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Abstract

The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of

multiple protein complexes that coordinate vesicle budding away from the host cytosol.

ESCRTs function in many fundamental cellular processes including the biogenesis of multi-

vesicular bodies and exosomes, membrane repair and restoration, and cell abscission dur-

ing cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses

critically rely upon host ESCRT machinery for virus replication and envelopment. More

recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma

gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracel-

lular niche, gain resources, or egress from infected cells. Here, we review how intracellular

pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strat-

egies they use to bind ESCRT complexes using short linear amino acid motifs like those

used by ESCRTs to sequentially assemble on target membranes. Future work exposing

new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit

host ESCRT machinery and how ESCRTs facilitate key cellular processes.

Overview of the host endosomal sorting complex required for

transport machinery

Endosomal Sorting Complex Required for Transport (ESCRT) machinery functions in various

cellular pathways ranging from vesicular trafficking and cytokinesis to membrane repair (see

reviews [1–6]). The ESCRT machinery (also termed ESCRTs) consists of 4 protein complexes

(ESCRT-0, -I, -II, and -III), which sequentially associate with a target membrane and the AAA

ATPase vacuolar protein sorting-associated proteins 4A and 4B (VPS4A/B) to mediate mem-

brane deformation and vesicle scission away from the cytosol [7]. Their recruitment to various

cellular sites is dependent on ESCRT adaptor proteins or protein complexes that initiate the

machinery assembly [6]. For example, in its canonical function involving the formation of

multivesicular bodies (MVBs), recruitment of ESCRTs is initiated by ESCRT-0 recognition of

ubiquitinated cargo targeted for degradation [5]. Table 1 summarizes the interactions of com-

plexes that mediate the assembly of the ESCRT machinery. However, other ESCRT functions
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do not require ESCRT-0 for initiation and instead depend on different adaptors for the initia-

tion of assembly. This is the case for the role of ESCRTs in plasma membrane repair, in which

the ESCRT adaptor apoptosis linked gene-2 (ALG-2, also known as PDCD6) interacts with

ESCRT components for the repair of injured membranes [6]. Another example is the recruit-

ment of the ESCRTs by the centrosomal protein of 55 kDa (CEP55) during cytokinesis [4].

Due to the multiple functions of ESCRTs in cells, many intracellular pathogens have evolved

ways to exploit ESCRTs for key aspects of their life cycles including for pathogen replication,

assembly, and egress. This review highlights the clever, and in some cases convergent, strate-

gies by which pathogens make use of the host ESCRT machinery to promote their intracellular

survival and propagation.

Viral late domain motifs provided first insights into how viruses exploit

host ESCRTs

The first described interaction of a pathogen with the host ESCRT machinery was identified

while studying retroviral budding from cells. Two decades ago, it was discovered that the

human immunodeficiency virus-1 (HIV-1) requires host ESCRT components for viral bud-

ding [11]. Since then, numerous studies have shed light on the mechanisms by which this

important human pathogen exploits the ESCRT machinery of its host [11,12]. A significant

breakthrough was the identification of a P[T/S]AP motif in the HIV-1 Gag protein, which

functions in the recruitment of the ESCRT-I component tumor susceptibility gene 101

(TSG101) [13]. By doing so, HIV-1 Gag essentially mimics the interaction between the

TSG101 UEV domain and the PTAP motif in the ESCRT-0 hepatocyte growth factor-regulated

tyrosine kinase substrate protein (HRS/ HGS) [13–16]. This proline-rich sequence, known as a

late domain motif, is encoded in the HIV-1 Gag p6 domain that functions at the late stages of

the infection cycle, hence the name [17]. Although the PTAP late domain motif was first

Table 1. Overview of the ESCRT machinery assembly.

Complex Components Complex assembly [7–10]

ESCRT-0 HRS (HGS)

STAM1/2

• HRS interacts with ESCRT-I via the P[S/T]AP

motif

ESCRT-I TSG101

VPS28

VPS37

MVB12A, MVB12B, UBA1L, UBAP1,

or UMAD1

• UEV domain in TSG101 recognizes HRS P[S/T]

AP motif

• VPS28 C-terminus interacts with the ESCRT-II

ESCRT-II EAP45

EAP30

EAP20

• EAP45 recognizes VPS28 via the GLUE domain

• EAP20 C-terminus interacts with the ESCRT-III

ESCRT-III CHMP1A, CHMP1B

CHMP2A, CHMP2B

CHMP3

CHMP4A-C

CHMP5

CHMP6

CHMP7

IST1

• CHMP6 interacts with EAP20 through the helix-1

domain

• CHMP C-terminal MIM domains interact with

VPS4 MIT domains

VPS4 VPS4A

VPS4B

• VPS4 MIT domain recognizes MIM domains in

CHMPs

ESCRT accessory

proteins

ALIX • ALIX can interact with TSG101 via the P[S/T]AP

motif

• Bro domain is necessary for the interaction with

CHMP4 C-terminus

https://doi.org/10.1371/journal.ppat.1011344.t001
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discovered in HIV-1 Gag, studies have shown that other retroviruses and nonrelated viruses

like Ebola virus (EBOV) also use the PTAP late domain for the recruitment of ESCRTs for

viral budding [18]. Further studies of retroviral budding by the Rous sarcoma virus (RSV) and

the equine infectious anemia virus (EIAV) led to the discovery of other late domain motifs

including PPXY and YPX(n)L, which also mimic motifs present in ESCRT components. These

late domain motifs initiate assembly of the machinery through the binding of the E3-ubiquitin

ligase NEDD4 and the ESCRT adaptor protein ALIX, respectively [19–25]. Numerous mam-

malian viruses have proteins that encode late domain motifs that function as adaptors for the

host ESCRT machinery. Intriguingly, viruses can encode multiple late domain motifs within

the same adaptor protein, providing evidence for the importance of exploiting this host

machinery for their pathogenesis. The newly described sequence motifs PLPPV and FPIV

have been shown to also provide late domain activity for viral budding of mouse mammary

tumor virus (MMTV) and paramyxoviruses, respectively [26–29]. Although the ESCRT pro-

teins recruited through the PLPPV motif remain to be identified, the FPIV motif encoded in

Newcastle disease virus matrix protein (M protein) appears to facilitate an interaction with

CHMP4B [30]. Nonetheless, it is well established that viral late domain motifs have evolved to

mimic the function of proline-rich motifs that facilitate physiological and structural organiza-

tion of ESCRT components [8]. Table 2 provides an overview of the mechanisms for microbial

strategies for usurping of the host ESCRTs.

