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A B S T R A C T

Introduction: Although machine learning approaches have been widely used in the field of finance, to
very successful degrees, these approaches remain bespoke to specific investigations and opaque in terms of
explainability, comparability, and reproducibility.
Objectives: The primary objective of this research was to shed light upon this field by providing a generic
methodology that was investigation-agnostic and interpretable to a financial markets’ practitioner, thus
enhancing their efficiency, reducing barriers to entry, and increasing the reproducibility of experiments. The
proposed methodology is showcased on two automated trading platform components. Namely, price levels, a
well-known trading pattern, and a novel 2-step feature extraction method.
Methods: This proposed a generic methodology, useable across markets, the methodology relies on hypothesis
testing, which is widely applied in other social and scientific disciplines to effectively evaluate the concrete
results beyond simple classification accuracy. The first hypothesis was formulated to evaluate whether the
selected trading pattern is suitable for use in the machine learning setting. The second hypothesis allows us
to systematically assess whether the proposed feature extraction method leads to any statistically significant
improvement in the automated trading platform performance.
Results: Experiments were conducted across, 10 contracts, 3 feature spaces, and 3 rebound configurations
(for feature extraction), resulting in 90 experiments. Across the experiments we found that the use of the
considered trading pattern in the machine learning setting is only partially supported by statistics, resulting
in insignificant effect sizes (Rebound 7 - 0.64 ± 1.02, Rebound 11 0.38 ± 0.98, and rebound 15 - 1.05 ± 1.16),
but allowed the rejection of the null hypothesis based on the outcome of the statistical test. While the results
of the proposed 2-step feature extraction looked promising at first sight, statistics did not support this, this
demonstrated the usefulness of the proposed methodology. Additionally, we obtained SHAP values for the
considered models, providing insights for adjustments to the feature space.
Conclusion: We showcased the generic methodology on a US futures market instrument and provided
evidence that with this methodology we could easily obtain informative metrics beyond the more traditional
performance and profitability metrics. The interpretability of these results allows the practitioner to construct
more effective automated trading pipelines by analysing their strategies using an intuitive and statistically
sound methodology. This work is one of the first in applying this rigorous statistically-backed approach to the
field of financial markets and we hope this may be a springboard for more research. A full reproducibility
package is shared.
1. Introduction

As machine learning (ML) changes and takes over virtually every
aspect of our lives, we are now able to automate tasks that previously
were only possible with human intervention. A field in which it has
quickly gained traction and popularity is finance (Easley, de Prado,
O’Hara, & Zhang, 2019).

∗ Corresponding author.
E-mail addresses: artur.sokolovsky@gmail.com (A. Sokolovsky), l.arnaboldi@bham.ac.uk (L. Arnaboldi).

Most current-day trading is done electronically, through various
available applications (Cliff, Brown, & Treleaven, 2011). Market data
is propagated by the trading exchanges and handled by specialised
trading feeds to keep track of trades, bids and asks by the participants of
the exchange. Different exchanges provide data in varying formats with
different levels of granularity (e.g. order book) and can be accessed live
through APIs or downloaded for historical data.
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Fig. 1. Schematic representation of the Automated Trading Platform components.

A diagram of what an Automated Trading Platform (ATP) looks like
in practice is presented in Fig. 1.

Research gap. Machine learning in finance has been largely dominated
by deep learning approaches (Ozbayoglu, Gudelek, & Sezer, 2020;
Sezer, Gudelek, & Ozbayoglu, 2020). The consensus has been that deep
learning has continuously been the best-performing predictor class,
not only across financial time series but across a myriad of other
disciples (Sezer et al., 2020). However, it is well known that deep
learning techniques are at least difficult to explain and provide no
intuition regarding their decisions (Adadi & Berrada, 2018). As an
outcome of this, there has been a spike in research into the explain-
ability and accountability of machine learning (Ahmad, Teredesai, &
Eckert, 2020; Raji et al., 2020). Whilst the model performance is no
doubt an important factor in designing profitable patterns, the inherent
trade-off with explainability cannot be dismissed lightly. Following the
decisions of a deep learning model is non-trivial, and even deemed
unfeasible in most scenarios (Biran & McKeown, 2017). When high
financial risks are in place, it is important to be able to understand the
root cause of a potential loss and adapt the strategy accordingly, how-
ever, this is incredibly difficult if not impossible using deep learning
approaches (Adadi & Berrada, 2018; Wieringa, 2020). What is instead
desirable is to be able to measure the effectiveness of the selected
trading pattern, the feature space and the model predictions, thus
allowing the full power of machine learning to be supported by expert
insights. A fine balance is to use modern, highly accurate approaches,
such as tree boosting (Prokhorenkova, Gusev, Vorobev, Dorogush, &
Gulin, 2018), but that can also be interpreted more effectively through
post-hoc explanation methods (Adadi & Berrada, 2018). An example of
a technique relying on expert patterns to trade using machine learning
approaches (Leigh, Paz, & Purvis, 2002) shows that these can be used as
a direct indicator of market performance, providing profitable returns
and concrete evidence of success, this is a technique that is much more
approachable to the average ML practitioner.

To assess these approaches and apply the designed components of
APT successfully, statistical techniques should be applied to provide
the desired interpretability and comparability. Statistical analysis such
as this, on the data and predictors, is often applied in scientific fields
such as medicine and psychology (Cooper, 2018) but is much rarer in
machine learning contexts.

As one can see further in the text, the proposed approach allows for
the careful selection of trading criteria, greatly simplifying the analysis
process, improving the uniformity of experiments, allowing by-design
comparability, and justifying every layer of added complexity.
2

Study aim. The aim of the study comprises multiple aspects: (i) intro-
duce and showcase a methodology for reproducible and comparable
evaluation of the ATP components, (ii) automate a well-known trading
pattern extraction method (price levels (Ferris, Haugen, & Makhija,
1988; Pruitt & White, 1988)) and evaluate it following the proposed
methodology, (iii) propose and evaluate a 2-step way of feature design
in the context of the automated trading system.

Research question 1. As the first research question, we aim to assess
whether the considered trading pattern can be classified with perfor-
mance better than the baseline, always-positive class model. RQ1: Is it
feasible to classify the extracted price extrema with a precision better than
the baseline?

