for p).

Then ∥T1/5f∥4 ≤ β1/4∥f∥2.

We now move on to demonstrate the power of global hypercontractivity in the contexts of isoperimetry,
noise sensitivity, sharp thresholds, and invariance. We emphasise that Theorem 1.3 is the only new ingredient
required for these applications, so we expect that it will have many further applications to generalising results
proved via usual hypercontractivity on the cube with uniform measure.

4Strictly speaking, our assumption is stronger than the most natural notion of global functions: we require all generalised
influences to be small, whereas a function should be considered global if it has small generalised influences IS(f) for small sets
S. However, in practice, the hypercontractivity Theorem is typically applied to low-degree truncations of Boolean functions (see
Section 3.1) , when there is no difference between these notions, as IS(f) = 0 for large S.
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1.2 Isoperimetry and influence

Stability of isoperimetric problems is a prominent open problem at the interface of Geometry, Analysis and
Combinatorics. This meta-problem is to characterise sets whose boundary is close to the minimum possible
given their volume; there are many specific problems obtained by giving this a precise meaning. Such results
in Geometry were obtained for the classical setting of Euclidean Space by Fusco, Maggi and Pratelli [33]
and for Gaussian Space by Mossel and Neeman [62].

The relevant setting for our paper is that of the cube {0, 1}n, endowed with the p-biased measure µp.
We refer to this problem as the (p-biased) edge-isoperimetric stability problem. We identify any subset of
{0, 1}n with its characteristic Boolean function f : {0, 1}n → {0, 1}, and define its ‘boundary’ as the (total)
influence5

I [f ] =

n∑
i=1

Ii [f ] , where each Ii [f ] = Pr
x∼µp

[f (x⊕ ei) ̸= f (x)] ,

i.e. the ith influence Ii [f ] of f is the probability that f depends on bit i at a random input according to
µp. (The notion of influence for real-valued functions, given in Section 1.1, coincides with this notion for
Boolean-valued functions). When p = 1/2 the total influence corresponds to the classical combinatorial
notion of edge-boundary6.

The KKL theorem of Kahn, Kalai and Linial [43] concerns the structure of functions f : {0, 1}n →
{0, 1}, considering the cube under the uniform measure, with variance bounded away from 0 and 1 and with
total influence is upper bounded by some number K. It states that f has a coordinate with influence at least
e−O(K). The tribes example of Ben-Or and Linial [11] shows that this is sharp.

p-biased versions

The p-biased edge-isoperimetric stability problem is somewhat understood in the dense regime (where
µp (f) is bounded away from 0 and 1) especially for Boolean functions f that are monotone (satisfy
f (x) ≤ f (y) whenever all xi ≤ yi). Roughly speaking, most edge-isoperimetric stability results in the
dense regime say that Boolean functions of small influence have some ‘local’ behaviour (see the sem-
inal works of Friedgut–Kalai [31], Friedgut [28, 29], Bourgain [29, Appendix], and Hatami [38]). In
particular, Bourgain (see also [64, Chapter 10]) showed that for any monotone Boolean function f with
µp (f) bounded away from 0 and 1 and pI [f ] ≤ K there is a set J of O (K) coordinates such that
µp (fJ→1) ≥ µp (f) + e−O(K2). This result is often interpreted as ‘almost isoperimetric (dense) subsets of
the p-biased cube must be local’ or on the contrapositive as ‘global functions have large total influence’. In-
deed, if a restriction of a small set of coordinates can significantly boost the p-biased measure of a function,
then this intuitively means that it is of a local nature.

For monotone functions, the conclusion in Bourgain’s theorem is equivalent (see Section 4) to having
some set J of size O(K) with IJ (f) ≥ e−O(K2). Thus Bourgain’s theorem can be viewed as a p-biased
analog of the KKL theorem, where influences are replaced by generalised influences. However, unlike the
KKL Theorem, Bourgain’s result is not sharp, and the anti-tribes example of Ben-Or and Linial only shows
that the K2 term in the exponent cannot drop below K.

As a first application of our hypercontractivity theorem we replace the term e−O(K2) by the term e−O(K),
which is sharp by Ben-Or and Linial’s example, see Section 4.

5Everything depends on p, which we fix and suppress in our notation.
6For the vertex boundary, stability results showing that approximately isoperimetric sets are close to Hamming balls were

obtained independently by Keevash and Long [49] and by Przykucki and Roberts [66].
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Theorem 1.4. Let p ∈
(
0, 12

]
, and let f : {0, 1}n → {0, 1} be a monotone Boolean function with µp (f)

bounded away from 0 and 1 and I [f ] ≤ K
p . Then there is a set J of O (K) coordinates such that

µp (fJ→1) ≥ µp (f) + e−O(K).

For general functions we prove a similar result, where the conclusion µp (fJ→1) ≥ µp (f) + e−O(K) is
replaced with IJ (f) ≥ e−O(K).

The sparse regime

On the other hand, the sparse regime (where we allow any value of µp(f)) seemed out of reach of previous
methods in the literature. Here Russo [67], and independently Kahn and Kalai [42], gave a proof of the
p-biased isoperimetric inequality: pI [f ] ≥ µp (f) logp (µp (f)) for every f . They also showed that equality
holds only for the monotone sub-cubes. Kahn and Kalai posed the problem of determining the structure
of monotone Boolean functions f that they called d-optimal, meaning that pI [f ] ≤ dµp (f) logp (µp (f)),
i.e. functions with total influence within a certain multiplicative factor of the minimal value guaranteed by
the isoperimetric inequality. The (see [42, Conjecture 4.1(a)]) states that for any constant C > 0 there are
constants K, δ > 0 such that if f is C log (1/p)-optimal then there is a set J of ≤ K log 1

µp(f)
coordinates

such that µp (fJ→1) ≥ (1 + δ)µp(f).
Our variant form of the Kahn–Kalai Isoperimetric Conjecture applies to functions satisfying the slightly

stronger assumption of C log (1/p)-optimality with C sufficiently small; the conjecture requires an arbitrary
constant C, although we note that the conjecture was previously open even for C-optimal functions! Fur-
thermore, we compensate for our stronger hypothesis in the following result by obtaining a much stronger
conclusion than that asked for by Kahn and Kalai, which is sharp up to the constant factor C.

Theorem 1.5. Let p ∈
(
0, 12

]
, K ≥ 1 and let f be a Boolean function with pI [f ] < Kµp (f). Then there is

a set J of at most CK coordinates, where C is an absolute constant, such that µp (fJ→1) ≥ e−CK .

Note that if f is log(1/p)
100C -optimal then Theorem 1.5 applies with K =

log1/p(1/µp(f))

100C log(1/p) =
log(1/µp(f))

100C , giving a set J of size at most CK such that

µp(fJ→1) ≥ e−CK = e− log(1/µp(f))/100 = µp(f)
0.01.

1.3 Sharp thresholds

The results of Friedgut and Bourgain mentioned above also had the striking consequence that any ‘global’
Boolean function has a sharp threshold, which was a breakthrough in the understanding of this phenomenon,
as it superceded many results for specific functions.

The sharp threshold phenomenon concerns the behaviour of µp(fn) for p around the critical probability,
defined as follows. Consider any sequence fn : {0, 1}n → {0, 1} of monotone Boolean functions. For
t ∈ [0, 1] let pn(t) = inf{p : µp(fn) ≥ t}. In particular, pcn := pn(1/2) is commonly known as the ‘critical
probability’ (which we think of as small in this paper). A classical theorem of Bollobás and Thomason [16]
shows that for any ε > 0 there is C > 0 such that pn(1 − ε) ≤ Cpn(ε). This motivates the following
definition: we say that the sequence (fn) has a coarse threshold if for each ε > 0 the length of the interval
[pn(ε), pn(1− ε)] is Θ(pcn), otherwise we say that it has a sharp threshold.

The classical approach for understanding sharp thresholds is based on the Margulis–Russo formula
dµp(f)

dp = Iµp (f), see [58] and [67]. Here we note that if f has a coarse threshold, then by the Mean Value
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Theorem there is a constant ϵ > 0, some p with µp(f) ∈ (ϵ, 1 − ϵ) and pIµp (f) = Θ(1), so one can
apply various results mentioned in Section 1.2. Thus Bourgain’s Theorem implies that there is a set J of
O (K) coordinates such that µp′ (fJ→1) ≥ µp′ (f) + e−O(K2). While this approach is useful for studying
the behaviour of f around the critical probability, it rarely gives any information regarding the location of
the critical probability. Indeed, many significant papers are devoted to locating the critical probability of
specific interesting functions, see e.g. the breakthroughs of Johansson, Kahn and Vu [41] and Montgomery
[60].

A general result was conjectured by Kahn and Kalai for the class of Boolean functions of the form
fn : {0, 1}(

[n]
2 ) → {0, 1}, whose input is a graph G and whose output is 1 if G contains a certain fixed

graph H . For such functions there is a natural ‘expectation heuristic’ pEn for the critical probability, namely
the least value of p such that the expected number of copies of any subgraph of H in G (n, p) is at least
1/2. Markov’s inequality implies pcn ≥ pEn . The hope of the Kahn–Kalai Threshold Conjecture (see [42,
Conjecture 2.1]) is that there is a corresponding upper bound up to some multiplicative factor, i.e. that
pcn = O

(
pEn log n

)
. They also outlined a proof strategy based on their Isoperimetric Conjecture discussed

above, which was partly the motivation for our work.
While the Isoperimetric Conjecture remains open, the Threshold Conjecture has now been resolved

by Park and Pham [65], building on advances on the sunflower conjecture [5] and Talagrand’s fractional
version of the Threshold Conjecture [27]. Nevertheless, even given the Threshold Conjecture, it remains
a challenging task to determine some specific thresholds for which it is hard to estimate the expectation
threshold. For example, it is open to determine the thresholds for designs in random hypergraphs (except
for the recent solution for Latin Squares and Steiner Triple Systems independently in [45, 40]).

Thus there are still potential applications for Theorem 1.5 for estimating thresholds in cases where one
lacks techniques for estimating the expectation threshold. In particular, we note the following consequence,
after combining with Russo’s Lemma. Let f be a monotone Boolean function. We say that f is M -global
in an interval I if for each set J of size ≤ M and each p ∈ I we have µp (fJ→1) ≤ µp (f)

0.01.

Theorem 1.6. There exists an absolute constant C such that the following holds for any monotone Boolean
function f with critical probability pc and p ≤ pc. Suppose for some M > 0 that f is M -global in the
interval [p, pc] and that µp (f) ≥ e−M/C . Then pc ≤ MCp.

To see the utility of Theorem 1.6, imagine that one wants to bound the critical probability as pcn ≤ p,
but instead of showing µp(fn) ≥ 1

2 one can only obtain a weaker lower bound µp (f) ≥ e−M/C , where f is
M -global; then one can still bound the critical probability as pcn ≤ MO(1)p.

1.4 Noise sensitivity

Studying the effect of ‘noise’ on a Boolean function is a fundamental paradigm in various contexts, including
hypercontractivity (as in Section 1.1) and Gaussian isoperimetry (via the invariance principle, see Section
8). Roughly speaking, a function f is ‘noise sensitive’ if f(x) and f(y) are approximately independent for a
random input x and a random small perturbation y of x; an equivalent formulation (which we adopt below)
is that the ‘noise stability’ of f is small (compared to µp (f)). Formally, we use the following definition.

Definition 1.7. The noise stability Stabρ(f) of f ∈ L2({0, 1}n, µp) is defined by

Stabρ (f) = ⟨f,Tρf⟩ = Ex∼µp [f (x) Tρf (x)] .

A sequence fn of Boolean functions is said to be noise sensitive if for each fixed ρ we have Stabρ (fn) =
µp (fn)

2 + o (µp (fn)) .