ESCRT homologues in prokaryotic cells and their contributions to phage

pathogenesis

Fascinatingly, ESCRT-III and VPS4A homologs can be found in archaea, and there is evidence

for the exploitation of these factors by an archaeal virus. In the case of prokaryotes, the ESCRT

machinery is significantly reduced. The few homologues identified in Sulfolobus spp. corre-

spond to the late acting ESCRT components from ESCRT-III and VPS4 [99,100]. These plant

ESCRT homologs are exploited by the archaeal Sulfolobus turreted icosahedral virus (STIV)

for replication [31]. Although a specific role for the ESCRT-III homologs has not been defined,

a similar observation of ring-like structures at budding sites has been described for the archaeal

Sulfolobus spindle-shaped virus-1 (SSV1) [101].

Homologues of ESCRT components have also been identified in the genomes of Asgard

archaea [102]. Genomic analysis of these archaea have identified multiple genes that were

thought to be unique to eukaryotes [103]. This novel finding is consistent with Asgard archaea

and eukaryotes sharing a common ancestry. Among the eukaryotic signature proteins present

in the Asgard archaea superphylum, several are associated with vesicular trafficking, including

ESCRT-I-, ESCRT-II-, ESCRT-III- and ubiquitin modifier-like proteins [103]. Functional

analysis of these proteins showed that the VPS4A homologue can bind ESCRT-III-like pro-

teins and partially complement the loss of VPS4A in Saccharomyces cerevisiae [102]. This has

led to recognizing the importance of this ancient machinery in evolutionary distinct cells.

Plant pathogens and their interactions with their host ESCRT

Although plants lack orthologs of ESCRT-0, they have components of ESCRT-I, -II, and -III

that function in endosomal sorting (i.e., MVB biogenesis) and nonendosomal sorting events

[104], including exploitation by pathogens (Fig 1). The plant virus tomato bushy stunt virus

(TBSV) forms viral replication organelles in peroxisomes that are composed of vesicle-like

structures termed spherules or viral replication complexes (VRCs), which are coated with the

viral replicase protein p33 [105–108]. These structures have been reproduced in yeast to study

host factors necessary for their biogenesis [109,110]. A genome-wide screen using this model
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Table 2. Strategies of microbial pathogens in exploiting the host ESCRT machinery.

Microbe Recruitment Important ESCRT

components

Host ESCRT recruitment site ESCRT function

Protein Motif

Prokaryotic virus

Sulfolobus turreted icosahedral
virus 1 (STIV)

N.I.* N.I. CdvB (ESCRT-III

like protein)

Cell membrane Viral budding [31]

Vps4A

Plant viruses

Tomato bushy stunt virus
(TBSV)

p33 P[S/T]AP-

like motif

Vps23 Peroxisomes Viral replication complex [32–34]

Bro1p

Vps24

Snf7

Vps4

Carnation Italian ringspot
virus
(CIRV)

p36 N-terminus Vps23 Mitochondria Viral replication complex [35]

Brome mosaic virus (BMV) 1a N.I. Snf7 Endoplasmic reticulum Viral replication complex [36]

Retroviruses

Human immunodeficiency
virus
(HIV-1)

Gag P[S/T]AP TSG101 Plasma membrane Viral budding [11,13–

16,22,37,38,39,40,41]YPX(n)L ALIX

CHMP2

CHMP4

VPS4

Equine infectious anemia virus
(EIAV)

Gag YPX(n)L ALIX Plasma membrane Viral budding [20,39,41]

CHMP2

CHMP4

VPS4

Rous sarcoma virus (RSV) Gag PPXY NEDD4 Plasma membrane Viral budding [19,42–46]

YPX(n)L VPS4

TSG101

Filoviruses

Ebolavirus (EBOV) VP40 PTAP TSG101 Plasma membrane Viral budding [18,38,47–49]

PPXY NEDD4

Marburg virus (MARV) VP40 PPXY NEDD4 Plasma membrane Viral budding [50]

P[S/T]AP TSG101

Paramyxoviruses

Human parainfluenza virus- 5
(HPIV5)

M

protein

FPIV ? Plasma membrane Viral budding [27]

VPS4

Mumps virus (MuV) M

protein

FPIV ? Plasma membrane Viral budding [28]

VPS4

CHMP4B

Newcastle disease virus M

protein

FPIV CHMP4B Plasma membrane Viral budding [29,30]

Flaviviridae

Yellow fever virus (YFV) NS3 YPTI? ALIX Endoplasmic reticulum Viral particle assembly [51]

Japanese encephalitis virus
(JEV)

NS3 N.I. TSG101 Endoplasmic reticulum Viral particle assembly [52,53]

CHMP2

CHMP4

(Continued)
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Table 2. (Continued)

Microbe Recruitment Important ESCRT

components

Host ESCRT recruitment site ESCRT function

Protein Motif

Dengue virus (DENV) NS3 YXKT? TSG101 Endoplasmic reticulum Viral particle assembly [53,54]

CHMP2

CHMP4

ALIX

Hepatitis C virus (HCV) NS2

NS5A

N.I. TSG101 Endoplasmic reticulum Viral particle assembly [55–58]

ALIX

HRS

VPS4

CHMP1A

CHMP4B

Classical swine fever virus
(CSFV)

NS3 N.I. TSG101 Endoplasmic reticulum Viral particle assembly [59,60]

NS4B CHMP4B

NS5A CHMP7

NS5B VPS4

Tick-borne flaviviruses
(TBFV)

NS3 LYXLA ALIX Replication site Viral replication [61]

E-

proteins

CHMP4A

Other RNA viruses

Hepatitis A virus (HAV) VP2 YPX(n)L ALIX Multivesicular bodies Viral release [62–67]

VP1pX N.I. VPS4

CHMP1A, B

CHMP4B

CHMP2A

Chikungunya virus (CHIKV) E1 N.I. HRS Cytoplasm Viral particle assembly [68]

E2 NEDD4

nsP4 TSG101

nsP1

nsP3

DNA viruses

Herpes simplex virus 1 (HSV-

1)

UL34 RRRR ALIX Nucleus Nuclear export complex

CHMP4

UL36 P[T/S]AP TSG101 Trans-Golgi Secondary envelopment [69–75]

YPX(n)L? CHMP1

CHMP4

VPS4

Epstein–Barr virus (EBV) BFRF1 N.I. Itch-Ubiquitin ligase Nucleus Nuclear export complex [76–78]

ALIX

CHMP4

VPS4

Human cytomegalovirus
(HMCV)

N.I. N.I. CHMP1A Endosomal compartment Secondary envelopment [79]