Answering the research question allows us to tell whether the
proposed trading pattern is suitable for the machine learning setting.
Alternatively, whether the added complexity of introducing machine
learning methods in the pipeline can be justified. There are a few
scenarios possible. For instance, it might be the case that the proposed
trading pattern in itself leads to a good baseline performance, which,
however, cannot be further improved with machine learning methods.
At this point, one concludes that the use of machine learning is not
justified. Alternatively, the pattern might perform poorly on its own but
allows great classification performance improvement using machine
learning tools. In such a case, the added complexity is well-justified.
Finally, the worst case is that the pattern performs poorly and cannot
be further improved using machine learning methods. We believe that
answering this research question is an essential initial step for trading
pattern design, as without this information, any following analysis is
lacking the necessary context.

Research question 2. As the second research question, we consider a
domain knowledge-based 2-step extraction method that is believed to
capture a more complete representation of the market and investigate
whether it gives any benefit in comparison to using any of the extrac-
tion steps alone. RQ2:Does the use of the 2-step feature extraction improve
the price level classification performance with respect to the individual
steps?

Outline. The rest of the paper is structured as follows: Section 2 pro-
vides the financial and machine learning background needed to un-
derstand our approach as well as the related work; Section 3 presents
the studied data and the study methodology for the automated market
profiling approach and assessment methodology; Section 4 details our
analysis results; in Section 5 a discussion on results, their implications
and limitations is provided; and Section 6 concludes the work.

Contributions. The contributions of this work are the following:

1. We propose a methodology to design and statistically evaluate
components of an automated trading platform using machine
learning;

2. We present an automated trading pattern extraction method
with their further classification into trading scenarios;

3. We propose and evaluate the performance of a domain
knowledge-based feature space design method using the pro-
posed methodology.

We note that in order to present, evaluate and quantitatively analyse
the effectiveness of our proposed methodology, we needed to define
a feature space, train a model, and propose a trading strategy. Whilst
several previous works already propose works on automated trading,
their models were not made available in a way that could be evaluated
fully, and as such, we had to create our own. We do not claim this
model is by any means the best way to identify patterns or that the
feature space is the most optimal, conversely, we show in the results
that there are several limitations, all statistically quantifiable, and the
ability to do so is in itself the core contribution of the paper, completely
agnostically of the chosen model.



Expert Systems With Applications 223 (2023) 119836A. Sokolovsky and L. Arnaboldi

i
f
C
a
w
a
b
m

2

f
c
v
e
p
t
l
o

w
p
i
i
o
e
T
a
s
T
p
o
t
t
s
t
o
d
o
o
c

t

t
p
&
l
a
v
e
b
d
f

B
t
t
T
t
s
r
p
a
b
b
e
t
a

2

t
h
m
y
t

2. Background and related works

In this work, we build upon and make use of several different
concepts from the fields of finance, machine learning and statistical
reproducibility. In this section, we include background details required
to understand each of these topics, as well as an overview of the
relevant literature in these areas. We finally conclude the section by dis-
cussing similar methodologies and how they differ from our proposed
approach.

2.1. Financial time series analysis and trading

This section breaks down how data is handled, processed and used
in the context of financial analysis. This includes the pre-processing
phase pattern extraction, trading, evaluation methods and features.

2.1.1. Data pre-processing
To prepare data for processing, the raw data is structured into prede-

termined formats to make it easier for machine learning algorithms to
digest. There are several ways to group data, and various features may
be aggregated. The main idea is to identify a window of interest based
on some heuristic, and then aggregate the features of that window to
get a representation, called Bar. Bars may contain several features, and
t is up to the individual to decide what features to select, common
eatures include Bar start time, Bar end time, Sum of Volume, Open Price,
lose Price, Min and Max (usually called High and Low) prices, and
ny other features that might help characterise the trading performed
ithin this window (De Prado, 2018). How the bars are selected has
distinct impact on performance, e.g. using time as a metric for the

ar window is affected by active and non-active trading periods, so you
ight find that only some bars are useful using this methodology.

.1.2. Discovery of the price levels
In mathematics, an extremum is any point at which the value of a

unction is the largest (a maximum) or smallest (a minimum). These
an either be local or global extrema. At the local extremum, the
alue is larger/lower at immediately adjacent points, while at a global
xtremum, the value of the function is larger than its value at any other
oint in the interval of interest. If one wants to maximise their profits
heoretically, one would intend to identify an extremum (or a price
evel) and trade at that point of optimality, i.e. the peak. This is one
f the many ways of defining the points of optimality.

As far as the algorithms for an ATP are considered, they often
ork in the trading context, so finding a global extremum serves little
urpose. Consequently, local extrema within a pre-selected window are
nstead chosen. Several complex algorithms exist for this, with use cases
n many fields such as biology (Du, Kibbe, & Lin, 2006). However, the
bjective is quite simple: identify a sample for which neighbours on
ach side have lower values for maxima and higher values for minima.
his approach is very straightforward and can be implemented with
linear search. In the case where there are flat peaks, which means

everal entries are of equal value, the middle entry may be selected.
wo further metrics of interest are, the prominence and width of a
eak. The prominence of a peak measures how much a peak stands
ut from the surrounding baseline of the near entries, and is defined as
he vertical distance between the peak and lowest point. The width of
he peak is the distance between each of the lower bounds of the peak,
ignifying the duration of the peaks. In the case of peak classification,
hese measures can aid a machine learning estimator to relate the
btained features with the discovered peaks, this avoids attempts to
irectly relate properties of narrow or less prominent peaks with wider
r more prominent peaks. These measures provide a context in terms
f price level characteristics. One might expect that they would aid the
lassification of trading points.

We are by no means the first to look at price extrema as one of
he metrics of interest, volatility is still one of the core metrics for
3

rading (Bahmani-Oskooee & Hegerty, 2007). To statistically analyse
rice changes and break down key events in the market, (Caginalp
Caginalp, 2018), propose a method to find peaks in the volatility,

eading to more prominent price levels. But whilst this work is a recent
pproach, price levels were first used in the 80 s and proven to be
ery successful (Ferris et al., 1988; Pruitt & White, 1988) The price
xtrema represent the optimal point at which the price is being traded
efore a large fluctuation. Since the implied relationship of supply and
emand is something that will hold for any exchange, this is a great fit
or various instruments.