6



Note that everything depends on p, but this will be clear from the context, so we suppress p from the
notation Stabρ. Kahn, Kalai, and Linial [43] (see also [64, Section 9]) showed that sparse subsets of the
uniform cube are noise sensitive, where we recall that the sequence (fn) is sparse if µp (fn) = o (1) and
dense if µp (fn) = Θ (1).

The relationship between noise and influence in the cube under the uniform measure was further studied
by Benjamini, Kalai, and Schramm [14] (with applications to percolation), who gave a complete characteri-
sation: a sequence (fn) of monotone dense Boolean functions is noise sensitive if and only if the sum of the
squares of the influences of fn is o (1). Schramm and Steif [68] proved that any dense Boolean function on
n variables that can be computed by an algorithm that reads o (n) of the input bits is noise sensitive. Their
result had the striking application that the set of exceptional times in dynamical critical site percolation on
the triangular lattice, in which an infinite cluster exists, is of Hausdorff dimension in the interval

[
1
6 ,

31
36

]
.

Ever since, noise sensitivity was considered in many other contexts (see e.g. the recent results and open
problems of Lubetzky–Steif [57] and Benjamini-Brieussel [13]).

The p-biased setting

In contrast to the uniform setting, in the p-biased setting for small p it is no longer true that sparse sets are
noise sensitive (e.g. consider dictators). Our main contribution to the theory of noise sensitivity is showing
that ‘global’ sparse sets are noise sensitive. Formally, we say that a sequence fn of sparse Boolean functions
is weakly global if for any ε, C > 0 there is n0 > 0 so that µp ((fn)J→1) < ε for all n > n0 and J of size
at most C.

Theorem 1.8. Any weakly global sequence of Boolean functions is noise sensitive.

Besides being of interest in its own right, noise sensitivity provides an alternative approach for proving
results on sharp thresholds. In particular, we obtain the following consequence which will underpin our
combinatorial applications in the companion paper on Extremal Combinatorics.

Theorem 1.9. For any ζ > 0 there is C0 > 1 so that for any ε, p, q ∈ (0, 1/2) with q ≥ (1 + ζ)p and
C > C0, writing r = C log ε−1 and δ = C−r, any monotone (r, δ)-global Boolean function f whose
p-biased measure is at most δ satisfies µq(f) ≥ ε−1µp(f).

1.5 The Invariance Principle

Besides the applications of Theorem 1.3 to isoperimetry, sharp thresholds and noise sensitivity discussed
above, in Section 8 we will also generalise the Invariance Principle of Mossel, O’Donnell and Oleszkiewicz
[63] to the p-biased setting: we show that if a low degree function on the p-biased cube is global (has small
generalised influences) then it is close in distribution to a low degree function on Gaussian space.

We defer a precise statement of the Invariance Principle to Section 8; here we instead highlight the fol-
lowing application to a variant of the ‘Majority is Stablest’ Theorem of Mossel, O’Donnell and Oleszkiewicz
[63] (see also [61]). We need the following notation for its statement. The p-biased α-Hamming ball is the
function Hα : {0, 1}n → {0, 1} with Hα(x) = 1 if and only if |{i : xi = 1}| ≥ t, where t ∈ N is chosen to
minimise |α− µp(Hα)|.

Corollary 1.10. For each ϵ > 0, there exists δ > 0, such that the following holds. Let ρ ∈ (ϵ, 1 − ϵ), let
n > δ−1, and let f, g ∈ L2({0, 1}n, µp). Suppose that IS [f ] ≤ δ and that IS [g] ≤ δ for each set S of at
most δ−1 coordinates. Then

⟨Tρf, g⟩ ≤
〈
TρHµp(f), Hµp(g)

〉
+ ϵ.

7



1.6 Further applications of global hypercontractivity

Here we survey some additional applications of global hypercontractivity, mostly subsequent to the 2019
version of this paper.

1. Exotic settings: Noise sensitivity of sparse sets is related to small-set expansion on graphs, which
has found many applications in Computer Science. Here the interpretation of Theorem 1.8 is that
although not all small sets in the p-biased cube expand, global small sets do expand. Results of a
similar nature were proved for the Grassmann graph [54] and the Johnson graph [53]. The former
result was essential in the proof of the 2-to-2 Games Conjecture, a prominent problem in the field
of hardness of approximation. In subsequent works [24, 25, 47] hypercontractive results for global
functions are proven for various domains by reducing to the p-biased cube and using Theorem 1.3;
these methods are strong enough to establish global hypercontractivity results for general product
domains, as well as domains that are not product but instead are product-like (such as the Johnson
graph, the multi-slice and the symmetric group). In [24], they were also shown to be powerful enough
to give an alternative proof for global-hypercontractivity style results over the Grassmann graph [54].

2. Extremal Combinatorics: The junta method, introduced by Dinur and Friedgut [20] and further devel-
oped by Keller and Lifshitz [51], is a powerful tool for solving problems in Extremal Combinatorics
via the sharp threshold phenomenon. Specifically, it is useful for the study of the Turán problem for
hypergraphs, where one asks how large can a k-uniform hypergraph on n vertices be if it does not
contain a copy of a given hypergraph H . This method was applied in [51] to resolve many such ques-
tions for a wide class of hypergraphs called expanded hypergraphs in which the edge uniformity can
be linear in n, although the number of edges in H is fixed.

In a companion paper [46], we apply the sharp threshold technology developed in the current paper
to the regime where the number of edges of H can grow with n, thus settling many cases of the
Huang–Loh–Sudakov conjecture [39] on cross matchings in uniform hypergraphs and the Füredi–
Jiang–Seiver conjecture [32] on path expansions.

In another companion paper [47], we apply the theory of global hypercontractivity to extremal prob-
lems for codes with forbidden intersections. What is the largest subset A ⊆ [m]n in which no two
vectors agree on exactly t coordinates? We solve this question for any m > 2 and n > n0(t), thereby
strengthening the more classical version of the question regarding intersecting codes due to Ahlswede
and Khachatrian [4] and independently by Frankl and Tokushige [26].

3. Product-free Sets: A subset A of a group G is called product-free if it contains no solutions to the
equation ab = c. What is the largest size of a product-free set in a given group G? This question
was posed in 1985 by Babai and Sós [6], both for general groups and with specific attention to the
alternating group An. The problem for An has recently been resolved in [48]. Moreover, the structure
of families that achieve the maximum size is exactly determined, as well as stability results that give
structure for any sizable product-free set in An. Besides building on earlier work by Gowers [34] and
Eberhard [22], a key component in the proof is a global hypercontractivity result for the symmetric
group Sn, established in [25] and directly motivated by the current work.

4. Error Correcting Codes: The Reed-Muller code is one of the most useful codes in Theoretical Com-
puter Science. A fundamental question on its local testability concerns the effectiveness of the so-
called ‘flat tester’, which queries a random affine subspace and accepts if the restriction forms a
degree d polynomial. Suppose f : Fn

2 → F2, d ∈ N, ε > 0 is small and with probability at least 1− ε
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for a random affine (d + 1)-dimensional subspace A the restriction f |A is a polynomial of degree d.
Must f be close to a degree d polynomial?

A new approach for deriving an optimal testing result is derived in [44], using global hypercontractiv-
ity over the affine Grassmann graph as a key component. The new method is able to recover the results
of [15] and improves upon the results for larger fields [37]. Also, it is more general and thus is more
likely to work for a richer class of codes (the technique of [15] is very specific to the Reed-Muller
code, and also has tower-type dependency on the field size due to use of the Density Hales-Jewett
Theorem).

5. Hypercontractivity over High Dimensional Expanders: High-dimensional expanders can be thought
of as sparse analogues of the Johnson graph, so morally speaking one expects analogous results in
the setting, although these are often much harder to prove. Motivated by some of the ideas herein
(and in subsequent works), new hypercontractive estimates have been proved in the setting of high-
dimensional expanders [36, 9]. These have potential to be useful in this emerging field of study, e.g.
as a new tool to prove mixing results.

6. Algorithms for Unique-Games over Specialized Instances: As discussed earlier, global hypercon-
tractivity has its roots in the proof of the 2-to-2-Games Conjecture, wherein a baby form of global
hypercontractivity plays a crucial role. Subsequent study regarding the more well-known sibling of
2-to-2-Games, known as the Unique-Games Conjecture, has mostly focused on whether global hy-
percontractivity can also be used to eliminate certain avenues towards a proof of the Unique-Games
Conjecture. In particular, in [7, 8] the authors show that global hypercontractivity can be used in the
realm of Sum-of-Squares algorithms to show that Unique-Games instances over specialized graphs,
such as the Johnson graph and the Grassmann graph, can be solved efficiently.

Organization The organisation of this paper is as follows. After introducing some background on Fourier
analysis on the cube in the next section, we prove Theorem 1.3 in Section 3. In Section 4 we establish the
equivalence between the two notions of globalness referred to above, namely control of generalised influ-
ences and insensitivitity of the measure under restriction to a small set of coordinates. Section 5 concerns
the total influence of global functions, and includes the proofs of our stability results for the isoperimet-
ric inequality (Theorems 1.4 and 1.5) and our first sharp threshold result (Theorem 1.6). In Section 6 we
prove our result on noise sensitivity and apply this to deduce an alternative sharp threshold result. Section 7
generalises our hypercontractivity result in two directions: we consider general norms and general product
spaces. In Section 8 we prove our p-biased version of the Invariance Principle and sketch its application to
a variant of the ‘Majority is Stablest’ theorem and a sharp threshold result for almost monotone functions.
We end with some concluding remarks.

2 Notations

Here we summarise some notation and basic properties of Fourier analysis on the cube. We fix p ∈ (0, 1)
and suppress it in much of our notation, i.e. we consider {0, 1}n to be equipped with the p-biased measure
µp, unless otherwise stated. We let σ =

√
p(1− p) (the standard deviation of a p-biased bit). For each

i ∈ [n] we define χi : {0, 1}n → R by χi (x) = xi−p
σ (so χi has mean 0 and variance 1). We use the

orthonormal Fourier basis {χS}S⊂[n] of L2 ({0, 1}n , µp), where each χS :=
∏

i∈S χi. Any f : {0, 1}n →
R has a unique expression f =

∑
S⊂[n] f̂(S)χS where {f̂(S)}S⊂[n] are the p-biased Fourier coefficients
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of f . Orthonormality gives the Plancherel identity ⟨f, g⟩ =
∑

S⊂[n] f̂(S)ĝ(S). In particular, we have the

Parseval identity E[f2] = ∥f∥22 = ⟨f, f⟩ =
∑

S⊂[n] f̂(S)
2. For F ⊂ {0, 1}n we define the F-truncation

fF =
∑

S∈F f̂(S)χS . Our truncations will always be according to some degree threshold r, for which we
write f≤r =

∑
|S|≤r f̂(S)χS .

For i ∈ [n], the i-derivative fi and i-influence Ii(f) of f are

fi = Di [f ] = σ
(
fi→1 − fi→0

)
=

∑
S:i∈S

f̂ (S)χS\{i}, and

Ii(f) = ∥fi→1 − fi→0∥22 = σ−2E[f2
i ] =

1
p(1−p)

∑
S:i∈S

f̂(S)2.

The influence of f is

I(f) =
∑
i

Ii(f) = (p(1− p))−1
∑
S

|S|f̂(S)2. (2.1)

In general, for S ⊂ [n], the S-derivative of f is obtained from f by sequentially applying Di for each i ∈ S,
i.e.

DS(f) = σ|S|
∑

x∈{0,1}S
(−1)|S|−|x|fS→x =

∑
T :S⊂T

f̂(T )χT\S .