VPS4A

Vaccinia virus (VACV) F13L YPX(n)L ALIX Endosomal compartment and/or Trans-
Golgi

Viral envelopment and release

[80,81]TSG101

VPS4

CHMP1A

CHMP3

CHMP4C

CHMP6

(Continued)
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Table 2. (Continued)

Microbe Recruitment Important ESCRT

components

Host ESCRT recruitment site ESCRT function

Protein Motif

Hepatitis B virus (HBC) HBc N.I. HRS Cell periphery Viral replication and release [82–

85]VPS28

VPS37

CHMP1A, B

CHMP2A, B

CHMP3

CHMP4A, B

VPS4

Intracellular bacteria

Anaplasma phagocytophilum N.I. N.I. HRS Pathogen-containing vacuole Proliferation [86]

ALIX

CHMP4A, B, C

Brucella abortus N.I. N.I. N.I. Pathogen-containing vacuole Release [87]

Uropathogenic Escherichia
coli (UPEC)

N.I. N.I. ALIX Pathogen-containing vacuole Release [88]

TSG101

Mycobacterium tuberculosis EsxG N.I. HRS Pathogen-containing vacuole Lysosome-clearance evasion [89,90]

EsxH CHMP1A, B

CHMP4B

Salmonella enterica SpoB N.I. HRS Pathogen-containing vacuole Pathogen-containing vacuole

biogenesis [91–93]CHMP1

CHMP3

CHMP4

CHMP5

CHMP7

VPS4

Coxiella burnetii N.I. N.I. TSG101 Pathogen-containing vacuole Pathogen-containing vacuole

integrity [94]CHMP4B

Intracellular eukaryote

Toxoplasma gondii GRA14 YPX(n)L ALIX Pathogen-containing vacuole (known as

the parasitophorous vacuole or PV)

Vesicular uptake or entrapment

within the PV [95]P[T/S]AP TSG101

VPS28

VPS37A, C

UMAD1

ALG-2

CHMP1A

CHMP4B

VPS4

GRA64 N.I. TSG101 Pathogen-containing vacuole (known as

the parasitophorous vacuole or PV)

Vesicular uptake or entrapment

within the PV [96,97]VPS37A

VPS28

UMAD1

ALG-2

CHMP4B

RON4 YPX(n)L ALIX Plasma membrane Invasion [98]

RON5 P[T/S]AP TSG101

*N.I., not identified.

https://doi.org/10.1371/journal.ppat.1011344.t002
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host identified several ESCRT components that are necessary for TBSV replication [111]. Dur-

ing the formation of VRCs at the peroxisome membrane, p33 is ubiquitinated and recruits the

ESCRT-I component Vps23 (TSG101 homologue) through a late domain motif-like sequence,

PSVP [112]. Additionally, the ESCRT accessory protein Bro1 (a homologue of human ALIX),

the ESCRT-III components Vps24 and Snf7 (homologs of human CHMP3 and CHMP4,

respectively), and Vps4 are important for VRC assembly during TBSV infection [32,34]. Sur-

prisingly, host Vps4 appears to remain at the sites of VRCs following recruitment [33], differ-

ently from its canonical role in transiently localizing to the site of ESCRT complex assembly to

remodel and disassemble the machinery [113]. As a result, the VRC remains “opened” to the

host cytosol, and this configuration is also dependent on the function of ESCRT-III compo-

nents at this structure where the viral RNA is protected from clearance by host intrinsic

defenses [33,34].

Other plant viruses that form ESCRT-dependent VRCs at the host mitochondria and endo-

plasmic reticulum (ER) are the carnation Italian ringspot virus (CIRV) [35] and the brome

mosaic virus (BMV) [36,114], respectively. CIRV, a tombusvirus similar to TBSV, interacts with

the host ESCRT-I component Vps23 through the viral protein p36 [35]. However, the CIRV

p36 protein interacts with Vps23 by “mimicking” the Vps23–Vps28 interaction through the

Fig 1. The role of plant ESCRTs in microbial infection. Plant viruses make use of the host ESCRT machinery for the

formation of VRCs at different host organelles: (1) TBSV at peroxisomes via the viral protein p33 encoding a P[S/T]

AP-like late domain motif; (2) BMV at the mitochondria via the viral protein 1a N-terminus; and (3) CIRV at the ER.

(4) Plant ESCRTs also contribute to the formation of EVs that are secreted in response to pathogens as a mechanism

for intrinsic defense. Created using Biorender.com. BMV, brome mosaic virus; CIRV, carnation Italian ringspot virus;

ER, endoplasmic reticulum; ESCRT, Endosomal Sorting Complex Required for Transport; EV, extracellular vesicle;

TBSV, Tomato bushy stunt virus; VRC, viral replication complex.

https://doi.org/10.1371/journal.ppat.1011344.g001
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Vps23 StBox (steadiness box) domain [35]. This is different from the TBSV p33 protein and

those of other viruses that interact with Vps23 UEV (ubiquitin E2 variant) domain through a P

[S/T]AP-like motif [13,18,112]. In the case of BMV, several ESCRT components colocalize with

viral protein 1a and are important for the replication of the virus, with host Snf7 (a member of

ESCRT-III) depletion having the most significant effect in VRC formation [36].

Another relevant aspect of the ESCRT machinery in plants is its function in forming extra-

cellular vesicles (EVs) and their role in the defense against microbes and facilitating plant–

microbe symbiosis, as recently reviewed by Cui and colleagues [115]. Fusion of MVBs with the

plasma membrane results in the release of EVs that function in immune defense against plant

pathogens [116]. Secreted EVs contain proteins that stimulate fortification of the cell wall as a

barrier against pathogens [115]. Plant EVs also contain small RNAs that can target fungal path-

ogens to induce gene silencing [117]. As a similar mechanism of defense, EV secretion appears

to be increased upon Pseudomonas syringae infection [118]. However, the role of individual

ESCRT components in MVB formation for EV-mediated pathogen defense, and the extent to

which this is conserved in mammals, remains to be elucidate.