In a different context, Miller, Yang, Sun, and Zhang (2019), analyse
itcoin data to find profitable trading bounds. Bitcoin, unlike more
raditional exchanges, is decentralised and traded 24 h a day, making
he data much more sparse and with less concentrated trading periods.
his makes the trends harder to analyse. Their approach manipulates
he data in such a way that it is smoothed, through the removal of
plines, this seeks to manipulate curves to make its points more closely
elated. By this technique, they can remove outliers and find clearer
oints of fluctuation as well as peaks. The authors then construct
bounded trading strategy that proves to perform well against un-

ounded strategies. Since Bitcoin has more decentralised access, and
y the very nature of those investing in it, this also reduces barriers to
ntry, making automated trading much more common. This indicates
hat techniques to identify bounds and points of interest in the market
re also more favoured and widely used.

.1.3. Derivation of the market microstructure features
A market microstructure is the study of financial markets and how

hey operate. Its features represent the way that the market operates,
ow decisions are made about trades, the price discovery process and
any more (Kissell, 2013). The process of market microstructure anal-

sis is the identification of why and how the market prices will change,
o trade profitably. These may include, (1) the time between trades, as it

is usually an indicator of trading intensity (Bauwens, Giot, Grammig, &
Veredas, 2004) (2) volatility, which might represent evidence of good
and bad trading scenarios, as high volatility may lead to an unsuitable
market state (Grammig & Wellner, 2002), (3) volume, which may
directly correlate with trade duration, as it might represent informed
trading rather than less high volume active trading (Manganelli, 2005),
and (4) trade duration, high trading activity is related to greater price
impact of trades and faster price adjustment to trade-related events,
whilst slower trades may indicate informed single entities (Dufour
& Engle, 2000). In their work, Münnix et al. (2012) proposed the
characterisation of market structures based on correlation. Through
this, they were able to detect key states of market crises from raw
market data. Whilst several other options are available, they are often
instrument-related and require expert domain knowledge. In general, it
is important to tailor and evaluate your features to cater to the specific
scenario identified.

One such important scenario to consider when catering to prices is
whether the price action is caused by aggressive buyers or sellers. In
an Order Book, a match implies a trade, which occurs whenever a bid
matches an ask and conversely, however, the trade is only ever initiated
by one party. To dictate who the aggressor is in this scenario (if not
annotated by the marketplace), the tick rule is used (Aitken & Frino,
1996). The rule labels a buy-initiated trade as 1, and a sell-initiated
trade as -1. The logic is the following an initial label 𝑙 is assigned an
arbitrary value of 1 if a trade occurs and the price change is positive,
then 𝑙 = 1 if the price change is negative, and 𝑙 = 0 and if there is no
price change 𝑙 is inverted. This can identify the aggressor with a high
degree of accuracy (Easley, de Prado, & O’Hara, 2016).

However, it is not always easy to identify patterns in financial
markets, as there is often incomplete information and external factors
at play (Kürüm, Weber, & İyigün, 2014; Kürüm, Weber, & Iyigun,
2018). To this end, recent works have used several probabilistic ap-

proaches to fill these gaps in uncertainty using stochastic differential
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equations (Kalaycı, Özmen, & Weber, 2020), Markov diffusion mod-
els (Savku & Weber, 2020) and dynamic programming (Baltas et al.,
2022). These approaches can be seen as a way to better understand
certain patterns in the market when there is uncertainty or external
factors.

2.2. Automated trading and strategies

Rule-based methods have seen mixed successes in the context of
financial time series (Park & Irwin, 2007). In part, this is due to the
wide usage of quite simple rules (Cervelló-Royo, Guijarro, & Michniuk,
2015). What may instead be more desirable is to use patterns for
trading (Leigh et al., 2002). These patterns can perform with high
levels of profitability and can be automatically extracted from data,
which is, in itself, quite desirable. Despite early criticisms (Ratner &
Leal, 1999), not only have these patterns been shown to be particularly
effective (Cervelló-Royo et al., 2015), they might be particularly useful
in the machine learning setting.

To evaluate the effectiveness of the trading strategy, the Sharpe
Ratio can be used. This is a measure for assessing the performance
of an investment or trading approach and can be computed as the
following:

𝑆 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
, (1)

where 𝑅𝑝&𝑅𝑓 correspond to the portfolio and risk-free returns, respec-
tively, and 𝜎𝑝 is a standard deviation of the portfolio return. While
the equation gives a good intuition of the measure, in practice its
annualised version is often computed. It assumes that daily returns
follow the Wiener process distribution, hence to obtain annualised
values, the daily Sharpe values are multiplied by

√

252 - the annual
umber of trading days. It should be noted that such an approach might
verestimate the resulting Sharpe ratios as returns auto-correlations
ight be present, violating the original assumption (Lo, 2002).

Automating the trading through machine learning efforts is the
dentification of a market state in which a trade is profitable, and
utomatically performs the transaction at that stage. Such a system is
ormally tailored for a specific instrument, analysing unique patterns
o improve the characterisation. One such effort focusing on Forex
arkets is, Dempster and Leemans (2006). In this work, a technique
sing reinforcement learning is proposed, to learn market behaviours.
einforcement learning is an area of machine learning concerned with
ow software agents ought to take actions in an environment to max-
mise the notion of cumulative reward. This is achieved by assigning
ositive rewards to desired actions and negative rewards to undesired
ctions, leading to an optimisation towards actions that increment
ewards. In financial markets, this naturally corresponds to profitable
rades. Using this approach, the authors can characterise when to trade,
nalyse associated risks, and automatically make decisions based on
hese factors.

.3. Backtesting

To test trading, strategy evaluation is performed to assess profitabil-
ty. Whilst it is possible to do so on trading live market, it is more
avourable to do so on the historical data first to get the results on

large timeline and avoid any financial risks. The notion is that a
trategy that would have worked poorly in the past will probably work
oorly in the future, and conversely. But as you can see, a key part
f backtesting is the weak assumption that past performance predicts
uture performance (Bailey, Borwein, de Prado, & Zhu, 2014; Harvey &
iu, 2015; Kahn & Rudd, 1995).

Several approaches exist to perform backtesting and different things
an be assessed. Beyond trading strategies testing, backtesting can show
ow positions are opened and the likelihood of certain scenarios taking
4

place within a trading period (Harvey & Liu, 2015). The more com-
mon approach is to implement backtesting within the trading software
platform, as this has the advantage that the same code as live trading
can be used. Almost all platforms allow for simulations of historical
data, although one operates on data pre-processed by the proprietary
software platform, making the pipeline partially opaque.