The S-influence of f (as in Definition 1.2) is

IS(f) = σ−2|S|∥DS (f) ∥22 = σ−2|S|
∑

E:S⊂E

f̂(E)2. (2.2)

Recalling that a function f has α-small generalised influences if IS(f) ≤ αE[f2] for all S ⊂ [n], we see
that this is equivalent to E[DS (f)2] ≤ ασ2|S|E[f2] for all S ⊂ [n].

3 Hypercontractivity of functions with small generalised influences

In this section we prove our hypercontractive inequality (Theorem 1.3), which is the fundamental result that
underpins all of the results in this paper.

The idea of the proof is to reduce hypercontractivity in µp to hypercontractivity in µ1/2 via the ‘re-
placement method’ (the idea of Lindeberg’s proof of the Central Limit Theorem, and of the proof of
Mossel, O’Donnell and Oleszkiewicz [63] of the invariance principle). Throughout this section we fix
f : {0, 1}n → R and express f in the p-biased Fourier basis as

∑
S f̂(S)χp

S , where χp
S =

∏
i∈S χp

i and
χp
i (x) = xi−p

σ (the same notation as above, except that we introduce the superscript p to distinguish the
p-biased and uniform settings).

For 0 ≤ t ≤ n we define ft =
∑

S f̂(S)χt
S , where

χt
S =

∏
i∈S∩[t]

χ
1/2
i (x)

∏
i∈S\[t]

χp
i (x) ∈ L2(Ωt), with Ωt = ({0, 1}[t], µ1/2)× ({0, 1}[n]\[t], µp).

Thus ft interpolates from f0 = f ∈ L2({0, 1}n, µp) to fn =
∑

S f̂(S)χ
1/2
S ∈ L2({0, 1}n, µ1/2). As

{χt
S : S ⊂ [n]} is an orthonormal basis we have ∥ft∥2 = ∥f∥2 for all t.
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We also define noise operators Tt
ρ′,ρ on L2(Ωt) by Tt

ρ′,ρ(g)(x) = Ey∼Nρ′,ρ(x)
[f(y)], where to sample y

from Nρ′,ρ(x), for i ≤ t we let yi = xi with probability ρ′ or otherwise we resample yi from µ1/2, and for
i > t we let yi = xi with probability ρ or otherwise we resample yi from µp. Thus Tt

ρ′,ρ interpolates from
T0
ρ′,ρ = Tρ (for µp) to Tn

ρ′,ρ = Tρ′ (for µ1/2).
We record the following estimate for 4-norms of p-biased characters:

λ := E[(χp
i )

4] = σ−4(p(1− p)4 + (1− p)p4) = σ−2((1− p)3 + p3) ≤ σ−2.

The core of our argument by replacement is the following lemma which controls the evolution of
E[(Tt

2ρ,ρft)
4] = ∥Tt

2ρ,ρft∥44 for 0 ≤ t ≤ n. Note that expectations are with respect to Ωt−1 on the left-hand-
side and Ωt on the right-hand-side.

Lemma 3.1. E[(Tt−1
2ρ,ρft−1)

4] ≤ E[(Tt
2ρ,ρft)

4] + 3λρ4E[(Tt
2ρ,ρ((Dtf)t))

4].

Proof. We write

ft = χ
1/2
t g + h and ft−1 = χp

t g + h, where

g = (Dtf)t =
∑
S:t∈S

f̂(S)χt
S\{t} =

∑
S:t∈S

f̂(S)χt−1
S\{t} = (Dtf)t−1, and

h = Ext∼µ1/2
ft =

∑
S:t/∈S

f̂(S)χt
S =

∑
S:t/∈S

f̂(S)χt−1
S = Ext∼µpft−1.

We also write

Tt
2ρ,ρft = 2ρχ

1/2
t d+ e and Tt−1

2ρ,ρft−1 = ρχp
td+ e, where

d = Tt
2ρ,ρg = Tt−1

2ρ,ρg and e = Tt
2ρ,ρh = Tt−1

2ρ,ρh.

We can calculate the expectations in the statement of the lemma by conditioning on all coordinates other
than xt, i.e. Ex[·] = Ex′ [Ext [· | x′]] where x′ is obtained from x = (x1, . . . , xn) by removing xt. It
therefore suffices to establish the required inequality for each fixed x′ with expectations over the choice of
xt; thus we can treat d and e as constants, and it suffices to show

Ext∼µp [(ρdχ
p
t (xt) + e)4] ≤ Ext∼µ1/2

[(2ρdχ
1/2
t (xt) + e)4] + 3λρ4d4. (3.1)

As χp
t has mean 0, we can expand the left hand side of (3.1) as

(ρd)4E[(χp
t )

4] + 4e(ρd)3E[(χp
t )

3] + 6e2(ρd)2E[(χp
t )

2] + e4 ≤ 3λ(dρ)4 + 8(deρ)2 + e4,

where we bound the second term using Cauchy-Schwarz and then AM-GM by

4 · E[(dρχp
t )

4]1/2 · E[(deρχp
t )

2]1/2 ≤ 2
(
E[(dρχp

t )
4] + E[(deρχp

t )
2]
)
= 2(λ(dρ)4 + (deρ)2).

Similarly, as E[χ1/2
t ] = E[(χ1/2

t )3] = 0, we can expand the first term on the right hand side of (3.1) as

(2ρd)4E[(χ1/2
t )4] + 6e2(2ρd)2E[(χ1/2

t )2] + e4 = (2ρd)4 + 6(2ρde)2 + e4 ≥ 8(deρ)2 + e4.

The lemma follows.

Now we apply the previous lemma inductively to prove the following estimate.
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Lemma 3.2. ∥Ti
2ρ,ρfi∥44 ≤

∑
S⊂[n]\[i](3λρ

4)|S|∥Tn
2ρ,ρ((DSf)n)∥44 for all 0 ≤ i ≤ n.

Proof. We prove the inequality by induction on n − i simultaneously for all functions f . If n = i then
equality holds trivially. Now suppose that i < n. By Lemma 3.1 with t = i + 1, and the induction
hypothesis applied to f and Dtf with i replaced by t, we have

∥Ti
2ρ,ρfi∥44 ≤ ∥Tt

2ρ,ρft∥44 + 3λρ4∥Tt
2ρ,ρ((Dtf)t)∥44

≤
∑

S⊂[n]\[t]

(3λρ4)|S|∥Tn
2ρ,ρ((DSf)n)∥44 + 3λρ4

∑
S⊂[n]\[t]

(3λρ4)|S|∥Tn
2ρ,ρ((DSDtf)n)∥44

=
∑

S⊂[n]\[i]

(3λρ4)|S|∥Tn
2ρ,ρ((DSf)n)∥44.

In particular, recalling that T0
2ρ,ρ = Tρ on µp and Tn

2ρ,ρ = T2ρ on µ1/2, the case i = 0 of Lemma 3.2 is
as follows.

Proposition 3.3. ∥Tρf∥44 ≤
∑

S⊂[n](3λρ
4)|S|∥T2ρ((DSf)n)∥44.

The 4-norms on the right hand side of Proposition 3.3 are with respect to the uniform measure µ1/2,
where we can apply standard hypercontractivity (the ‘Beckner-Bonami Lemma’) for ρ ≤ 1/2

√
3 to obtain

∥T2ρ((DSf)n)∥44 ≤ ∥(DSf)n∥42 = ∥DSf∥42 = σ4|S|IS [f ]
2. Recalling that λ ≤ σ−2, we deduce the

following bound for ∥Tρf∥44 in terms of the generalised influences of f .

Theorem 3.4. If ρ ≤ 1/
√
12 then ∥Tρf∥44 ≤

∑
S⊂[n](3λρ

4)|S|∥DSf∥42 ≤
∑

S⊂[n](3σ
2ρ4)|S|IS [f ]

2.

Now we deduce our hypercontractivity inequality. It is convenient to prove the following slightly
stronger statement, which implies Theorem 1.3 using ∥DSf∥22 = σ2|S|IS [f ] ≤ λ−|S|IS [f ] and ∥T1/5f∥4 ≤
∥T1/

√
24f∥4 (any Tρ is a contraction in Lp for any p ≥ 1).

Theorem 3.5. Let f ∈ L2 ({0, 1}n , µp) with all ∥DSf∥22 ≤ βλ−|S|E[f2]. Then ∥T1/
√
24f∥4 ≤ β1/4∥f∥2.

Proof. By Theorem 3.4 applied to T1/
√
2f with ρ = 1/

√
12 we have

∥T1/
√
24f∥

4
4 ≤

∑
S⊂[n]

(3λρ4)|S|∥DST1/
√
2f∥

4
2.

As ∥DST1/
√
2f∥

2
2 =

∑
E:S⊂E 2−|E|f̂(E)2 ≤

∑
E:S⊂E f̂(E)2 = ∥DSf∥22 ≤ βλ−|S|E[f2] we deduce

∥T1/
√
24f∥

4
4 ≤

∑
S⊂[n]

∑
E:S⊂E

βE[f2]2−|E|f̂(E)2 = βE[f2]
∑
E

f̂(E)2 = β∥f∥42.

3.1 Hypercontractivity in practice

We will mostly use the following application of the hypercontractivity theorem.

Lemma 3.6. Let f be a function of degree r. Suppose that IS [f ] ≤ δ for all |S| ≤ r. Then

∥f∥4 ≤ 5rδ
1
4 ∥f∥1/22 .

The proof uses the following lemma, which is immediate from the Fourier expression in (2.2).
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Lemma 3.7. IS [f
≤r] ≤ IS [f ] for all S ⊂ [n] and IS [f

≤r] = 0 if |S| > r.

Proof of Lemma 3.6. Write f = T1/5(h), where h =
∑

|T |≤r 5
|T |f̂(T )χT . We will bound the 4-norm of f

by applying Theorem 1.3 to h, so we need to bound the generalised influences of h.
By Lemma 3.7, for S ⊂ [n] we have IS [h] = 0 if |S| > r. For |S| ≤ r, we have

IS [h] = σ−2|S|
∑

T :S⊂T,|T |≤r

52|T |f̂(T )2 ≤ 52rIS [f ] ≤ 52rδ = α∥h∥22,

where α = 52rδ/∥h∥22. By Theorem 1.3, we have

∥f∥4 = ∥T1/5h∥4 ≤ α
1
4 ∥h∥2 = 5r/2δ

1
4

√
∥h∥2 ≤ 5rδ

1
4

√
∥f∥2.

In the final inequality we used ∥h∥2 ≤ 5r∥f∥2, which follows from Parseval.

4 Characterising global functions

Above we have introduced two notions of what it means for a Boolean function f to be global. The first
globalness condition, which appears e.g. in Theorem 1.4, is that the measure of f is not sensitive to restric-
tions to small sets of coordinates. The second condition is a bound on generalised influences IS(f) for small
sets S. In this section we show that we can move freely between these notions for two classes of Boolean
functions: namely sparse ones and monotone ones.

Throughout we assume p ≤ 1/2, which does not involve any loss in generality in our main results;
indeed, if p > 1/2 we can consider the dual f∗(x) = 1 − f(1 − x) of any Boolean function f , for which
µ1−p(f

∗) = 1− µp(f) and Iµ1−p(f
∗) = Iµp(f).

We start by formalising our first notion of globalness.

Definition 4.1. We say that a Boolean function f is (r, δ)-global if µp (fJ→1) ≤ µp (f) + δ for each set J
of size at most r.

We remark that Definition 4.1 is a rather weak notion of globalness, so it is quite surprising that it
suffices for Theorems 1.5 and 1.8, where one might have expected to need the stricter notion that µp(fJ→1)
is close to µp(f).

The following lemma shows that if a sparse Boolean function is global in the sense of Definition 4.1
then it has small generalised influences.