Microbial strategies for usurping host ESCRTs in animal cells

ESCRT-dependent envelopment: Viral budding at the host plasma membrane. The

budding of enveloped viruses has parallels to ESCRT-dependent MVB formation (Fig 2). The

role of ESCRTs in this process has been extensively reviewed [119–122]. In some cases, ubiqui-

tination is an important factor for the recruitment of the ESCRTs for viral budding. This is

mainly the case for viruses encoding the PPXY late domain motif for the recruitment of the

E3-ubiquitin ligase NEDD4, including EBOV, RSV, human T-cell leukemia virus-1 (HTLV-1),

murine leukemia virus (MLV), and Marburg virus (MARV) [122]. Ubiquitinated cargo can be

recognized by several ESCRT components including the ESCRT-0 HRS protein, the ESCRT-I

components TSG101 and Vps23, and the ESCRT accessory protein ALIX [119]. As such,

viruses that use the PPXY-NEDD4-ubiquitination strategy have effectively evolved an alterna-

tive mechanism for interacting with TSG101 and ALIX in the absence of P[S/T]AP and

YPX(n)L late domain motifs [123].

Gag is the main structural protein for retrovirus assembly [124]. During HIV-1 release,

which is the most studied retroviral ESCRT-mediated budding process, Gag localizes to the

plasma membrane of host cells where it interacts with TSG101 through the PTAP motif

encoded in its p6 domain [13,15,16,37]. Interestingly, the HIV-1 Gag PTAP peptide binds the

host TSG101 UEV domain with a higher affinity than the HRS PTAP peptide [37]. Disrupting

either the HIV-1 PTAP motif or the host TSG101 impairs virus release [14,15,17]. Addition-

ally, HIV-1 Gag encodes a second late domain motif, YPX(n)L, which binds to the ALIX V

domain [39]; however, its binding is weaker than that of the EIAV Gag YPX(n)L late domain

motif [22]. Nonetheless, ALIX contributes in HIV-1 virus release, and overexpressing it can

restore the budding deficiency of HIV-1 PTAP mutants [22,39,40]. ESCRT-III and VPS4 com-

plexes are also critical for HIV-1 viral budding [15,125]. The role of ALIX in viral budding was

confirmed using EIAV since this virus lacks a PTAP motif and solely relies on a YPX(n)L motif

[41].

Recruitment dynamics of ESCRT components to HIV-1 viral assembly sites at the plasma

membrane have supported a role for TSG101, ALIX, CHMP4B, and VPS4. Studies using

superresolution microscopy provided evidence for the colocalization of TSG101, ALIX, and

CHMP4B to the cell membrane where HIV-1 puncta accumulate [126]. These observations

were reinforced by live imaging studies [127–129]. Such studies support a model in which

HIV-1 Gag recruits TSG101 to the cell plasma membrane where it remains at the site of virus-
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like particle (VLP) budding, while the late acting ESCRT proteins CHMP4B and VPS4A are

transiently recruited to these sites. The recruitment of these late acting ESCRT components is

not simultaneous; CHMP4B localized to the nascent VLP a few seconds before VPS4A arrived,

but CHMP4B departed within approximately 18 s, whereas VPS4A lingered for approximately

48 s [128,130]. CHMP4B and ALIX assemble simultaneously and their disassembly is depen-

dent on the recruitment and ATPase function of VPS4 [129].

Overall, the viral requirements for early ESCRT components (ESCRT-I, ALIX) appear to

vary according to their late domain motifs; however, they converge in the recruitment of

CHMP4 and VPS4 isoforms to mediate membrane fission and release of viral particles

[41,119].

Strategies used by other RNA viruses: Viral particle assembly at intracellular compart-

ments. Although the best described examples of a pathogen usurping the ESCRT machinery

are seen in viral egress from the host cell, other RNA viruses have developed their own strate-

gies for manipulating this multifunctional host machinery (Fig 2). Different from ESCRT-

dependent viral budding, these viruses do not interact with host ESCRTs through their struc-

tural proteins. As previously described for plant viruses, animal cell viruses from the

Fig 2. Mechanisms of ESCRT exploitation by RNA viruses. (1) Retroviruses, such as the HIV-1, interact with the

host ESCRT machinery for viral budding via structural proteins like Gag, encoding the P[S/T]AP and YPXL late

domain motifs. Other RNA viruses like (2) DENV and (3) HCV recruit host ESCRT components to the ER to promote

viral replication. This recruitment is facilitated by nonstructural proteins (NS) via unknown mechanisms. Created

using Biorender.com. DENV, dengue virus; ER, endoplasmic reticulum; ESCRT, Endosomal Sorting Complex

Required for Transport; HCV, hepatitis C virus; HIV-1, human immunodeficiency virus-1.

https://doi.org/10.1371/journal.ppat.1011344.g002
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Flaviviridae family also form cytoplasmic VRCs [131], and their viral nonstructural proteins

(NS) are key components for the formation of these important replicative sites [132]. This

group of viruses, which includes dengue virus (DENV), Japanese encephalitis virus (JEV), and

yellow fever virus (YFV), replicate at VRCs comprised of ER-derived membranous compart-

ments [133].

The role of host ESCRT machinery in Flaviviridae pathogenesis remains poorly understood

compared to viral budding. However, due to the similarities of their replicative complexes to

plant viruses, studies have focused on elucidating the potential role of host ESCRTs in this pro-

cess. Even though late domain motifs had not been identified in Flaviviruses until recently

[61], it was known that TSG101 and ALIX can interact with the nonstructural protein NS3

expressed by JEV, DENV, and YFV [51,52,54]. Knocking down TSG101, CHMP2, or CHMP4

reduced JEV and DEV viral titers, and ESCRT-III depletion also affected the number of

mature virions particles present at VRCs [53]. Additionally, the protein levels of host ALIX sig-

nificantly influenced the outcome of viral particles titers in the case of DENV infection [54].

Host CHMP2 and CHMP4 also localized to JEV VRCs, suggesting that they promote mem-

brane deformation for viral particle formation [53].

A more comprehensive depiction of the mechanism for ESCRT-dependent VRC formation

was provided in a recent study of classical swine fever virus (CSFV) infection [60]. Using an

siRNA screen, the authors identified several ESCRT components that contribute to CSFV

infection at different stages of infectious cycle, including entry. Comparable to what has been

observed for JEV, the ESCRT-III components CHMP2 and CHMP4 localized to CSFV VRCs

[53,60]. Although ESCRT components such as HRS, TSG101, VPS28 (ESCRT-I), EAP20

(ESCRT-II), ALIX, CHMP7, and VPS4 also contribute to VRC formation through their inter-

actions with the nonstructural proteins NS3, NS4B, NS5A, and NS5B [60], the molecular

mechanism by which these nonstructural proteins interact with host ESCRT components

remains to be elucidated.