For more flexibility, one can implement their backtesting system
in languages such as C# or Python (QuantConnect et al., 2012). This
specific approach enables the same code pipeline that is training the
classifier to also test the data, allowing for much smoother testing.
However, some limitation of this type of backtesting is that it does not
include a lack of order book queues as well as the latency simulation,
both of which are present in the live trading setting. Consequently,
slippages (the difference between where the order is submitted by
the algorithm and the actual market entry/exit price) cannot be mod-
elled accurately. Moreover, the modelling approaches and assumptions
vary between the backtesting engines, hampering comparability. Nev-
ertheless, backtesting is a commonly adopted practice among financial
market practitioners, and being used with care, gives a good estimation
of the ATP quality.

It is crucial to highlight that backtesting is only possible when all
the components of the ATP are in place, making it barely suitable for
assessing individual components separately.

2.4. Machine learning algorithms in financial contexts

There is a wide range of techniques for machine learning, ranging
from very simple such as regression to techniques used for deep learn-
ing such as neural networks. Consequently, it is important to choose
an algorithm that is most suited to the problem one wishes to tackle.
However, there is no uniform rule on how to make the most optimal
choice, and it is often empirically driven (Kotthoff, Gent, & Miguel,
2012).

In ATPs one of the possible roles of machine learning is to identify
situations in which it is profitable to trade, depending on the strategy,
for example, if using a flat strategy the intent is to identify when the
market is flat. In these circumstances, and due to the potentially high
financial implications of false negatives, understanding the prediction
is key. Understanding the prediction involves the process of being able
to understand why the algorithm made this decision. This is a non-
trivial issue and something very difficult to do for a wide range of
techniques, neural networks being the prime example (although current
advances are being made (Fan, Xiong, & Wang, 2020; Zhou, Bau, Oliva,
& Torralba, 2018).

2.4.1. Algorithms
Perhaps one of the simplest yet highly-effective techniques is known

as Support Vector Machines (SVM) (Janardhanan et al., 2015; Pal &
Mather, 2004). SVMs are used to identify the hyperplane that best
separates a binary sampling. If we imagine a set of points mapped onto
a 2d plane, the SVM will find the best line that divides the two different
classifications in half. This technique can easily be expanded to work on
higher-dimensional data, and since it is so simple, it becomes intuitive
to see the reason behind a classification. However, this technique whilst
popular for usage in financial forecasting (Huang, Nakamori, & Wang,
2005; Tabak & Feitosa, 2009), suffers from the drawback that it is very
sensitive to parameter tuning, making it harder to use, and also does not
work with categorical features directly, making it less suited to complex
analysis (Cawley & Talbot, 2010).

Another popular approach is decision trees, as they have been
around since the 1960s (Magee, 1964). The reason tree-based ap-
proaches are hugely popular is that they are directly interpretable. To
improve the efficacy of this technique, several different trees are trained
and used in unison to come up with the result. A popular case of this
is Random Forest (Breiman, 2001). Random Forest operates by con-
structing a multitude of decision trees at training time and outputting
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the classification of the individual trees. However, this suffers from the
fact that the different trees are not weighted and contribute equally,
which might lead to inaccurate results (Genuer, Poggi, & Tuleau-Malot,
2010). Moreover, since the data is randomly sampled for individual
trees, it is hard to expect the model to learn the most optimal data
representation (Genuer et al., 2010).

One class of algorithms that have seen mass popularity for its
increases in robustness, effectiveness and clarity is boosting algo-
rithms (Ridgeway, 1999). Boosters create several classifications that
can be combined to reduce overfitting and improve prediction. Initially,
a weak classifier is trained, and then the subsequent classifier is
trained with the additional weights of the initial classifier, putting
further consideration on misclassified entries, consequently forcing the
subsequent classifier to put more effort into classifying the results that
are misclassified by the other classifier. After the set of classifiers is
trained, the results are aggregated, with more weight being put on
the more accurate learners (Hastie, Tibshirani, Friedman, & Friedman,
2009).

The first usage of boosting using a notion of weakness was intro-
duced by AdaBoost (Freund & Schapire, 1997), this work presented the
concept of combining the output of the boosters into a weighted sum
that represents the final output of the boosted classifier. This allows for
adaptive analysis as subsequent weak learners are tweaked in favour of
those instances misclassified by previous classifiers. Following on from
this technique two other techniques were introduced XGBoost (Chen &
Guestrin, 2016) and LightGBM (Ke et al., 2017), both libraries gained a
lot of traction in the machine learning community for their efficacy, and
are widely used. In this category, the most recent algorithm is CatBoost.
CatBoost (Prokhorenkova et al., 2018) is highly efficient and less prone
to bias than its predecessors, it is quickly becoming one of the most used
approaches, in part due to its high flexibility. CatBoost was specifically
proposed to expand issues in the previous approaches which lead to
target leakage, which sometimes led to overfitting. This was achieved
by using ordered boosting, a new technique allowing independent
training and avoiding leakage (Prokhorenkova et al., 2018). This also
allows for better performance on categorical features.

2.4.2. Feature and prediction analysis
Feature analysis is the evaluation of the input data to assess their

effectiveness and contribution to the prediction. This may also take
the form of creating new features using domain knowledge to improve
the data. The features in the data will directly influence the predictive
models used and the results that can be achieved. Intuitively, the
better the chosen and prepared features, the better the results that
can be achieved. However, this may not always be the case for every
scenario, as it may lead to overfitting due to the dimensionality of
the data being too large. The process of evaluating and selecting the
best features is referred to as feature selection. One of the methods
supporting feature engineering is feature importance evaluation. The
simplest way to achieve this is by feature ranking (Guyon & Elisseeff,
2003), in essence, a heuristic is chosen, and each feature is assigned a
score based on this heuristic, ordering the features in descending order.
This approach however may be problem-specific and require domain
knowledge. Another common approach is the usage of correlations, to
evaluate how the features relate to the output (Yu & Liu, 2003). This
approach intends to evaluate the dependency between the features and
the result, which intuitively might lead to a feature that contributes
more to the output (Blessie & Karthikeyan, 2012). However, these
approaches evaluate the feature as a single component, in relation to
the output, independent of the other features.