Lemma 4.2. Suppose that f : {0, 1}n → {0, 1} is an (r, δ)-global Boolean function with µp(f) ≤ δ. Then
IS

(
f≤r

)
≤ IS (f) ≤ 8rδ for all S ⊂ [n] with |S| ≤ r.

Proof. The first inequality is from Lemma 3.7. Next, we estimate

√
IS (f) =

∥∥∥∥∥∥
∑

x∈{0,1}S
(−1)|S|−|x| fS→x

∥∥∥∥∥∥
2

≤
∑

x∈{0,1}S
∥fS→x∥2 =

∑
x∈{0,1}S

√
µp(fS→x). (4.1)

Next we fix x ∈ {0, 1}S and claim that µp(fS→x) ≤ 2rδ. By substituting this bound in (4.1) we see
that this suffices to complete the proof. Let T be the set of all i ∈ S such that xi = 1. Since f is
nonnegative, we have µp(fT→1) ≥ (1− p)|S\T | µp(fS→x). As f is (r, δ)-global and µp(f) ≤ δ, we have
µp (fT→1) ≤ 2δ, so µp(fS→x) ≤ (1−p)|T |−r2δ ≤ 2rδ, where for the last inequality we can assume T ̸= ∅,
as µp (f∅→1) = µp(f) ≤ δ ≤ 2rδ. This completes the proof.
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Next we show an analogue of the previous lemma replacing the assumption that f is sparse by the
assumption that f is monotone.

Lemma 4.3. Let f : {0, 1}n → {0, 1} be a monotone Boolean (r, δ)-global function. Then IS [f ] ≤ 8rδ for
every nonempty S of size at most r.

The proof is based on the following lemma showing that globalness is inherited (with weaker parameters)
under restriction of a coordinate.

Lemma 4.4. Suppose that f is a monotone (r, δ)-global function. Then for each i:

1. fi→1 is (r − 1, δ)-global,

2. µp (fi→0) ≥ µp (f)− pδ
1−p ,

3. fi→0 is
(
r − 1, δ

1−p

)
-global.

Proof. To see (1), note that for any J with |J | ≤ r − 1 we have µp((fi→1)J→1) = µp(fJ∪{i}→1) ≤
µp(f) + δ ≤ µp(fi→1) + δ, where the last inequality holds as f is monotone. Statement (2) follows from
the upper bound µp (fi→1) ≤ µp (f) + δ and µp (fi→0) =

µp(f)−pµp(fi→1)
(1−p) .

For (3), we note that by monotonicity µp ((fi→0)S→1) ≤ µp

(
f{i}∪S→1

)
. As f is (r, δ)-global,

µp

(
fS∪{i}→1

)
≤ µp (f) + δ ≤ µp (fi→0) + δ +

pδ

1− p
= µp (fi→0) +

δ

1− p
,

using (2). Hence, fi→0 is
(
r, δ

1−p

)
-global.

Proof of Lemma 4.3. We argue by induction on r. In the case where r = 1, Lemma 4.4 and monotonicity
of f imply (using p ≤ 1/2)

Ii (f) = µp (fi→1)− µp (fi→0) ≤ δ +
pδ

1− p
≤ 2δ.

Now we bound IS∪{i} (f) for r > 1 and S of size r − 1 with i /∈ S.
Note that DS∪{i} (f) = DS [Di(f)]. By the triangle inequality, we have√

IS∪{i} (f) = σ−r∥DS∪{i}(f)∥2 = σ1−r∥DS(fi→1)−DS(fi→0)∥2 ≤
√

IS [fi→1] +
√

IS [fi→0].

By the induction hypothesis and Lemma 4.4 the right hand side is at most
√
8r−1δ +

√
8r−12δ ≤

√
8rδ.

Taking squares, we obtain IS∪{i} (f) ≤ 8rδ.

We conclude this section by showing the converse direction of the equivalence between our two notions
of globalness, i.e. that if the generalised influences of a function f are small then f is global in the sense
of its measure being insensitive to restrictions to small sets. (We will not use the lemma in the sequel but
include the proof for completeness.)
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Lemma 4.5. Let f : {0, 1}n → {0, 1} be a Boolean function and let r > 0. Suppose that IS [f ] ≤ δ for each
nonempty set S of at most r coordinates. Then f is (r, 9rδ)-global.

Proof. To facilitate a proof by induction on r we prove the slightly stronger statement that f is (r,
∑r

i=1 9
i−1δ)-

global. Suppose first that r = 1. Our goal is to show that if Ii[f ] ≤ δ, then µp(fi→1)− µp(fi→0) ≤ δ, and
indeed,

µp(fi→1)− µp(fi→0) ≤ Pr[fi→1 ̸= fi→0] = ∥fi→1 − fi→0∥22 = Ii[f ] ≤ δ.

Now suppose that r > 1 and that the lemma holds with r − 1 in place of r. The lemma will follow once
we show that for all i and all nonempty sets S of size at most r − 1, we have IS [fi→1] ≤ 9δ. Indeed, the
induction hypothesis and the n = 1 case will imply that for each set S of size at most r and each i ∈ S we
have µp(fS→1) ≤ µp(fi→1) +

∑r−1
i=1 9

i−1 · 9δ ≤ µp(f) +
∑r

i=1 9
i−1δ.

We now turn to showing the desired upper bound on the generalised influences of fi→1. Let S be a set
of size at most r − 1. Recall that IS [fi→1] = σ−2|S|∥DS [fi→1]∥22. We may assume that i /∈ S for otherwise
the generalised influence IS [fi→1] is 0. We make two observations. Firstly, we have

DS∪{i}[f ] = σ(DS [fi→1]−DS [fi→0]).

Secondly, conditioning on the output of the coordinate i we have

∥DS [f ]∥22 = p∥DS [fi→1]∥22 + (1− p)∥DS [fi→0]∥22,

which implies ∥DS [fi→0]∥2 ≤
√
2∥DS [f ]∥2. We may now apply the triangle inequality on the first obser-

vation and use the second observation to obtain√
IS [fi→1] = σ−|S|∥DS [fi→1]∥2 = σ−|S|∥σ−1DS∪{i}[f ] + DS [fi→0]∥2

≤ σ−(|S|+1)∥DS∪{i}[f ]∥2 + σ−|S|∥DS [fi→0]∥2
≤ σ−(|S|+1)∥DS∪{i}[f ]∥2 +

√
2σ−|S|∥DS [f ]∥2

=
√
IS∪{i}[f ] +

√
2IS [f ] ≤ (1 +

√
2)
√
δ ≤ 3δ.

Taking squares, we obtain the desired upper bound on the generalised influences of fi→1.

5 Total influence of global functions

In this section we show that our hypercontractive inequality (Theorem 1.3) implies our stability results for
the isoperimetric inequality, namely Theorems 1.4 and 1.5. We also deduce our first sharp threshold result,
Theorem 1.6.

5.1 The spectrum of sparse global sets

The key step in the proofs of Theorems 1.5 and 1.8 is to show that the Fourier spectrum of global sparse
subsets of the p-biased cube is concentrated on the high degrees. We recall first a proof that in the uniform
cube (i.e. cube with uniform measure), all sparse sets have this behaviour (not just the global ones). Our
proof is based on ideas from Talagrand [70] and Bourgain and Kalai [19].

Theorem 5.1. Let f be a Boolean function on the uniform cube, and let r > 0. Then∥∥f≤r
∥∥2
2
≤ 3rµ1/2 (f)

1.5 .
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The idea of the proof is to bound
∥∥f≤r

∥∥2
2
=

〈
f≤r, f

〉
via Hölder by

∥∥f≤r
∥∥
4
∥f∥4/3, bound the 4-norm

via hypercontractivity and express the 4/3-norm in terms of the measure of f using the assumption that f is
Boolean. For future reference, we decompose the argument into two lemmas, the first of which applies also
to the p-biased settting and the second of which requires hypercontractivity, and so is specific to the uniform
setting. Theorem 5.1 follows immediately from Lemmas 5.2 and 5.3 below.

In the following lemma we consider {−1, 0, 1}-valued functions so that it can be applied to either a
Boolean function or its discrete derivative.

Lemma 5.2. Let f : {0, 1}n → {0, 1,−1}, let F be a family of subsets of [n], and let g(x) = fF (x) =∑
S∈F f̂(S)χS(x). Then ∥g∥22 ≤ ∥g∥4∥f∥1.52 , where the norms can be taken with respect to an arbitrary

p-biased measure.

Proof. By Plancherel and Hölder’s inequality, E[g2] = ⟨f, g⟩ ≤ ∥f∥4/3∥g∥4, where ∥f∥4/3 = E[f2]3/4 =
∥f∥1.52 as f is {−1, 0, 1}-valued.

Applying Lemma 5.2 with g = f≤r, we obtain a lower bound on the 4-norm of g. We now upper bound
it by appealing to the Hypercontractivity Theorem.

Lemma 5.3. Let g be a function of degree r on the uniform cube. Then ∥g∥4 ≤
√
3
r ∥g∥2.

Proof. Let h be the function, such that T1/
√
3h = g, i.e. h =

∑
|S|≤r

√
3
|S|
ĝ (S)χS . Then the Hypercon-

tractivity Theorem implies that ∥g∥4 ≤ ∥h∥2, and by Parseval ∥h∥2 ≤
√
3
r∥g∥2.

We shall now adapt the proof of Theorem 5.1 to global functions on the p-biased cube. The only part in
the above proof that needs an adjustment is Lemma 5.3, and in fact we have already provided the required
adjustment in Section 3 in the form of Lemma 3.6.

Theorem 5.4. Let r ≥ 1, and let f : {0, 1}n → {0, 1,−1}. Suppose that IS [f≤r] ≤ δ for each set S of size
at most r. Then E[(f≤r)2] ≤ 54r/3δ

1
3E

[
f2

]
.

Proof. Applying Lemma 3.6 with g = f≤r, we obtain the upper bound ∥g∥4 ≤ 5rδ
1
4 ∥g∥0.52 . Since the

function f takes values only in the set {0, 1,−1}, we may apply Lemma 5.2. Combining it with the upper
bound on the 4-norm of g, we obtain

∥g∥22 ≤ ∥g∥4∥f∥1.52 ≤ 5rδ
1
4 ∥g∥0.52 ∥f∥1.52 .

Rearranging, and raising everything to the power 4
3 , we obtain ∥g∥22 ≤ 54r/3δ

1
3 ∥f∥22.

Let us say that f is ϵ-concentrated above degree r if ∥f≤r∥22 ≤ ϵ∥f∥22. The significance of Theorem 5.4
stems from the fact that it implies the following result showing that for each r, ϵ > 0 there exists a δ > 0
such that any sparse (r, δ)-global function is ϵ-concentrated above degree r.

Corollary 5.5. Let r ≥ 1. Suppose that f is an (r, δ)-global Boolean function with µp (f) ≤ δ. Then
E[(f≤r)2] ≤ 20rδ

1
3µp(f).

Proof. By Lemma 4.2, for each S of size r we have IS
[
f≤r

]
≤ IS [f ] ≤ 8rδ. Then Theorem 5.4 implies

∥f≤r∥22 ≤ 54/3r(8rδ)1/3∥f∥22 ≤ 20rδ
1
3 ∥f∥22, where since f is Boolean we have ∥f∥22 = µp(f).
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5.2 Isoperimetric stability

We are now ready to prove our variant of the Kahn-Kalai Conjecture and sharp form of Bourgain’s Theorem,
both of which can be thought of as isoperimetric stability results. Both proofs closely follow existing proofs
and substitute our new hypercontractivity inequality for the standard hypercontractivity theorem: for the first
we follow a proof of the isoperimetric inequality, and for the second the proof of KKL given by Bourgain
and Kalai [19] (their main idea is to apply the argument we gave in Theorem 5.1 for each of the derivatives
of f ).