Another important human virus within the Flaviviridae family is the hepatitis C virus

(HCV). Differently from DENV virus, which forms single membrane VRCs, HCV forms ER-

derived VRCs composed of double membrane vesicles [134]. Interestingly, HCV also exploits

host ESCRTs during viral particle formation [55,58]. In this case, host ESCRTs might be

recruited to the site of virus particle assembly through the nonstructural HCV protein NS2

that can interact with the ubiquitin interaction motif domain of the ESCRT-0 component HRS

[56]. Since no canonical late domain motifs have been identified in Flaviviridae nonstructural

proteins discussed here, recruitment of host ESCRTs for VRC formation presumably occurs

through novel motifs.

DNA viruses: Exploiting the host ESCRT to exit the nucleus. DNA viruses also make

use of the host ESCRT machinery at different steps of their infectious cycle (Fig 3). In the case

of Herpesviridae family viruses, there is emerging evidence for a role of host ESCRTs in pri-

mary envelopment of herpes simplex virus-1 (HSV-1) and Epstein–Barr virus (EBV) at the

inner nuclear membrane (INM) [69,70,76]. There are 2 main proteins in herpesviruses that

form the viral nuclear egress complex (NEC), namely UL31 and UL34 in HSV-1, and BFLF2

and BFRF1 in EBV [135]. NECs function in primary envelopment by interacting with the

DNA-containing viral nucleocapsid to facilitate budding of enveloped virion from the INM to

the perinuclear space [135]. HSV-1 uses UL31 and UL34 to recruit CHMP4 and ALIX to the

INM [69]. Knockdown of CHMP4 or ALIX led to the accumulation of virions at the nucleus,

providing evidence for a role of the host ESCRT machinery in HSV-1 primary envelopment

[69]. Recent work showed that UL34 interacts with ALIX though a novel mechanism involving

arginine clusters at its C-terminal [70]. Although these arginine clusters are not conserved in

the EBV UL34 homologue BFRF1 [70], a role for BFRF1 in the recruitment of CHMP4 and
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ALIX has also been reported [76]. BFRF1 recruitment of ESCRT components could be through

its ubiquitination, which has been demonstrated to contribute to NEC formation [77].

Although ESCRTs play a basic role in maintaining the nuclear envelope [2], the topology for

its proposed role in Herpesviridae primary envelopment at the INM (i.e., into the cytosol) is

opposite of how it typically functions (i.e., away from the cytosol).

Following HSV-1 capsid release into the host cytoplasm via the fusion of the INM-derived

enveloped virion with the outer nuclear membrane (ONM) [135], a second envelopment step

occurs at the host trans-Golgi [136,137]. Host ESCRT also contributes at this step, as observed

by the accumulation of partially enveloped viral particles upon disrupting this machinery

using a VPS4 dominant negative (VPS4EQ) form [72,73]. The viral protein UL36 (also known

as VP1/2), which interacts with TSG101 [74], could be partially responsible for the recruitment

of host ESCRTs for secondary envelopment even though depletion of TSG101 does not seem

Fig 3. Mechanisms of ESCRT exploitation by DNA viruses. (1) The DNA virus HSV-1 requires ESCRT components

for (1a) primary envelopment at the nucleus via the arginine-rich cluster at the UL34 viral protein and (1b) secondary

envelopment at the trans-Golgi via the P[S/T]AP and YPXL late domain motifs encoded by UL36. (2) VACV recruits

the ESCRT machinery for viral envelopment and egress from MVBs. The viral protein F13L has been proposed to

interact with ESCRT components via YPXL late domain motifs. Created using Biorender.com. ESCRT, Endosomal

Sorting Complex Required for Transport; HSV-1, herpes simplex virus-1; MVB, multivesicular body; VACV, vaccinia

virus.

https://doi.org/10.1371/journal.ppat.1011344.g003
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to impair HSV-1 production [73,75]. Remarkably, the HSV-1 viral protein UL51 has structural

homology to CHMP4B and is capable of forming ESCRT-III-like filaments [138]. It would be

interesting to determine if ESCRT-III components recognize and interact with UL51 filaments

to promote viral assembly and the extent to which VPS4 functions in their disassembly.

Interactions of intracellular bacteria with host ESCRT. Most intracellular bacteria

reside within a membrane-bound compartment (the pathogen-containing vacuole or PCV)

that is modified by the pathogen to promote its survival. Emerging evidence demonstrates that

the host ESCRT machinery could also be targeted by intracellular bacteria residing in a PCV

(Fig 4). For example, the obligate intracellular bacteria Anaplasma phagocytophilum resides

within a host cell–derived vacuole that receives membrane traffic from multiple sources, likely

Fig 4. The host ESCRT machinery and nonviral pathogens. The outcome of intracellular bacterial infection is

affected by the host ESCRT machinery. (1) Brucella abortus recruits ESCRT components to its PVC, which resembles

an MVB, to promote proliferation and release. (2) Salmonella spp. recruit ESCRT components for the formation of its

PCV. The bacterial protein SpoB has been proposed to mediate this interaction. (3) Differently from A.

phagocytophilum and Salmonella, Mycobacterium tuberculosis inhibits the function of the host ESCRT machinery to

evade clearance and promote its survival. The bacteria secrete the effector proteins EsxG and EsxH to inhibit ESCRT-

dependent PCV repair (4) The UPEC are encased in MVBs by the host ESCRT machinery for expulsion from cells, a

mechanism for ESCRT-mediated intrinsic defense. Created using Biorender.com. ESCRT, Endosomal Sorting

Complex Required for Transport; MVB, multivesicular body; PVC, pathogen-containing vacuole; UPEC,

uropathogenic Escherichia coli.

https://doi.org/10.1371/journal.ppat.1011344.g004
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to satisfy its metabolic needs [139]. A recent study showed that the A. phagocytophilum (PCV)

resembles an MVB that is decorated with ALIX and ESCRT-0 and ESCRT-III components.

Remarkably, knocking down ALIX or components of ESCRT-0 or ESCRT-III not only

arrested bacterial growth but also prevented release of progeny by blocking fusion of the PCV

with the plasma membrane, which is akin to MVB release of exosomes [86]. This study sug-

gests that A. phagocytophilum benefits from residing in an MVB-like compartment through

the ESCRT-dependent delivery of material and ESCRT-mediated release of infectious progeny.

The release of bacteria encased in MVBs has also been previously reported for Brucella abortus
and uropathogenic Escherichia coli (UPEC) [87,88]. It remains to be determined which bacte-

ria effector proteins promote formation of the MVB-like compartment enclosing the bacteria.

ESCRT function seems to promote A. phagocytophilum and B. abortus progeny release [86,87];

however, in the context of UPEC infection, it has been proposed to be a defense mechanism

against the pathogen [88].