Realistically, one would want to understand their features as a
whole and see how they contribute to a prediction as a group. Com-
pared to previously discussed approaches, this starts from the result of
the model and goes back to the feature to see which ones contributed to
the prediction (referred to as post-hoc explanations) (Adadi & Berrada,
5

2018). This has advantages over the pure feature analysis approaches, v
as it can be applied to all the different predictors individually and gives
insights into the workings of the predictor. Recent advances in this
approach, namely SHAP (SHapleyAdditive exPlanations) (Lundberg &
Lee, 2017), can provide insight into a prediction scoring of each feature.
This innovative technique can allow the step-through assessment of
features throughout the different predictions, providing guided in-
sight which can also be averaged for an overall assessment. This is
very useful for debugging an algorithm, assessing the features and
understanding the model decisions, making the approach particularly
relevant to the current work.

2.5. Statistical reproducibility

To evaluate the results of our research, answer the research ques-
tions, add explainability and increase the reproducibility of our study,
we make use of several statistical techniques.

2.5.1. Effect sizes
The first step that has to be done is quantifying the effectiveness of

the approach in relation to control. Statistically, this can be done using
effect sizes (Durlak, 2009). Effect size is a measure for calculating the
strength of a statistical claim. A larger effect size indicates that there
is a larger difference between the treatment (method) and the control
sample. Reporting effect sizes is considered a good practice when
presenting empirical research findings in many fields (Hawkins et al.,
2013; Stern, 2004; Wilkinson, 1999). Two types of effect sizes exist:
relative and absolute. Absolute ones provide a raw difference between
the two groups and are usually used for quantifying the effect of a
particular use case. Relatives are obtained by normalising the difference
by the absolute value of the control group. Depending on the setting,
when computing effect sizes one might look at differences in variances
explained, differences in mean, and associations in variables (Kelley &
Preacher, 2012).

Differences in variance explained assess the proportion to which
a mathematical model accounts for the variation. One of the most
common ways to do this is by making use of Pearson Correlation (Kirch,
2008). Pearson correlation is defined as the covariance of the two
variables, divided by the product of their standard deviations. This
normalises the measurement of the covariance, such that the result
always has a value between −1 and 1. A further commonly used

easure is known as r-squared, taking the Pearson correlation and
quaring it. By doing this, we can measure the proportion of variance
hared by the two variables. The second approach is instead to look
t the differences in population means, using a standardisation factor.
opular approaches include Cohen’s d (Cohen, 1960), which calcu-
ates the difference between two sample means with pooled standard
eviation as the standardisation factor. However, it was found that
he standard deviation may be biased as the standardisation factor,
eaning that when the two means are compared and standardised

y division as follows 𝑓𝑟𝑎𝑐𝑢1 − 𝑢2𝑆𝐷 if the standard deviation 𝑆𝐷 is
sed it may cause some bias and alternative standardisations may be
referred. This is rectified in Hedge’s g (Hedges, 1981) method, which
orrects the bias using a correction factor when computing the pooled
tandard deviation. A further extension that can be added on top of this
orrection is to use 𝑎𝑣 or rather an average variance instead of variance,
his is more powerful when applied to two correlated samples, and
ses the average standard deviation instead, once again the corrected
ohen’s 𝑑𝑎𝑣 is referred to as Hedge’s 𝑔𝑎𝑣 (Cumming, 2013; Lakens,
013). The final type of effect size is categorical variable associations,
hich checks the inter-correlation of variables, and can evaluate the
robability of variables being dependent on one another, examples of
his are the chi-squared test (Fraser, 2019), also effective on ordinal

ariables.
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2.5.2. Inferential statistics
Another core component of a statistical assessment is Inferential

Statistics. With inferential statistics, one aims to determine whether the
findings are generalisable to the population. It is also used to determine
if there is a significant difference between the means of two groups,
which may be related to certain features. The most popular approaches
fall under the general linear model (McNeil, Newman, & Kelly, 1996).
The general concept is that we want to use a null hypothesis to
test the probabilistic difference between our sample population and
another population. Popular approaches include t-test (Student, 1908),
ANOVA (Girden, 1992), Wilcoxon (Wilcoxon, 1992), and many more,
depending on the considered setting. A t-test is a type of inferential
statistic used to determine if there is a significant difference between
the means of two groups, which may be related to certain features.
The basic functioning is that you take a sample from two groups, and
establish the null hypothesis for which the sample means are equal,
it then calculates the mean difference, standard deviations of the two
groups and number of data values of the two groups and attempts to
reject the null hypothesis. If the null hypothesis is rejected, it means
that the mean difference is statistically significant. However, the t-
test relies on several assumptions: (1) that the data is continuous, (2)
that the sample is randomly collected from the total populations, (3)
that the data is normally distributed, and (4) that the data variance
is homogeneous (Usman, 2016). This makes the t-test not suited to the
analysis of small samples, where normality and other sample properties
are hard to assess reliably. An approach that does not face the same
limitations is the Wilcoxon test (Wilcoxon, 1992). The advantage of this
approach is that instead of comparing means, it repeatedly compares
the samples to check if the mean ranks differ, this means it will check
the arithmetic average of the indexed position within a list. This type of
comparison is applicable for paired data only and done on individual
paired subjects, increasing the power of the comparison. However, a
downside of this approach is that it is non-parametric. A parametric
test can better observe the full distribution and is consequently able
to observe more differences and specific patterns, however as we
saw with t-tests they rely on stronger assumptions and are sometimes
impractical.

2.5.3. Correction for multiple comparisons
The more inferences are made, the more likely erroneous inferences

are to occur. Multiple comparisons arise when a statistical analysis
involves multiple simultaneous statistical tests, each of which has the
potential to produce the discovery, of the same dataset or dependent
datasets. Hence, the overall probability of the discovery increases. This
increased chance should be corrected. Some methods are more specific
but there exist a class of general significance level 𝛼 adjustments.
Examples of these are the Bonferroni Corrections (Bonferroni, 1936)
and Šidák Corrections (Šidák, 1967). The general idea follows from the
following: given that the 𝑝-value establishes that if the null hypothesis
holds, what is the likelihood of getting an effect at least as large in
your sample? Then if the 𝑝-value is small enough, you can conclude
that your sample is inconsistent with the null hypothesis and reject it
for the population. So the idea of the corrections is that to retain a
prescribed significance level 𝛼 in an analysis involving more than one
comparison, the significance level for each comparison must be more
stringent than the initial 𝛼. In the case of Bonferroni corrections, if for
some test performed out of the total 𝑛 we ensure that its 𝑝-value is less
than 1.0−𝛼∕𝑛, then we can conclude, as previously, that the associated
null hypothesis is rejected.