Proof of Theorem 1.5. We prove the contrapositive statement that for a sufficiently large absolute constant
C, if f is a Boolean function such that µp(fJ→1) ≤ e−CK for all J of size at most CK, then pI[f ] ≥
Kµp(f). Let f be such a function, and set δ = e−CK . Provided that C ≥ 2, f is (2K, δ)-global, and has
p-biased measure at most δ. By Corollary 5.5, we have

∥f≤2K∥22 ≤ 202Kδ
1
3µp (f) ≤ µp (f) /2,

provided that C is sufficiently large. Hence,

∥f>2K∥22 = ∥f∥22 − ∥f≤2K∥22 ≥ µp (f) /2.

By (2.1) on page 10 we obtain p(1− p)I[f ] ≥ 2K∥f>2K∥22, so pI[f ] ≥ Kµp(f).

Next we require the following lemma which bounds the norm of a low degree truncation in terms of the
total influence.

Lemma 5.6. Let r ≥ 0. Suppose that for each nonempty set S of size at most r, IS
[
f≤r

]
≤ δ. Then

∥f≤r∥22 ≤ µp(f)
2 + 10r−1δ

1
3σ2I[f ].

Proof. Let gi := fi→1 − fi→0. Then for each S of size at most r − 1 with i /∈ S we have

IS [g
≤r−1
i ] = IS∪{i}[f

≤r] ≤ δ,

and for each S containing i we have IS [(gi)≤r−1] = 0. By Theorem 5.4, E[((gi)≤r−1)2] ≤ 54(r−1)/3δ
1
3E[g2i ].

The lemma now follows by summing over all i, using
∑

i E[g2i ] = I[f ]:

∥f≤r∥22 =
∑
|S|≤r

f̂(S)2 ≤ f̂(∅)2 +
∑
|S|≤r

|S|f̂(S)2

= µp(f)
2 + σ2

∑
i

E[((gi)≤r−1)2]

≤ µp(f)
2 + 10r−1δ1/3σ2I[f ].

We now establish a variant of Bourgain’s Theorem for general Boolean functions, in which we replace
the conclusion on the measure of a restriction by finding a large generalised influence.

Theorem 5.7. Let f : {0, 1}n → {0, 1}. Suppose that pI[f ] ≤ Kµp (f) (1 − µp(f)). Then there exists an
S of size 2K, such that IS [f ] ≥ 10−30K .
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Proof. Let r = 2K and let δ = 10−30K . Suppose for contradiction that IS [f ] ≤ δ for each set S of size at
most r. By Lemma 5.6,

∥f≤r∥22 − µp(f)
2 ≤ 10r−1δ1/3σ2I[f ] < pI[f ]/2K ≤ µp(f)(1− µp(f))/2.

On the other hand, by Parseval

∥f − f≤r∥22 =
∑
|S|>r

f̂(S)2 ≤ r−1
∑
|S|>r

|S|f̂(S)2 ≤ r−1p(1− p)I[f ] ≤ µp(f)(1− µp(f))/2.

However, these bounds contradict the fact that

µp(f)(1− µp(f)) = ∥f∥22 − µp(f)
2 = ∥f≤r∥22 − µp(f)

2 + ∥f − f≤r∥22.

Proof of Theorem 1.4. The theorem follows immediately from Theorem 5.7 and Lemma 4.3.

5.3 Sharpness examples

We now give two examples showing sharpness of the theorems in this section, both based on the tribes
function of Ben-Or and Linial [11].

Example 5.8. We consider the anti-tribes function f = fs,w : {0, 1}n → {0, 1} defined by s disjoint sets
T1, . . . , Ts ⊂ [n] each of size w, where f(x) =

∏s
j=1maxi∈Tj xi, i.e. f(x) = 1 if for every j we have

xi = 1 for some i ∈ Tj , otherwise f(x) = 0. We have µp(f) = (1 − (1 − p)w)s and I[f ] = µp(f)
′ =

sw(1−p)w−1(1−(1−p)w)s−1. We choose s, w with s(1−p)w = 1 (ignoring the rounding to integers) so that
µp(f) = (1−s−1)s is bounded away from 0 and 1, and K = (1−p)pI[f ] = pw(1−s−1)−1µp(f) = Θ(pw).
Thus log s = w log(1 − p)−1 = Θ(K). However, for any J ⊂ [n] with |J | = t ≤ s we have µp(fJ→1) ≤
(1 − s−1)s−t ≤ 2t/sµp(f), so to obtain a density bump of e−o(K) we need t = e−o(K)s = eΩ(K) ≫ K.
Thus Theorem 1.4 is sharp.

Example 5.9. Let f(x) = fs,w(x)
∏

i∈T xi with fs,w as in Example 5.8 and T ⊂ [n] a set of size t disjoint
from ∪jTj . We have µp(f) = pt(1 − (1 − p)w)s and I[f ] = µp(f)

′ = tpt−1(1 − (1 − p)w)s + ptsw(1 −
p)w−1(1−(1−p)w)s−1. We fix K > 1 and choose s, w with s(1−p)w = K, so that µp(f) = pt(1−K/s)s =
pte−Θ(K) for s > 2K and p(1−p)I[f ] = µp(f)((1−p)t+pwK(1−K/s)−1) = µp(f)Θ(K) if pw = Θ(1)
and t = O(K). For any J ⊂ [n] with |J | = t + u ≤ t + s we have µp(fJ→1) ≤ (1 − K/s)s−u ≤
e−K(1−u/s) ≤ e−K/2 unless u > s/2 = Θ(K). Thus Theorem 1.5 is sharp.

5.4 Sharp thresholds: the traditional approach

In this section we deduce Theorem 1.6 from our edge-isoperimetric stability results and the Margulis–Russo
Lemma. Recall that a monotone Boolean function is M -global in an interval if µp (fJ→1) ≤ µp (f)

0.01 for
each p in the interval and set J of size M . We prove the following slightly stronger version of Theorem 1.6.

Theorem 5.10. There exists an absolute constant C such that the following holds for any monotone Boolean
function f that is M -global in some interval [p, q]: if q ≤ pc and µp (f) ≥ e−M/C then

µq (f) ≥ µp(f)

(
p
q

)1/C

. (5.1)

In particular, q ≤ MCp.
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Proof. By Theorem 1.5, since f is M -global throughout the interval, there exists a constant C such that

Ix [f ] ≥
µx(f) log(

1
µx(f)

)

Cx for all x in the interval [p, q]. By the Margulis-Russo lemma,

d

dx
log (− log(µx (f))) =

µx(f)
′

µx(f) log(µx (f))
=

Ix[f ]

µx(f) log(µx (f))
≤ −1

Cx

in all of the interval [p, q]. Hence,

log (− log(µq(f))) ≤ log(− log(µp(f)))−
log( qp)

C
.

The first part of the theorem follows by taking exponentials, multiplying by −1 then taking exponentials
again. To see the final statement, note that q ≤ pc implies µq (f) ≤ 1

2 . We cannot have q ≥ M cp, as
then the right hand side in (5.1) would be larger than e−

1
C > 1/2 for large C. To obtain Theorem 1.6 we

substitute q = pc.

6 Noise sensitivity and sharp thresholds

We start this section by showing that sparse global functions are noise sensitive; Theorem 1.8 follows im-
mediately from Theorem 6.1.

Theorem 6.1. Let ρ ∈ (0, 1), and let ϵ > 0. Let r = log(2/ϵ)
log(1/ρ) , and let δ = 20−3r−1ϵ3. Suppose that f is an

(r, δ)-global Boolean function with µp (f) < δ. Then

Stabρ (f) ≤ ϵµp (f) .

Proof. We have

⟨Tρf, f⟩ ≤
∑
|S|≤r

f̂ (S)2 + ρr
∑
|S|>r

f̂ (S)2 ≤ E
[(
f≤r

)2]
+

ε

2
µp(f).

The statement now follows from Corollary 5.5, which gives E[(f≤r)2] ≤ 20rδ1/3E[f2] < εµp(f)/2.

In the remainder of this section, following [56], we deduce sharp thresholds from noise sensitivity via the
following directed noise operator, which is implicit in the work of Ahlberg, Broman, Griffiths and Morris
[3] and later studied in its own right by Abdullah and Venkatasubramanian [1].

Definition 6.2. Let D (p, q) denote the unique distribution on pairs (x, y) ∈ {0, 1}n × {0, 1}n such that
x ∼ µp, y ∼ µq, all xi ≤ yi and {(xi,yi) : i ∈ [n]} are independent. We define a linear operator
Tp→q : L2({0, 1}n, µp) → L2({0, 1}n, µq) by

Tp→q (f) (y) = E(x,y)∼D(p,q) [f (x) |y = y] .

The directed noise operator Tp→q is a version of the noise operator where bits can be flipped only
from 0 to 1. The associated notion of directed noise stability, i.e. ⟨f,Tp→qf⟩µq

, is intuitively a measure
of how close a Boolean function f is to being monotone. Indeed, for any (x,y) with all xi ≤ yi we have
f (x) f (y) ≤ f (x), with equality if f is monotone, so

⟨f,Tp→qf⟩ = E(x,y)∼D(p,q) [f (x) f (y)] ≤ E(x,y)∼D(p,q) [f (x)] = µp (f) ,
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with equality if f is monotone7. We note that the adjoint operator (Tp→q)⋆ : L2({0, 1}n, µq) → L2({0, 1}n, µp)
defined by ⟨Tp→qf, g⟩ = ⟨f, (Tp→q)⋆ g⟩ satisfies (Tp→q)⋆ = Tq→p, where

Tq→p (g) (x) = E(x,y)∼D(p,q) [g (y) |x = x] .

The following simple calculation relates these operators to the noise operator.

Lemma 6.3. Let 0 < p < q < 1 and ρ = p(1−q)
q(1−p) . Then (Tp→q)⋆Tp→q = Tρ on L2({0, 1}n, µp).

Proof. We need to show that the following distributions on pairs of p-biased bits (x,x′) are identical: (a)
let x be a p-biased bit, with probability ρ let x′ = x, otherwise let x′ be an independent p-biased bit, (b)
let (x,y) ∼ D(p, q) and then (x′,y) ∼ D(p, q) | y. It suffices to show P(x ̸= x′) is the same in both
distributions. We condition on x. Consider x = 1. In distribution (a) we have P(x′ = 0) = (1− ρ)(1− p).
In distribution (b) we have P(y = 1) = 1 and then P(x′ = 0) = 1 − p/q = (1 − ρ)(1 − p), as required.
Now consider x = 0. In distribution (a) we have P(x′ = 1) = (1 − ρ)p. In distribution (b) we have
P(y = 1) = q−p

1−p and then P(x′ = 1 | y = 1) = p/q, so P(x′ = 1) = p(q−p)
q(1−p) = (1− ρ)p, as required.

We now give an alternative way to deduce sharp threshold results, using noise sensitivity, rather than the
traditional approach via total influence (as in the proof of Theorem 5.10). Our alternative approach has the
following additional nice features, both of which have been found useful in Extremal Combinatorics (see
[56]).

1. To deduce a sharp threshold result in an interval [p, q] it is enough to show that f is global only ac-
cording to the p-biased distribution. This is a milder condition than the one in the traditional approach,
that requires globalness throughout the entire interval.

2. The monotonicity requirement may be relaxed to “almost monotonicity”.

Proposition 6.4. Let f : {0, 1}n → {0, 1} be a monotone Boolean function. Let 0 < p < q < 1 and
ρ = p(1−q)

q(1−p) . Then µq(f) ≥ µp(f)
2/Stabρ (f).