Other intracellular bacteria including Salmonella spp., Coxiella burnetii, and Mycobacte-
rium tuberculosis have developed mechanisms to avoid lysosomal dependent clearance and

reside in PCVs that promote bacterial persistence and proliferation [140,141]. Salmonella can

form a PCV in nonphagocytic cells, and a role for host ESCRTs in the biogenesis of its PVC

has been recently proposed [91,92]. ESCRT-III components localized to Salmonella PCVs, and

bacteria invading CHMP3 knockout cells were exposed to the cytosol due to the formation of

aberrant PCVs [91]. The ESCRT-III component CHMP4B was also reported to be recruited to

the C. burnetii PCV [94]. In this case, ESCRT recruitment was associated with PCV damage as

determined by the co-recruitment of Galectin-3 [94]. CHMP4B and Galectin-3 recruitment to

C. burnetii PCV was transient, potentially corresponding to membrane repair and promoting

bacterial survival; this is consistent with the finding that TSG101 depletion reduced bacterial

replication [94]. These studies suggest a beneficial role for host ESCRTs in supporting Salmo-
nella’s and C. burnetii’s intracellular niche by contributing to the integrity of the PCV. Con-

versely, studies of M. tuberculosis demonstrated that knockdown of ESCRT components

increased bacterial growth [89,142], suggesting an antagonistic role for host ESCRT. Addi-

tional work showed that host ESCRT machinery is recruited to the mycobacterial PCV in

response to membrane damage and that membrane repair promotes lysosomal maturation

leading to bacterial clearance [90]. As a mechanism to avoid clearance, mycobacteria effector

proteins EsxG and EsxH disrupt host ESCRTs to promote bacterial survival [89,90].

An intracellular parasite’s approach for exploiting the host ESCRT machinery.

Although decades of research described above have identified many different intracellular

pathogens that interact with host ESCRTs, a role for ESCRTs during replication of an intracel-

lular eukaryotic microorganism has only recently emerged (Fig 5). Toxoplasma gondii is an

intracellular parasite capable of manipulating the host cell with secretory effector proteins to

promote its intracellular survival. One class of effector proteins (GRAs) are secreted from

dense granule organelles after the parasite has invaded a cell to create its intracellular niche,

the parasitophorous vacuole (PV) [143]. A subset of GRA proteins integrate into the PV mem-

brane with a single transmembrane segment, thereby bridging the PV lumen and host cytosol

[144]. Residing at this parasite–host interface, such proteins are ideally positioned to commu-

nicate with the infected cell including for the acquisition of resources [145]. T. gondii acquires

proteins and lipids from infected cells by vesicular uptake or entrapment, respectively, within

the PV [146,147]. A potential role for the host ESCRT machinery for these processes was

hypothesized since it would involve budding of vesicles away from the host cytosol and into

the lumen of the PV, consistent with ESCRT function. Accordingly, a recent study identified

several ESCRT proteins associated with the PV based on proximity labelling experiments

[148]. Additional work showed that ESCRT-III accumulates at the PV upon overexpression of
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dominant negative VPS4A [95]. Bioinformatic searches identified a PV membrane resident

secretory protein called GRA14, which encodes several ESCRT late domain motifs in its C-ter-

minus that are exposed to the host cytosol. Further studies established that GRA14 interacts

with the host ESCRT machinery through its late domain motifs to mediate the vesicular uptake

of host cytosolic proteins across the PV membrane [95]. Interestingly, recruitment of TSG101,

but not ALIX, is dependent on GRA14, suggesting the contribution of other parasite effector

proteins in the recruitment of the multiple ESCRT components observed at the PV [95]. The

transmembrane dense granule protein GRA64 is a candidate for ALIX recruitment since it was

shown to co-immunoprecipitate with ESCRT components [96]. Although GRA64 lacks appar-

ent late domain motifs, it has an arginine cluster like that of the HSV-1 UL34 protein [96].

Moreover, Romano and colleagues [97] recently reported that parasites lacking GRA64 or

GRA14 entrap fewer intra-PV host organelles. Disrupting both GRA64 and GRA14 resulted in

an additive effect, suggesting that these proteins have nonredundant functions. This study also

showed that CHMP4B is recruited to the PV and that CHMP4B forms striking spiral filament

within PV membrane invaginations when expressed as a dominant negative mutant. The

authors further report that expression of dominant negative VPS4A caused the accumulation

of entrapped host-derived endolysosomal vesicles in the PV. Together, these studies suggest

that T. gondii uses multiple effector proteins to exploit host ESCRTs for vesicular uptake or PV

entrapment of host-derived resources.

Fig 5. gondii has different strategies for exploiting the host ESCRT machinery. T. (1) The protozoan parasite

Toxoplasma gondii recruits the early ESCRT components TSG101 and ALIX during invasion via the P[S/T]AP and

YPXL late domain motifs encoded by RON5 and RON2, respectively. (2) While residing in its replicative compartment

known as the PV, the parasite recruits ESCRT components for the uptake of resources from the host cell across the PV

membrane. (2a) GRA14 encodes both P[S/T]AP and YPXL late domain motifs and is required for the recruitment of

the host ESCRT machinery for the uptake of host cytosolic proteins. (2b) Additionally, GRA14 alongside another

parasite ESCRT-interacting protein GRA64, are necessary for the sequestration of host vesicles. Created using

Biorender.com. ESCRT, Endosomal Sorting Complex Required for Transport; PV, parasitophorous vacuole.

https://doi.org/10.1371/journal.ppat.1011344.g005
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T. gondii also interacts with TSG101 and ALIX during parasite invasion into host cells, in

this case using RON proteins derived from the necks of rhoptry secretory organelles [98]. The

role of TSG101 and ALIX in parasite invasion, however, does not appear to be linked to their

function in endosomal sorting since other components of ESCRT-I, ESCRT-III, or VPS4 were

absent at the site of parasite invasion [98]. Thus, T. gondii appears to have multiple strategies

for exploiting the host ESCRT machinery at different steps during infection, serving as an

interesting model for studying these microbe–host interactions.

Could there be a role for the ESCRT machinery in immunity?