2.6. Methodologies for evaluation of ATP components

Below, we overview several works on trading pattern identification,
design and trading from the methodological perspective.

In the work by Chen and Chen (2016), a pattern recognition model
6

is proposed and evaluated for its performance. The performance is
evaluated in two phases, model training and model testing. In the first
phase, the authors perform optimisation of the pattern parameters to
the current market conditions, and in the second — perform pattern
recognition and backtesting. The same approach is taken in the work
by Parracho, Neves, and Horta (2010). In the work by Cervelló-Royo
et al. (2015), the authors thoroughly assess the proposed approach for
trading pattern recognition based on ATP profitability for a range of
take-profits and stop-losses.

An elegant approach to computational finance is proposed by
Canelas, Neves, and Horta (2013). It uses a symbolic approximation
of the financial time series together with a genetic algorithm to find
patterns and trading rules from the approximation. The results are
reported in measures specific to this particular study, which do not
allow direct comparison to other studies.

A statistical approach is taken in a paper published two decades
ago (Leigh et al., 2002). Namely, the authors introduce the null hy-
pothesis in a form of the performance of a random-choice model and
run a t-test on daily ATP profits to test the proposed method. This is
a good first step in a statistically sound approach to financial markets.
However, it falls short of justifying the choices within the methodology,
reporting statistical results, and reporting measures that would allow
the comparability. Moreover, the way the null hypothesis is formulated
and evaluated limits the ability of a practitioner to test a particular ATP
component, as discussed in Section 2.3.

Concluding, there is no uniform dataset for reporting the results,
and neither there is a uniform trading strategy. Moreover, all the
considered studies assess multiple ATP components at once. The lack
of uniformity and comparability highlights the demand for the current
study.

3. Material and methods

In this section, we first describe the datasets and pre-processing
procedures. Then, the proposed methodology is applied (Fig. 2), sep-
arately assessing the model performance and profitability, as well as
statistically approaching the research questions and performing model
analysis.

The experiment design comprises entries labelling and formulat-
ing the machine learning classification problem, designing features,
evaluating model performance, evaluating its statistical significance,
explaining the model and, finally, backtesting.

3.1. Experimental design

While the proposed experimental design is a part of our methodol-
ogy, the used methods are not novel on their own. Although the method
of trading price extrema has been known for decades, to the best of our
knowledge there is no study systematically and rigorously exploring
this approach in the context of algorithmic trading, possibly due to the
secretive nature of the field. Other, often more complex methods, were
proposed and studied (Ding, Zhang, Liu, & Duan, 2015; Sezer et al.,
2020; Wu et al., 2020). While the adopted study designs are valid by
themselves, the results are often incomparable with the existing body
of knowledge. This is mostly due to different data sources, frequencies,
timelines, assumptions, and so on. This fact requires one to integrate
existing methods into the study for reference purposes, which is a non-
trivial task, often raising questions and concerns. Hence, instead of
systematically building on top of the existing research in the field, we
frequently end up with several similar although incomparable stud-
ies. The proposed methodology addresses this weakness by allowing
comparability and reproducibility of the results in the field.

While in the study we constrain ourselves to a specific source of
data, feature space, pattern frequency, etc., the obtained effect sizes
and RQs stay generalisable and comparable under the only condition

of following the proposed methodology.
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Fig. 2. The methodology proposed for profitability, performance and statistical evaluation of the research questions in the field of financial markets. The bottom elements are
optional and are not required to answer the RQs.
Fig. 3. The figure illustrates what data we use for the 2-step feature extraction: price level (PL) and market shift (MS) components. It also demonstrates peaks, peak widths, as
well as rebound and crossing labelling.
For demonstration purposes, we use a price-action-based way of
defining the price levels and performing their classification, with the
ultimate objective of treating them as market entry points and trading.
Concretely, we identify local price extrema and predict whether the
price will reverse (or ‘rebound’) or continue its movement (also called
‘crossing’). Again, for demonstration purposes, we set up a simplistic
trading strategy, where we are trading a price reversal after a discov-
ered local extremum is reached as shown in Fig. 3. It is essential to
highlight that backtesting is an optional element and on its own is weak
evidence of the approach being efficient due to many assumptions that
are made while performing it. In the simulated trading, we limit our
analysis to backtesting and do not perform any live trading.

We statistically assess our choices of the feature space and feature
extraction method. In the Section 5 section, we address the limitations
of such an approach. Also, we share the reproducibility package for the
study (Sokolovsky & Arnaboldi, 2022). It is implemented in Python, we
also share the trained models.

3.1.1. Data
In the study, we use S&P500 E-mini CME futures contracts ES(H-

Z)2017, ES(H-Z)2018 and ES(H-U)2019. Which correspond to ES fu-
tures contracts with expiration in March (H), June (M), September (U)
and December (Z). We operate on ticks data which includes Time&Sales
records statistics, namely: bid and ask volumes and numbers of trades,
as well as the largest trade volumes per tick. We consider a tick to
7

incorporate all the market events between the two price changes by a
minimum price step. For the considered financial instrument, the tick
size is $0.25.

3.1.2. Data pre-processing
We sample the contract data to the active trading periods by con-

sidering only the nearest expiring contracts with the conventionally
accepted rollover dates. The samples end on the second Thursday of the
expiration month — on that day the active trading is usually transferred
to the following contract. This decision ensures the highest liquidity,
and, due to the double-auction nature of the financial markets, stable
minimum bid–ask spreads (Iori & Chiarella, 2002).

In the current study, we consider the two simplest scenarios of
the price behaviour after it reaches the local extremum — reversal
and extremum crossing. When labelling the entries, we require up to
15 ticks of price movement as a reversal (or rebound) and only 3
ticks for the extremum crossing. The labelling approach allows us to
study a range of configurations of the reversals and investigate how
the configurations affect the performance of the models. At the same
time, these ranges are well within the boundaries of the intraday price
changes.