Proof. By Cauchy–Schwarz and Lemma 6.3,

µp (f)
2 = ⟨Tp→qf, f⟩2µq

≤ ⟨Tp→qf,Tp→qf⟩µq
⟨f, f⟩µq

= ⟨Tρf, f⟩µp
µq (f) .

The above proof works not only for monotone functions, but also for functions where the first equality
above is replaced by approximate equality (which is a natural notion for a function to be “almost monotone”).

We conclude this section by noting that Theorem 1.9 (sharp thresholds for global functions) is immediate
from Theorem 6.1 and Proposition 6.4.

7 General hypercontractivity

In this section we generalise Theorem 1.3 in two different directions. One direction is showing hypercon-
tractivity from general q-norms to the 2-norm (rather than merely treating the case q = 4); the other is
replacing the cube by general product spaces.

7The starting point for [56] is the observation that this inequality is close to an equality if f is almost monotone.
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7.1 Hypercontractivity with general norms

We start by describing a more convenient general setting in which we replace characters on the cube by
arbitrary random variables. To motivate this setting, we remark that one can extend the proof of Theorem
3.4 to any random variable of the form

f =
∑
S⊂[n]

aS
∏
i∈S

Zi, (7.1)

where Z1, . . . ,Zn are independent real-valued random variables having expectation 0, variance 1 and 4th
moment at most σ−2. To motivate the analogous setting for general integers q > 2, we note that the
characters χp

i satisfy
E[|χp

i |
q] ≤ ∥χp

i ∥
q−2
∞ ∥χp

i ∥
2
2 ≤ σ2−q.

This suggests replacing the 4th moment condition by ∥Zi∥qq ≤ σ2−q. Given f as in (7.1), we define the
(generalised) derivatives by substituting the random variables Zi for the characters χp

i in our earlier Fourier
formulas, i.e.

Di[f ] =
∑
S: i∈S

aS
∏

j∈S\{i}

Zi and DT (f) =
∑

S:T⊂S

aS
∏

j∈S\T

Zi,

Similarly, we adopt analogous definitions of the generalised influences and noise operator, i.e.

IS [f ] = ∥σ−|S|DS [f ]∥22 and Tρ[f ] =
∑
S

ρ|S|aS
∏
i∈S

Zi.

We prove the following hypercontractive inequality.

Theorem 7.1. Let q ≥ 2 be an even integer and Z1, . . . ,Zn be independent real-valued random variables
satisfying

E[Zi] = 0, E[Z2
i ] = 1, and E[|Zi|q] ≤ σ2−q.

Let f =
∑

S⊂[n] aS
∏

i∈S Zi and ρ < 1
2q1.5

. Then

∥Tρf∥qq ≤
∑
S⊂[n]

σ(2−q)|S|∥DS(f)∥q2.

Theorem 7.1 is a qualitative generalisation of Theorem 3.4 (with smaller ρ, which we do not attempt to
optimise). The following generalised variant of Theorem 1.3 follows by repeating the proof of Theorem 1.3
in Section 3.

Theorem 7.2. For q > 2 and Zi’s as in Theorem 7.1, let f =
∑

S⊂[n] aS
∏

i∈S Zi let δ > 0, and let
ρ ≤ (2q)−1.5. Suppose that IS [f ] ≤ β∥f∥22 for all S ⊂ [n]. Then

∥Tρ[f ]∥q ≤ β
q−2
2q ∥f∥2.

We now begin with the ingredients of the proof of Theorem 7.1, following that of Theorem 3.4. For
0 ≤ t ≤ n let

ft =
∑
S

aSχ
t
S , where χt

S =
∏

i∈S∩[t]

χ
1/2
i

∏
i∈S\[t]

Zi.
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Here, just as in Section 3, the function ft interpolates from the original function f0 = f to fn =
∑

S aSχ
1/2
S ∈

L2({0, 1}n, µ1/2). As {χt
S : S ⊂ [n]} are orthonormal we have ∥ft∥2 = ∥f∥2 for all t.

As before, we define the noise operators Tt
ρ′,ρ on a function f =

∑
S aSχ

t
S by

Tt[f ] =
∑
S

ρ′|S∩[t]|ρ|S\[t]|aSχ
t
S .

Thus Tt
ρ′,ρ interpolates from T0

ρ′,ρ = Tρ (for the original function) to Tn
ρ′,ρ = Tρ′ (for µ1/2).

Our goal will now be to adjust Lemma 3.1 to the general setting, which is similar in spirit to the 4-norm
case, although somewhat trickier. It turns out that the case n = 1 poses the main new difficulties, so we start
with this in the next lemma.

Lemma 7.3. Let q > 2 be an even integer and Z be a random variable satisfying E[Z] = 0,E[Z2] =

1,E[|Z|q] ≤ σ2−q. Let e, d ∈ R and ρ ∈ (0, 1
2q ]. Then ∥e+ ρdZ∥qq ≤ ∥e+ dχ

1
2 ∥qq + σ2−qdq.

Proof. If e = 0 then the lemma is trivial, so we assume e ̸= 0. If e < 0 we can multiply e, d, Z and
χ

1
2 all by −1 and get an equivalent statement of this form where now e > 0, hence we assume henceforth

that e > 0 (we used the fact that the distribution of χ
1
2 is invariant under multiplication by a sign and the

assumptions on Z are also invariant under multiplication by a sign). By rescaling (d, e) to (d/e, 1) we can
also assume that e = 1.

It will be convenient to consider both sides of the inequality as functions of d: we write

f(d) = ∥1 + ρdZ∥qq and g(d) = ∥1 + dχ
1
2 ∥qq + σ2−qdq.

As f(0) = g(0), it suffices to show that f ′(0) = g′(0) and f ′′ ≤ g′′ everywhere.
Let us compute the derivatives. We note that the function x 7→ |xq| has derivative q|x|q−1sign(x), which

is in turn continuously differentiable for q > 2. Thus

f ′ = E[q |1 + ρdZ|q−1 sign(1 + ρdZ)ρZ] = ρqE[|1 + ρdZ|q−1sign(1 + ρdZ)Z] and

f ′′ = (q − 1)qρ2E[|1 + ρdZ|q−2Z2].

Differentiating g we obtain

g′ = qE
[ ∣∣∣1 + dχ

1
2

∣∣∣q−1
sign(1 + dχ

1
2 )χ

1
2

]
+ qσ2−qdq−1 and

g′′ = q(q − 1)E
[ ∣∣∣1 + dχ

1
2

∣∣∣q−2 (
χ

1
2

)2 ]
+ q(q − 1)dq−2σ2−q ≥ q(q − 1)/2 + q(q − 1)dq−2σ2−q.

Thus g′(0) = f ′(0) = 0 and it remains to show f ′′ ≤ g′′ everywhere. Our strategy for bounding f ′′

is to decompose the expectation over two complementary events E1 and E2, where E1 is the event that
|1 + ρdZ| ≤ |dZ| (and E2 is its complementary event). We write f ′′ = f ′′

1 + f ′′
2 , where each

f ′′
i = (q − 1)qρ2E[|1 + ρdZ|q−2Z21Ei ].

First we note the bound

f ′′
1 ≤ q(q − 1)ρ2dq−2E[|Z|q] ≤ q(q − 1)dq−2σ2−q.

Given the above lower bound on g′′, it remains to show f ′′
2 ≤ q(q − 1)/2. On the event E2 we have

|dZ| ≤ |1 + ρdZ| ≤ 1 + |ρdZ|.
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Rearranging, we obtain |ρdZ|(ρ−1 − 1) ≤ 1. Since ρ−1 ≥ 2q, we get

1 + |ρdZ| ≤ 1 +
1

2q − 1
.

Using E[Z2] = 1 this yields

f ′′
2 ≤ q(q − 1)ρ2

(
1 +

1

2q − 1

)q−2
≤

√
eρ2q(q − 1) ≤ q(q − 1)/2.

Hence f ′′ = f ′′
1 + f ′′

2 ≤ g′′ for any value of d. This completes the proof of the lemma.

We are now ready to show the replacement step.

Lemma 7.4. E[(Tt−1
2qρ,ρft−1)

q] ≤ E[(Tt
2qρ,ρft)

q] + σ2−qE[(Tt
2qρ,ρ((Dtf)t))

q].

Proof. We write

ft = χ
1/2
t g + h and ft−1 = χp

t g + h, where

g = (Dtf)t =
∑
S:t∈S

aSχ
t
S\{t} =

∑
S:t∈S

aSχ
t−1
S\{t} = (Dtf)t−1, and

h = Ext∼µ1/2
ft =

∑
S:t/∈S

aSχ
t
S =

∑
S:t/∈S

aSχ
t−1
S = EZtft−1.

We also write

Tt
2qρ,ρft = 2qρχ

1/2
t d+ e and Tt−1

2qρ,ρft−1 = ρZtd+ e, where

d = Tt
2qρ,ρg = Tt−1

2qρ,ρg and e = Tt
2qρ,ρh = Tt−1

2qρ,ρh.

Conditioning on all coordinates other than Zt, we use Lemma 7.3 with ρ′ = 1
2q and d′ = ρ

ρ′d to argue that
the left hand side of the lemma is equal to

∥ρ′Zt
ρ

ρ′
d+ e∥qq = ∥e+ ρ′d′Zt∥qq ≤ ∥e+ d′χ

1/2
t ∥qq + σ2−qd′

q
= ∥e+ 2qρdχ

1/2
t ∥qq + σ2−q(2qρd)q.

Taking expectation over the coordinates outside Zt and using 2qρ ≤ 1 concludes the proof.

From now on, everything is similar to Section 3. We may apply the previous lemma inductively to
obtain.

Lemma 7.5. ∥Ti
2qρ,ρfi∥

q
q ≤

∑
S⊂[n]\[i] σ

(2−q)|S|∥Tn
2qρ,ρ((DSf)n)∥qq for all 0 ≤ i ≤ n.

In particular, recalling that T0
2qρ,ρ = Tρ on the original function and Tn

2qρ,ρ = T2qρ on µ1/2, the case
i = 0 of Lemma 7.5 is as follows.

Proposition 7.6. ∥Tρf∥qq ≤
∑

S⊂[n] σ
(2−q)|S|∥T2qρ((DSf)n)∥qq.

The q-norms on the right hand side of Proposition 7.6 are with respect to the uniform measure µ1/2,
where we can apply standard hypercontractivity with noise rate ≤ 1/

√
q − 1 to obtain

∥T2qρ((DSf)n)∥qq ≤ ∥(DSf)n∥q2 = ∥DSf∥q2.
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This completes the proof of Theorem 7.1.
In the case where the Zi have different qth moments, the proof can be adjusted to give a better upper

bound. We write
E[Zq

i ] = σ2−q
i , σS =

∏
i∈S

σi and IS [f ] = ∥ 1

σS
DS [f ]∥22. (7.2)

The proof of Theorem 7.1 yields the following variant of Theorem 3.4.

Theorem 7.7. Let q ≥ 2 be an even integer, let 0 < ρ ≤ 1
2q1.5

, and let f =
∑

aS
∏

i∈S Zi with Zi as in
(7.2). Then

∥Tρf∥qq ≤
∑
S⊂[n]

σ2−q
S ∥DS [f ]∥q2.

The following variant of Theorem 1.3 follows from Theorem 7.7. The proof is similar to the one given
in Section 3, where Theorem 1.3 is deduced from Theorem 3.4.

Theorem 7.8. Let q > 2 be an even integer, β > 0 and 0 < ρ ≤ 1
2q1.5

. Suppose f =
∑

S⊂[n] aS
∏

i∈S Zi

with Zi as in (7.2) has IS [f ] ≤ β∥f∥22 for all S ⊂ [n]. Then

∥Tρf∥q ≤ β
q−2
2q ∥f∥2.