A significant discovery for the multiple functions of the ESCRT has been its role in repairing

membrane damage to protect cancer cells targeted by cytotoxic T cells [149]. The ESCRT

machinery can negatively regulate apoptosis, necroptosis, pyroptosis, and ferroptosis to pro-

mote cell survival through different mechanisms [150]. For example, disruption of ESCRT

function increased inflammasome activation in response to pathogen-associated molecular

patterns (PAMPs), leading to pyroptotic cell death [151]. This is due to the anti-inflammatory

role of the ESCRT machinery in repairing gasdermin D (GSDMD) pores at the host plasma

membrane [151]. Since some of these cell death pathways are activated in infected cells to limit

pathogen replication, pathogens could modulate host ESCRTs as a potential immune evasion

strategy. Conversely, ESCRT function in membrane repair could be a mechanism for immune

cell protection from microbial pore forming proteins that cause membrane lesions. An exam-

ple of the latter has been reported in the context of Candida albicans infection [152]. To pro-

tect themselves from lesions caused by the fungal toxin candidalysin, epithelial cells dispose of

damaged membrane in an ALG-2/ESCRT-dependent manner [152]. This resembles the con-

tribution of the ESCRT machinery in plants for the protection against pathogens.

Although these examples correspond to the membrane repair function of the ESCRT

machinery, its canonical role in vesicular trafficking could also impact the function of signal-

ling pathways [153]. For example, the ESCRT machinery can terminate STING (stimulator of

interferon genes) signalling, an important modulator of the type I interferon immune response

[154]. Additionally, HRS, STAM2, TSG101, and VPS4 are important for sorting of ubiquiti-

nated T cell receptor into microvesicles for signal termination [155–157]. The ESCRT machin-

ery also negatively regulates antigen cross-presentation in dendritic cells by repairing

phagosomal membrane damage, interrupting the export of antigens to the cytosol [158]. A

recent report showed that dendritic cells infected with T. gondii up-regulate the expression of

the ESCRT-III component CHMP4B and that CHMP4B is associated with the PV [159]. The

same study showed that blocking cholesterol trafficking impaired MHC-I and MHC-II presen-

tation of parasite antigens, reduced PV recruitment of CHMP4B, and suppressed parasite rep-

lication [159]. Although the role of the ESCRT machinery in linking these phenotypes hasn’t

been elucidated, it would be interesting to know if up-regulation of ESCRT components nega-

tively regulates antigen presentation.

Concluding remarks

Evidently, microbial exploitation of the host ESCRT machinery is not limited to viral budding

or viruses altogether. Whereas viruses appear to benefit mostly from the vesicular budding fea-

tures of the host ESCRT machinery, bacteria make use of the membrane remodelling function

of the host ESCRT machinery during infection [160]. Future studies should focus on how

pathogens recruit the host ESCRT machinery to maintain an intact PCV, as for C. burnetii
infection [94], or promoting the formation of MVB-like compartments encapsulating the
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Fig 6. A pathogen’s guide for exploiting the host ESCRT machinery. ESCRT are involved in multiple functions in cells and many intracellular pathogens

have evolved ways to exploit ESCRTs for key aspects of their pathogenesis. Viral envelopment and budding: For viral envelopment and budding, viruses encode

short linear amino acid motifs that mimic ESCRT interactions necessary for ESCRTs sequentially assemble. Viral replication: Alternatively, viruses can recruit

host ESCRT components for the formation of replication complexes at host organelles. These strategies used by RNA and DNA viruses resemble MVB

formation by ESCRT. Bacterial survival, maintenance of replicative compartment, and release: Bacteria can also benefit from the host ESCRT machinery for the

biogenesis, maintenance (ESCRT membrane repair function), and release of their replicative compartment (ESCRT MVB formation and exosome release).

Parasite invasion and resource acquisition: The protozoan parasite Toxoplasma gondii recruits early ESCRT components for invasion and subsequently during

replication for resource acquisition. Intrinsic defense: Interestingly, the role of ESCRT has also been associated with intrinsic defenses against pathogens, for

example, expulsion of infecting bacteria and enclosing foreign DNA in exosomes for immune signalling. Created using Biorender.com. ESCRT, Endosomal

Sorting Complex Required for Transport; MVB, multivesicular body.

https://doi.org/10.1371/journal.ppat.1011344.g006
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bacteria [86,87]. Also, how could this be controlled to avoid expulsion from the cells as occurs

for UPEC infection [88,161]? What are the factors dictating the different outcomes?

Another interesting discovery to the field is that a eukaryotic pathogen can manipulate the

host ESCRT machinery. Protozoan parasites encode a reduced ESCRT machinery that is still

functional in EV biogenesis [162,163]. Why does T. gondii, encoding ESCRT-homologs and

capable of producing EVs, prioritize the use of the host ESCRT machinery when the related

parasite Plasmodium falciparum secretes its ESCRT homologs in to the host cytosol to promote

EV formation [164]? Furthermore, T. gondii can exploit the host ESCRT machinery for inva-

sion and at least 2 different pathways for nutrient acquisition, could it also be making use of

the ESCRT machinery for other purposes? To our knowledge, this is the only microorganism

capable of exploiting the host ESCRT machinery for multiple cellular functions. Are there

other intracellular protozoan parasites capable of interacting with the host ESCRT machinery

or do they rely on their own ESCRT machinery?

The apparent role for the ESCRT machinery in immunity opens the question as to whether

pathogens modulate the expression of ESCRT components to influence the outcome of infec-

tion. The ESCRT machinery can terminate STING signalling; however, it is also necessary for

sorting of foreign DNA into EVs to stimulate STING signalling in bystander cells [154,165].

STING signalling promotes inflammasome activation, which results in the assembly of

GSDMD pores at the plasma membrane leading to pyroptotic cell death, a process that is tem-

pered by the ESCRT machinery [151]. Thus, much remains to be understood for the function

of the ESCRT machinery in innate immunity, the extent to which this is regulated, and how

microbes could be exploiting this.

Fundamental knowledge of ESCRT biology has been gained through the study of this host

machinery during viral infection. Most notably, identifying the P[S/T]AP late domain motif in

HIV-1 Gag and its interaction with TSG101 preceded the realization that these motif were

present in HRS and ALIX and that retroviruses were “mimicking” intercomplex interactions

to make use of the host ESCRT machinery [13,166]. With the many other pathogen–ESCRT

interactions that been identified but not mechanistically understood (Fig 6), a treasure trove of

insight is likely yet to be gained about how pathogens exploit ESCRTs, thereby exposing new

basic mechanisms of this remarkably versatile membrane remodelling machinery.
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137. Turcotte S, Letellier J, Lippé R. Herpes Simplex Virus Type 1 Capsids Transit by the trans-Golgi Net-

work, Where Viral Glycoproteins Accumulate Independently of Capsid Egress. J Virol [Internet]. 2005

Jul [cited 2022 Feb 10]; Available from: https://journals.asm.org/doi/abs/10.1128/JVI.79.14.8847-

8860.2005 PMID: 15994778

138. Butt BG, Owen DJ, Jeffries CM, Ivanova L, Hill CH, Houghton JW, et al. Insights into herpesvirus

assembly from the structure of the pUL7:pUL51 complex. elife. 2020 May 11; 9:e53789. https://doi.

org/10.7554/eLife.53789 PMID: 32391791

139. Truchan HK, Cockburn CL, Hebert KS, Magunda F, Noh SM, Carlyon JA. The Pathogen-Occupied

Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic

Reticulum. Front Cell Infect Microbiol. 2016 Mar 1; 6:22.