An essential part of the proposed automated trading system is the
detection of the price extrema. The detection is performed on a sliding
window of the streamed ticks with a window size of 500. We capture
peaks with widths from 100 to 400. The selected widths range serves
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three purposes: (i) ensures that we do not consider high-frequency
trading (HFT) scenarios which require more modelling assumptions and
different backtesting engines; (ii) allows us to stay in intraday trading
time frames and have a large enough number of trades for analysis;
(iii) makes the price level feature values comparable across many of
the entries.

3.1.3. Classification task
To incorporate machine learning into the automated trading system,

we design a binary classification task, where the labels correspond
to price reversals (positives) and crossings (negatives). Due to the
labelling design, we are more flexible with taking profits and stopping
losses when trading reversals (up to 15 ticks versus 3 ticks) - this
explains their positive labelling.

3.1.4. Feature design
To perform the extrema classification, we obtain two types of

features: (i) designed from the price level ticks (called price level (PL)
features), and (ii) obtained from the ticks right before the extremum is
approached (called market shift (MS) features) as we illustrate in Fig. 3.
We believe (and statistically test it) that it is beneficial to perform the 2-
step collection since the PL features contain properties of the extremum,
and the MS features allow us to spot any market changes that happened
between the time when the extremum was formed and the time we are
trading it.

Considering different extrema widths, varying dimensionality of the
data does not allow us to use it directly for classification — most of the
algorithms take fixed-dimensional vectors as input. We ensure the fixed
dimensionality of a classifier input by aggregating per-tick features by
price. We perform the aggregation for the price range of 10 ticks below
(or above in case of a minimum) the extremum. This price range is
flexible — 10 ticks are often not available within ticks associated with
the price level (red dashed rectangle in Fig. 3) in this case we fill the
empty price features with zeros. We assume that the further the price
from the extremum, the less information relevant to the classification it
contains. Considering the intraday volatility of ES, we expect that the
information beyond 10 ticks from the extremum is unlikely to improve
the predictions. If one considers larger time frames (peak widths), this
number might need to increase.

PL features are obtained from per-tick features by grouping by price
with the sum, max or count statistics. For instance: if one is considering
olumes, it is reasonable to sum all the aggressive buyers and sellers be-
ore comparing them. Of course, one can also compute mean or consider
ax and min volumes per tick. If following this line of reasoning, the

eature space can be increased to very large dimensions. We empirically
hoose a feature space described in Tables 1 and 2 for Price Level and
arket Shift components, respectively. Defining the feature space, we

im to make the feature selection step computationally feasible. Too
arge a feature space might be also impractical from the optimisation
oint of view, especially if the features are correlated.

To track the market changes, for the MS feature component we
se 237 and 21 ticks and compare statistics obtained from these two
eriods. Non-round numbers help avoid interference with the majority
f manual market participants who use round numbers (De Prado,
018). We also choose the values to be comparable to our expected
rading time frames. No optimisation was made on them. We obtain
he MS features being 2 ticks away from the price level to ensure that
ur modelling does not lead to any time-related bias where one cannot
hysically send the order fast enough to be executed on time.

.1.5. Model evaluation
After the features are designed and extracted, the classification can

e performed. As a classifier, we choose the CatBoost estimator. We feel
hat CatBoost is a good fit for the task since it is resistant to over-fitting,
table in terms of parameter tuning, efficient and one of the best-
8

erforming boosting algorithms (Prokhorenkova et al., 2018). Finally,
being based on decision trees, it is capable of correctly processing
zero-padded feature values when no data at price is available. Other
types of estimators might be comparable in one of the aspects and
require much more focus in the other ones. For instance, operating
on a relatively small number of tabular data entries with a temporal
component, we withhold from applying deep learning models due to
evidence suggesting that boosting trees work better off the shelf in the
considered setting (Borisov et al., 2021).

In this study, we use precision as the main scoring function (S):

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (2)

where TP is the number of true positives and FP is the number of
false positives. All the statistical tests are run on the precision scores
of the samples. This was chosen as the main metric since by design
every FP leads to losses, and a false negative (FN) means only a
lost trading opportunity. To give a more comprehensive view of the
model performance, we build confusion matrices and compute F1
scores, PR-AUC (precision–recall area under the curve) and ROC-AUC
(receiver-operating characteristic area under the curve) metrics. We
report model performances for the 2-step feature extraction approach,
as well as for each of the feature extraction steps separately.

To avoid a large bias in the base classifier probability, we introduce
balanced class weights into the model. The weights are inversely pro-
portional to the number of entries per class. The contracts for training
and testing periods are selected sequentially – training is done on the
active trading phase of contract 𝑁 , testing – on 𝑁+1, for 𝑁 ∈ [0, 𝐵−1],
where 𝐵 is the number of contracts considered in the study.

We apply a commonly accepted ML community procedure for input
feature selection and model parameter tuning (Kuhn & Johnson, 2019).
Firstly, we perform the feature selection step using a Recursive Feature
Elimination with the cross-validation (RFECV) method. The method is
based on the gradual removal of features from the model input starting
from the least important ones (based on the model’s feature impor-
tance) and measuring the performance on a cross-validation dataset.
In the current study, on each RFECV step, we remove 10% of the least
important features. Cross-validation allows robust assessment of how
the model performance generalises into unseen data. Since we operate
on the time series, we use time series splits for cross-validation to avoid
the look-ahead bias. For the feature selection, the model parameters are
left default, the only configuration we adjust is class labels balancing
as our data is imbalanced. Secondly, we optimise the parameters of the
model in a grid-search fashion. Even though CatBoost has a very wide
range of parameters that can be optimised, we choose the parameters
common for boosting tree models for the sake of the feasibility of the
optimisation and leaving the possibility of comparing the optimisation
behaviour to the other boosting algorithms. The following parameters
are optimised: (1) Number of iterations, (2) Maximum depth of trees, (3)
has_time parameter set to True or False, and (4) L2 regularisation. For
the parameter optimisation, we use a cross-validation dataset as well.
We perform training and cross-validation within a single contract and
the backtesting of the strategy on the subsequent one to ensure the
relevance of the optimised model.

3.1.6. Statistical evaluation
Here we formalise the research questions by proposing null and

alternative hypotheses, suggesting statistical tests for validating them,
as well as highlighting the importance of the effect sizes.