Finally, we state the following variant of Lemma 3.6, which is easy to deduce from Theorem 7.8 (mim-
icking the proof of Lemma 3.6).

Lemma 7.9. Let q > 2 be an even integer and δ > 0. Suppose f =
∑

S⊂[n] aS
∏

i∈S Zi with Zi as in (7.2)
has IS [f ] ≤ δ for all |S| ≤ r and f has degree at most r. Then

∥f∥q ≤ (2q)1.5rδ
q−2
2q ∥f∥

2
q

2 .

7.2 A hypercontractive inequality for product spaces

Now we consider the setting of a general discrete product space (Ω, ν) =
∏n

t=1(Ωt, νt). We assume pt =
minωt∈Ωt νt(ωt) ∈ (0, 1/2) for each t ∈ [n], and we write p = mint pt. We recall the projections EJ on
L2(Ω, ν) defined by (EJf)(ω) = EωJ [f(ω) | ωJ ], the generalised Laplacians LS defined by composing Lt

for all t ∈ S, where Ltf = f − Etf , and the generalised influences IS [f ] = E[LS [f ]
2]
∏

i∈S σ−2
i , where

σ2
i = pi(1− pi).

We will require the theory of orthogonal decompositions in product spaces, which we summarise fol-
lowing the exposition in [64, Section 8.3]. For f ∈ L2(Ω, ν) and J, S ⊂ [n] we write f⊂J = EJf and
define f=S =

∑
J⊂S(−1)|S\J |f⊂J (inclusion-exclusion for f⊂J =

∑
S⊂J f

=S). This decomposition is
known as the Efron–Stein decomposition [23]. The key properties of f=S are that it only depends on coor-
dinates in S and it is orthogonal to any function that depends only on some set of coordinates not containing
S; in particular, f=S and f=S′

are orthogonal for S ̸= S′. We note that f = f⊂[n] =
∑

S f=S . We
have similar Plancherel / Parseval relations as for Fourier decompositions, namely ⟨f, g⟩ =

∑
S f=Sg=S ,

so E[f2] =
∑

S(f
=S)2.

Our goal in this section is to prove an hypercontractive inequality for the Efron–Stein decomposition
in the spirit of Theorem 3.4. The noise operator is defined by Tρ[f ] =

∑
S⊂[n] ρ

|S|f=S . It also has a
combinatorial interpretation, which is similar to the usual one on the p-biased setting. Given x ∈ Ω, a
sample y ∼ Nρ(x) is chosen by independently setting yi to xi with probability ρ and resampling it from
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(Ωi, νi) with probability 1−ρ. In the general product space setting there are no good analogues to Di[f ] and
DS [f ], so we instead work with the Laplacians, which have similar Fourier formulae: Li[f ] =

∑
S: i∈S f=S

and LT [f ] =
∑

S:T⊂S f=S . In the special case where Ωi = {0, 1} we have ∥LS [f ]∥2 = ∥DS [f ]∥2. It will
be convenient to write σS =

∏
i∈S σi.

The main result of this section is the following theorem.

Theorem 7.10. Let f ∈ L2(Ω, ν), let q > 2 be an even integer, and let ρ ≤ 1
4q1.5

. Then

∥Tρf∥qq ≤
∑
S⊂[n]

σ2−q
S ∥LS [f ]∥q2.

The idea of the proof is as follows. We encode our function f ∈ L2(Ω, ν) as a function f̃ :=∑
S ∥f=S∥2χS for appropriate χS =

∏
i∈S χi (in fact, these will be biased characters on the cube). We

then bound ∥Tρf∥q by ∥Tρf̃∥q and use Theorem 7.8 to bound the latter norm.
The main technical component of the theorem is the following proposition.

Proposition 7.11. Let q ≥ 2 be an even integer, let g ∈ L2(Ω, ν) let χS =
∏

i∈S χi, where χi are inde-
pendent random variables having expectation 0, variance 1, and satisfying E[χj

i ] ≥ σ2−j
i for each integer

j ∈ (2, q]. Let g̃ =
∑

S⊂[n] ∥g=S∥2χS . Then

∥g∥q ≤ ∥g̃∥q.

Below, we fix χS as in the proposition, and let ◦̃ denote the operator mapping a function g ∈ L2(Ω, ν)
to the function

∑
S⊂[n] g

=SχS .
To prove the proposition, we will expand out ∥g∥qq and ∥g̃∥qq according to their definitions and compare

similar terms: namely, we show that a term of the form E[
∏q

i=1 g
=Si ] is bounded by the corresponding term

in ∥g̃∥qq, i.e.
∏q

i=1 ∥g=Si∥2E[
∏q

i=1 χSi ]. We now establish such a bound.
We begin with identifying cases in which both terms are equal to 0, and for that we use the orthogonality

of the decomposition {g=S}S⊂[n]. Afterwards, we only rely on the fact that g=S depends only on the
coordinates in S.

Lemma 7.12. Let q be some integer, let g ∈ L2(Ω, ν), and let S1, . . . , Sq ⊂ [n] be some sets. Suppose that
some j ∈ [n] belongs to exactly one of the sets S1, . . . , Sq. Then

E

[
q∏

i=1

g=Si

]
= 0 and E

[
q∏

i=1

χSi

]
= 0.

Proof. Assume without loss of generality that j ∈ S1. The second equality E [
∏q

i=1 χSi ] = 0 follows by
taking expectation over χj , using the independence between the random variables χi. For the first equality,
observe that the function

∏q
i=2 g

=Si depends only on coordinates in S2 ∪ · · · ∪ Sq ⊂ [n] \ {j}. Hence the
properties of the Efron–Stein decomposition imply

0 =

〈
g=S1 ,

q∏
i=2

g=Si

〉
= E

[
q∏

i=1

g=Si

]
.

Thus we only need to consider terms corresponding to S1, . . . , Sq in which each coordinate appears in
at least two sets. To facilitate our inductive proof we work with general functions fi that depend only on
coordinates of Si (rather than only with the functions of the form g=Si).
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Lemma 7.13. Let f1, . . . , fq ∈ L2(Ω, ν) be functions that depend on sets S1, . . . , Sq respectively. Let Ti

for i = 3, . . . , q be the set of coordinates covered by the sets S1, . . . , Sq exactly i times. Then∣∣∣∣∣E
[

q∏
i=1

fi

]∣∣∣∣∣ ≤
q∏

i=1

∥fi∥2 ·
q∏

j=3

σ2−j
Tj

.

Proof. The proof is by induction on n, simultaneously for all functions. We start with the case n = 1, which
we prove by reducing to the case that all fi are eqal.

The case n = 1

Here each fi either depends on a single input or is constant and depends only on the empty set. We may
assume that none of the fi’s is constant, as otherwise we may eliminate it from the inequality by dividing by
|fi|. By the generalised Hölder inequality we have∣∣∣∣∣E

[
q∏

i=1

fi

]∣∣∣∣∣ ≤
q∏

i=1

∥fi∥q.

Hence the case n = 1 of the lemma will follow once we prove it assuming all the fi are equal.

The n = 1 case with equal fi’s

We show that if (Ω, ν) is a discrete probability space in which any atom has probability at least p, then
∥f∥qq ≤ ∥f∥q2σ2−q, where σ =

√
p(1− p).

While the inequality ∥f∥2 ≤ ∥f∥q holds in any probability space, the reverse inequality holds in any
measure space where each atom has measure at least 1. Accordingly, we consider the measure ν̃ on Ω
defined by ν̃(x) = ν(x)p−1. Then

∥f∥qq,ν = p∥f∥qq,ν̃ ≤ p∥f∥q2,ν̃ = p1−
q
2 ∥f∥q2,ν ≤ σ2−q∥f∥q2,ν .

This completes the proof of the n = 1 case.

The inductive step

Let f1, . . . , fq ∈ L2(Ω, ν) be functions. Let x ∼
∏n−1

i=1 (Ωi, νi). By the n = 1 case we have:∣∣∣∣∣E
[

q∏
k=1

fk

]∣∣∣∣∣ =
∣∣∣∣∣Ex

[
E

[
q∏

k=1

(fk)[n−1]→x

]]∣∣∣∣∣ ≤ Ex

[
q∏

k=1

∥(fk)[n−1]→x∥2σj
n

]
,

writing j = min{0, 2 − j′} where n ∈ Tj′ , noting that at most j′ of the functions (fk)[n−1]→x depend on
n. The lemma now follows by applying the inductive hypothesis to the functions f∗

k (x) = ∥(fk)[n−1]→x∥2
(depending on coordinates S∗

k ⊂ Sk), using
∥∥∥∥∥(fk)[n−1]→x

∥∥
2

∥∥∥
2,x

= ∥fk∥2.

Proof of Proposition 7.11. As q ≥ 2 is even, we wish to upper bound

∥g∥qq = E[|g|q] = E[gq] =
∑

S1,...,Sq

E

[
q∏

i=1

g=Si

]
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by ∑
S1,...,Sq

E

[
q∏

i=1

χSi

]
q∏

i=1

∥g=Si∥2.

We upper bound each term participating in the expansion of gq by the corresponding term in g̃q. In the case
the sets Si cover some element exactly once, Lemma 7.12 implies that both terms are 0. Otherwise, the sets
Si cover each element either 0 times or at least 2 times; let Ti be the set of elements of S1, . . . , Sq appearing
in exactly i of the sets (as in Lemma 7.13). By the assumption of the proposition, we have E [

∏q
i=1 χSi ] ≥∏q

i=3 σ
2−|Ti|
Ti

. The proof is concluded by combining this with the upper bound on E
[∏q

i=1 g
=Si

]
following

from Lemma 7.13 with fi = g=Si .

Proof of Theorem 7.10. Let σ′
i =

√
(pi/4)(1− pi/4). We choose χi to be the pi

4 -biased character, χi =
xi−pi/4

σ′
i

. Clearly χi has mean 0 and variance 1. We also claim that E
[
χj
i

]
≥ (σi)

2−j for all integer j > 2.
Indeed,

E
[
χj
i

]
≥ pi

4

(
1− pi/4

σ′
i

)j

≥ (1− pi/4)
j−1

(σ′
i)
j−2

≥ (1− pi/4)
(
2
√
1− pi/4

√
1− pi

)j−2
σ2−j
i ,

which is at least σ2−j
i as pi ≤ 1/2. Hence all of the conditions of Proposition 7.11 hold.

Denote σ′
S =

∏
i∈S σ′

i and set h = T 1
2
f , g = T 1

2q1.5
h. By Proposition 7.11 and Theorem 7.7 we have

∥T 1
4q1.5

f∥qq = ∥g∥qq ≤ ∥g̃∥qq ≤
∑
S

(σ′
S)

2−q∥DS [h̃]∥q2.

We note that by Parseval, the 2-norm of h̃ and its derivatives are equal to the 2-norm of h and its Laplacians,
and thus the last sum is equal to∑

S

(σ′
S)

2−q∥LS [h]∥q2 ≤
∑
S

(σS)
2−q∥LS [f ]∥q2.

In the last inequality we used σ′
S ≥ 2−|S|σS and ∥LS [h]∥q ≤ 2−q|S|∥LS [f ]∥q2 (which follows from Parseval).

This completes the proof of the theorem.

8 An invariance principle (for global functions)

Invariance (also known as Universality) is a fundamental paradigm in Probability, describing the phe-
nomenon that many random processes converge to a specific distribution that is the same for many different
instances of the process. The prototypical example is the Berry-Esseen Theorem, giving a quantitative
version of the Central Limit Theorem (see e.g. [64, Section 11.5]). More sophisticated instances of the
phenomenon that have been particularly influential on recent research in several areas of Mathematics in-
clude the universality of Wigner’s semicircle law for random matrices (see [59]) and of Schramm–Loewner
evolution (SLE) e.g. in critical percolation (see [69]).