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011344 May 4, 2023 24 / 26

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819203/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819203/
https://doi.org/10.1016/j.chom.2013.08.012
http://www.ncbi.nlm.nih.gov/pubmed/24034610
https://doi.org/10.1016/j.virusres.2004.08.007
https://doi.org/10.1016/j.virusres.2004.08.007
http://www.ncbi.nlm.nih.gov/pubmed/15567490
https://doi.org/10.3390/v13081559
http://www.ncbi.nlm.nih.gov/pubmed/34452424
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923801/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923801/
https://doi.org/10.3390/v13020324
http://www.ncbi.nlm.nih.gov/pubmed/33672541
https://doi.org/10.1242/jcs.028308
http://www.ncbi.nlm.nih.gov/pubmed/19535732
https://doi.org/10.1016/j.tim.2012.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23266279
https://doi.org/10.7554/eLife.02184
http://www.ncbi.nlm.nih.gov/pubmed/24878737
https://doi.org/10.1371/journal.ppat.1004677
http://www.ncbi.nlm.nih.gov/pubmed/25710462
https://doi.org/10.1038/ncb2207
http://www.ncbi.nlm.nih.gov/pubmed/21394083
https://doi.org/10.1073/pnas.1321655111
http://www.ncbi.nlm.nih.gov/pubmed/25099357
https://doi.org/10.1371/journal.pone.0237268
https://doi.org/10.1371/journal.pone.0237268
http://www.ncbi.nlm.nih.gov/pubmed/32886660
https://doi.org/10.1038/ncb2215
http://www.ncbi.nlm.nih.gov/pubmed/21394086
https://doi.org/10.1016/j.chom.2010.06.010
http://www.ncbi.nlm.nih.gov/pubmed/20638644
https://doi.org/10.1111/j.1600-0854.2005.00339.x
http://www.ncbi.nlm.nih.gov/pubmed/16190978
https://doi.org/10.3390/ijms20092336
http://www.ncbi.nlm.nih.gov/pubmed/31083507
https://doi.org/10.1146/annurev-virology-100114-055007
http://www.ncbi.nlm.nih.gov/pubmed/26958917
https://doi.org/10.1146/annurev-virology-110615-042215
http://www.ncbi.nlm.nih.gov/pubmed/27482898
https://doi.org/10.1016/j.mib.2006.06.013
http://www.ncbi.nlm.nih.gov/pubmed/16814597
https://journals.asm.org/doi/abs/10.1128/JVI.79.14.8847-8860.2005
https://journals.asm.org/doi/abs/10.1128/JVI.79.14.8847-8860.2005
http://www.ncbi.nlm.nih.gov/pubmed/15994778
https://doi.org/10.7554/eLife.53789
https://doi.org/10.7554/eLife.53789
http://www.ncbi.nlm.nih.gov/pubmed/32391791
https://doi.org/10.1371/journal.ppat.1011344


140. Sachdeva K, Sundaramurthy V. The Interplay of Host Lysosomes and Intracellular Pathogens. Front

Cell Infect Microbiol. 2020 Nov 20; 10:595502. https://doi.org/10.3389/fcimb.2020.595502 PMID:

33330138

141. Heinzen RA, Scidmore MA, Rockey DD, Hackstadt T. Differential interaction with endocytic and exo-

cytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis.

Infect Immun. 1996 Mar; 64(3):796–809.

142. Philips JA, Porto MC, Wang H, Rubin EJ, Perrimon N. ESCRT factors restrict mycobacterial growth.

Proc Natl Acad Sci U S A. 2008 Feb 26; 105(8):3070–3075. https://doi.org/10.1073/pnas.0707206105

PMID: 18287038

143. Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma

gondii. J Eukaryot Microbiol. 2022 Nov; 69(6):e12904. https://doi.org/10.1111/jeu.12904 PMID:

35302693

144. Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma

gondii accompanies invasion of human fibroblasts. Eur J Cell Biol. 1997 Jun; 73(2):114–123. PMID:

9208224

145. Wang Y, Sangaré LO, Paredes-Santos TC, Saeij JPJ. Toxoplasma Mechanisms for Delivery of Pro-

teins and Uptake of Nutrients Across the Host-Pathogen Interface. Annu Rev Microbiol. 2020 Sep 8;

74:567–586. https://doi.org/10.1146/annurev-micro-011720-122318 PMID: 32680452

146. Dou Z, McGovern OL, Di Cristina M, Carruthers VB. Toxoplasma gondii ingests and digests host cyto-

solic proteins. mBio. 2014 Jul 15; 5(4):e01188–e01114. https://doi.org/10.1128/mBio.01188-14 PMID:

25028423

147. Romano JD, Nolan SJ, Porter C, Ehrenman K, Hartman EJ, R Ching H, et al. The parasite Toxo-

plasma sequesters diverse Rab host vesicles within an intravacuolar network. J Cell Biol. 2017 Oct 25;

216(12):4235–4254. https://doi.org/10.1083/jcb.201701108 PMID: 29070609

148. Cygan AM, Jean Beltran PM, Mendoza AG, Branon TC, Ting AY, Carr SA, et al. Proximity-Labeling

Reveals Novel Host and Parasite Proteins at the Toxoplasma Parasitophorous Vacuole Membrane.

MBio. 2021 Dec 21; 12(6):e0026021. https://doi.org/10.1128/mBio.00260-21 PMID: 34749525

149. Ritter AT, Shtengel G, Xu CS, Weigel A, Hoffman DP, Freeman M, et al. ESCRT-mediated membrane

repair protects tumor-derived cells against T cell attack. Science. 2022 Apr 22; 376(6591):377–382.

https://doi.org/10.1126/science.abl3855 PMID: 35446649

150. Yang Y, Wang M, Zhang YY, Zhao SZ, Gu S. The endosomal sorting complex required for transport

repairs the membrane to delay cell death. Front Oncol. 2022 Oct 18; 12:1007446. https://doi.org/10.

3389/fonc.2022.1007446 PMID: 36330465
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