In the context of the cube, the Invariance Principle is a powerful tool developed by Mossel, O’Donnell
and Oleszkiewicz [63] while proving their ‘Majority is Stablest’ Theorem, which can be viewed as an
isoperimetric theorem for the noise operator. Roughly speaking, the result (in a more general form due
to Mossel [61]) is that ‘majority functions’ (characteristic functions of Hamming balls) minimise noise

27



sensitivity among functions that are ‘far from being dictators’. The Invariance Principle converts many
problems on the cube to equivalent problems in Gaussian Space; in particular, ‘Majority is Stablest’ is
converted into an isoperimetric problem in Gaussian Space which was solved by a classical theorem of
Borell [18] (half-spaces are isoperimetric).

In the basic form (see [64, Section 11.6]) of the Invariance Principle, we consider a multilinear real-
valued polynomial f of degree ≤ k and wish to compare f(x) to f(y), where x and y are random vectors
each having independent coordinates, according to a smooth (to third order) test function ϕ. (Comparison
of the cumulative distributions requires ϕ to be a step function, but this can be handled by smooth approx-
imation.) The version of [64, Remark 11.66] shows that if the coordinates xi have mean 0, variance 1 and
are suitably hypercontractive (satisfy ∥a+ ρbxi∥3 ≤ ∥a+ bxi∥2 for any a, b ∈ R), and similarly for yi, then∣∣E[ϕ(f(x))]− E[ϕ(f(y))]

∣∣ ≤ 1
3∥ϕ

′′′∥∞ρ−3k
∑
i∈[n]

Ii(f)
3/2. (8.1)

The hypercontractivity assumption applies e.g. if the coordinates are standard Gaussians or p-biased
bits (renormalised to have mean 0 and variance 1) with p bounded away from 0 or 1, but if p = o(1) then
we need ρ = o(1), in which case their theorem becomes ineffective. We will apply our hypercontractivity
inequality to obtain an invariance principle that is effective for small probabilities and functions with small
generalised influences. We adopt the following setup.

Setup 8.1. Let σ1, . . . , σn > 0, let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be random vectors with
independent coordinates, where Xi and Yi are real-valued random variables with mean 0, variance 1, and
satisfy ∥Xi∥33 ≤ σ−1

i and ∥Yi∥33 ≤ σ−1
i . Let f ∈ R[v] be a multilinear polynomial of degree d in n variables

v = (v1, . . . , vn). Let ϕ ∈ C3(R) be continuously thrice differentiable.

For S ⊂ [n] we write f̂(S) for the coefficient in f of vS =
∏

i∈S vi. We write WS(f) =
∑

J :S⊂J f̂(J)
2

and similarly to Section 7.1 we define the generalised influences by IS [f ] = WS(f)
∏

i∈S σ−2
i .

We write Tρ[f ] =
∑

S⊂[n] ρ
|S|f̂(S)vS .

Now we state our invariance principle, which compares f(X) to f(Y).

Theorem 8.2. Under Setup 8.1, if IS [f ] ≤ ϵ for each nonempty set S, then

|E[ϕ(f(X))]− E[ϕ(f(Y))]| ≤ 212d∥ϕ′′′∥∞W∅(f)
√
ϵ.

The term W∅(f) can be replaced by either E[f(X)2] or E[f(Y)2] as they are all equal.

Theorem 8.2 can be informally interpreted as saying that if a multilinear, low degree polynomial f is
global then the distribution of f(X) is essentially independent of the distribution of X given the mean and
variance of each coordinate. In particular, it does not make much difference whether we plug in p-biased
characters or uniform characters. A posteriori, this may be seen as an intuitive explanation for Theorem 1.3
given the standard hypercontractivity theorem for the uniform cube.

Next, we set up some notations and preliminary observations for the proof of Theorem 8.2. Throughout
we fix X, Y, f , and ϕ as in Setup 8.1. We write XS =

∏
i∈S Xi, and similarly for Y. Recall that

f =
∑

S f̂(S)vS is a (formal) multilinear polynomial in R[v] of degree d. Note that f(X) =
∑

S f̂(S)XS

has E[f(X)2] =
∑

S f̂(S)2, as EX2
S = 1 and E[XSXT ] = 0 for S ̸= T . The random variable f(X)
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has the orthogonal decomposition f =
∑

S f=S with each f=S = f̂(S)XS . Further note that LSf(X) =∑
J :S⊂J f̂(J)XJ so we have the identities

IS [f ]
∏
i∈S

σ2
i = E[(LSf(X))2] = E[(LSf(Y))2] =

∑
J :S⊂J

f̂(J)2 = WS(f).

We apply the replacement method as in Section 3 (and as in the proof of the original invariance prin-
ciple by Mossel, O’Donnell and Oleszkiewicz [63]). For 0 ≤ t ≤ n, define Z:t = (Z:t

1 , . . . ,Z
:t
n) =

(Y1, ...,Yt,Xt+1, ...,Xn), and note that f(Z:t) has the orthogonal decomposition f(Z:t) =
∑

S f(Z:t)=S

with
f(Z:t)=S = f̂(S)ZS = f̂(S)YS∩[t]XS\[t].

Proof of Theorem 8.2. We adapt the exposition in [64, Section 11.6]. As Z:0 = X and Z:n = Y we have
by telescoping and the triangle inequality

|E[ϕ(f(X))]− E[ϕ(f(Y))]| ≤
n∑

t=1

|E[ϕ(f(Z:t−1))]− E[ϕ(f(Z:t))]|.

Consider any t ∈ [n] and write

f(Z:t−1) = Ut +∆tXt and f(Z:t) = Ut +∆tYt, where

Ut = Etf(Z
:t−1) = Etf(Z

:t) and ∆t = Dtf(Z
:t−1) = Dtf(Z

:t).

Both of the functions Ut and ∆t are independent of the random variables Xt and Yt.
By Taylor’s Theorem,

ϕ(f(Z:t−1)) = ϕ(Ut) + ϕ′(Ut)∆tXt +
1
2ϕ

′′(Ut)(∆tXt)
2 + 1

6ϕ
′′′(A)(∆tXt)

3, and

ϕ(f(Z:t)) = ϕ(Ut) + ϕ′(Ut)∆tYt +
1
2ϕ

′′(Ut)(∆tYt)
2 + 1

6ϕ
′′′(A′)(∆tYt)

3,

for some random variables A and A′. As Xt and Yt have mean 0 and variance 1 we have 0 = E[ϕ′(Ut)∆tYt] =
E[ϕ′(Ut)∆tXt] and E[ϕ′′(Ut)(∆t)

2] = E[ϕ′′(Ut)(∆tYt)
2] = E[ϕ′′(Ut)(∆tXt)

2], so

|E[ϕ(f(Z:t−1))]− E[ϕ(f(Z:t))]| ≤ 1
6∥ϕ

′′′∥∞(E[|∆tXt|3] + E[|∆tYt|3]) ≤ 1
3∥ϕ

′′′∥∞σ−1
t ∥∆t∥33.

In the last inequality, we have viewed the expectation E[|∆tXt|3] (and similarly the expectation E[|∆tYt|3])
as being over Xt and over all of the coordinates in Z:t−1 except for its tth coordinate, noting Xt depends
only on the former random variable whereas ∆t depends only on the latter random variables. The function
∆t is the function Dt[f ] applied on random variables satisfying the hypothesis of Lemma 7.9 for q = 3.
Moreover, IS [Dt[f ]] is either 0 when t ∈ S, or σ2

t IS∪{t}[f ] when t /∈ S, in which case IS [Dtf ] ≤ σ2
t ϵ.

Hence, by Lemma 7.9 (with q = 3), we obtain

∥∆t∥33 ≤ 64.5dσt
√
ϵ∥∆t∥22 = 64.5dσt

√
ϵ ·

∑
S∋t

f̂(S)2.

Hence,
n∑

t=0

1
3∥ϕ

′′′∥∞σ−1
t ∥∆t∥33 ≤ 64.5d

√
ϵ13∥ϕ

′′′∥∞
∑
S

|S|f̂(S)2 ≤ 64.5d
√
ϵd3∥ϕ

′′′∥∞W∅(f).

This completes the proof of the theorem since 64.5d d
3 ≤ 212d.
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8.1 Applications of the Invariance Principle

As mentioned in the Introduction, one consequence of our Invariance Principle is a variant of the ‘Majority
is Stablest’ Theorem of Mossel, O’Donnell and Oleszkiewicz [63] (see also [61]). We omit the proof of
Corollary 1.10), as it goes along the same lines of [61] (see also [64, Chapter 11]).

As an additional application, one can obtain the following sharp threshold result for almost monotone
Boolean functions. This statement asserts that any such function which is global has a sharp threshold. Let
us remark that we have already established such a result in the sparse regime (see Section 6). On the other
hand, the version below applies in the dense regime.

With notation as in Section 6, we say that f is (δ, p, q)-almost monotone if p < q ∈ (0, 1) and choosing
x,y ∼ D(p, q) gives Pr[f(y) = 0, f(x) = 1] < δ. We say that f has an ϵ-coarse threshold in an interval
[p, q] if µp(f) > ϵ and µq(f) < 1− ϵ.

Corollary 8.3. For each ϵ > 0, there exists δ > 0, such that the following holds. Let p < q < 1
2 , and

suppose that q > (1 + ϵ)p. Let f be a (δ, p, q)-almost monotone Boolean function having an ϵ-coarse
threshold in an interval [p, q]. Then there exists a set S of size at most 1

δ , such that IS [f ] ≥ δ either with
respect to the p-biased measure or with respect to the q-biased measure.

The proof is similar to the one given by Lifshitz [56], so we only sketch it.

Proof sketch. First we observe that Corollary 1.10 extends to the one sided noise operator. Let f1 = f be
the function viewed as a function on the p-biased cube, and let f2 = f be the function viewed as a function
on the q-biased cube. So assuming for contradiction that IS [f ] ≤ δ for each S, we obtain an upper bound
on ⟨Tp→qf1, f2⟩µq of the form ⟨Tp→qHµp(f), Hµq(f)⟩µq

However, the (δ, p, q)-almost monotonicity of f implies the lower bound ⟨Tp→qf1, f2⟩µq⟩ ≥ µp(f)− δ.
Standard estimates on ⟨Tp→qHµp(f), Hµq(f)⟩µq show that the lower bound and the upper bound cannot

coexist provided that δ is sufficiently small (see [56]).

9 Concluding remarks

We are optimistic that our sharp threshold result in the sparse regime will have many applications in the
same vein as the applications of the classical sharp threshold results, e.g. to Percolation [12], Complexity
Theory [29], Coding Theory [55], and Ramsey Theory [30].

In particular, despite the recent solution of the Kahn–Kalai Threshold Conjecture, there remain chal-
lenging open problems on thresholds that are potentially amenable to our sharp threshold theorem (Theorem
1.6).

Our variant of the Kahn–Kalai Isoperimetric Conjecture is only effective in the p-biased setting for small
p, whereas the corresponding known results [52, 50] for the uniform measure are substantial weaker. This
leaves our current state of knowledge in a rather peculiar state, as in many related problems the small p
case seems harder than the uniform case! A natural open problem is give a unified approach extending both
results for all p.

Our final open problem is to obtain a generalisation of Hatami’s Theorem to the sparse regime, i.e. to
obtain a density increase from µp (f) = o (1) to µq (f) ≥ 1 − ε under some pseudorandomness condition
on f ; we expect that a such result would have profound consequences in Extremal Combinatorics.
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