The effect sizes are widely used in empirical studies in social,
medical and psychological sciences (Lakens, 2013). They are a prac-
tical tool allowing us to quantify the effect of the treatment (or a
method) in comparison to a control sample. Moreover, they allow the
generalisation of the findings to the whole population (unseen data in
our case). Finally, effect sizes can be compared across studies (Lakens,
2013). We believe that the introduction of the effect sizes into the
financial markets domain contributes to the research reproducibility
and comparability.
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Table 1
Price level feature space component was used in the study. These features are obtained when the price level is formed. When
discussed, features are referred to by the codes in the square brackets at the end of descriptions.

Formula Description

Pr
ic

e
le

ve
l

(P
L)

fe
at

ur
es

∑𝑝=|𝑃𝐿−𝑡|
𝑡 (𝑉𝑏 + 𝑉𝑎) Bid and ask volumes summed across all the ticks for

𝑡 ∈ [0, 1, 2] [PL0]
∑𝑝=|𝑃𝐿−𝑡|

𝑡 𝑉𝑏 Bid volumes summed across all the ticks for 𝑡 ∈ [0, 1, 2] [PL1]
∑𝑝=|𝑃𝐿−𝑡|

𝑡 𝑉𝑎 Ask volumes summed across all the ticks for 𝑡 ∈ [0, 1, 2] [PL2]
∑𝑝=|𝑃𝐿−𝑡|

𝑡 𝑇𝑏 Number of bid trades summed across all the ticks for
t∈ [0, 1, 2] [PL3]

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑇𝑎 Number of ask trades summed across all the ticks for

t∈ [0, 1, 2] [PL4]

𝑀(𝑇 𝑝 = |𝑃𝐿 − 𝑡|)𝑏 Maximum bid trade across all the ticks for 𝑡 ∈ [0, 1, 2] [PL5]

𝑀(𝑇𝑝=|𝑃𝐿−𝑡|)𝑎 Maximum ask trade across the ticks for t∈ [0, 1, 2] [PL6]
∑𝑝=|𝑃𝐿−𝑡|

𝑡 1 Number of ticks at price for t∈ [0, 1, 2] [PL7]
∑𝑝=|𝑃𝐿−𝑡|

𝑡 𝑉𝑏
∑𝑝=|𝑃𝐿−𝑡|

𝑡 𝑉𝑎

PL1 divided by PL2, for t∈ [0, 1, 2] [PL8]

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑇𝑏

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑇𝑎

Feature PL3 divided by feature PL4 [PL9]

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑚𝑎𝑥(𝑇 )𝑏

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑚𝑎𝑥(𝑇 )𝑎

Feature PL5 divided by feature PL6 [PL10]

∑𝑝=|𝑃𝐿−𝑡|
𝑡 (𝑉𝑏 + 𝑉𝑎)
∑𝑝=|𝑃𝐿−𝑡|

𝑡 1
Total volume at price |𝑃𝐿 − 𝑡| divided by the number of ticks
[PL11]

∑10
𝑡=0

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑉𝑎 Total Ask Volume [PL12]

∑10
𝑡=0

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑉𝑏 Total Bid Volume [PL13]

∑10
𝑡=0

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑇𝑎 Total Ask Trades [PL14]

∑10
𝑡=0

∑𝑝=|𝑃𝐿−𝑡|
𝑡 𝑇𝑏 Total Bid Trades [PL15]

∑10
𝑡=0

∑𝑝=|𝑃𝐿−𝑡|
𝑡 (𝑉𝑎 + 𝑉𝑏) Total Volume [PL16]

– Peak extremum - minimum or maximum [PL17]

– Peak width in ticks described in the Background section [PL18]

– Peak prominence - described in the Background section [PL19]

– Peak width height - described in the Background section [PL20]
∑𝑝=|𝑃𝐿−𝑡|

𝑡∈[0,1,2] 𝑉𝑏
∑𝑝=|𝑃𝐿−𝑡|

𝑡∈[3..9] 𝑉𝑏

Bid volumes close to extremum divided by ones which are
further [PL21]

∑𝑝=|𝑃𝐿−𝑡|
𝑡∈[0,1,2] 𝑉𝑎

∑𝑝=|𝑃𝐿−𝑡|
𝑡∈[3..9] 𝑉𝑎

Ask volumes close to extremum divided by ones which are
further [PL22]

∑𝑝=|𝑃𝐿−𝑡|
𝑡∈[0,1,2] 𝑉𝑏

∑𝑝=|𝑃𝐿−𝑡|
𝑡∈[0,1,2] 𝑉𝑎

Sum bid volume close to the price extremum divided by
the close ask volume [PL23]

∑𝑝=|𝑃𝐿−𝑡|
𝑡∈[3..9] 𝑉𝑏

∑𝑝=|𝑃𝐿−𝑡|
𝑡∈[3..9] 𝑉𝑎

Sum bid volume far from the price extremum divided by
the far ask volume [PL24]

Ke
y OB - order book T - trades t - ticks N - total ticks p - price

w - tick window PL - extremum price V - volume b - bid a - ask
𝑃𝑁 - price level neighbours until distance max(X) - max value in set X
In the current study, we report Hedge’s 𝑔𝑎𝑣 - an unbiased measure
esigned for paired data. In the supplementary data, the effect sizes are
rovided in a form of forest plots with .95 confidence intervals (CIs),
epresenting the range where the effect size for the population might
e found with the .95 probability. We correct the confidence intervals
or multiple comparisons by applying Bonferroni corrections.

When testing the hypotheses, the samples consist of the test pre-
isions on the considered contracts, leading to equal sample sizes in
oth groups, and entries are paired as the same underlying data is used.
omparing a small number of paired entries and being unsure about the
ormality of their distribution, we take a conservative approach and
or hypothesis testing use the single-tailed Wilcoxon signed-rank test.
9

his test is a non-parametric paired difference test, which is used as an
alternative to a t-test when the data does not fulfil the assumptions re-
quired for the parametric statistics. When reporting the test outcomes,
we support them with the statistics of the compared groups. Namely,
we communicate standard deviations, means and medians.

We set the significance level of the study to 𝛼 = .05. Also, we account
for multiple comparisons by applying Bonferroni corrections inside of
each experiment family (Carlo, 1936). We consider research questions
as separate experiment families.

3.1.7. Model analysis
We perform the model analysis in an exploratory fashion — no

research questions and hypotheses are stated in advance. Hence, the

outcomes of the analysis might require additional formal statistical
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Table 2
Market shift feature space component used in the study. These features are obtained right before the already formed price
level is approached. When discussed, features are referred to by the codes in the square brackets at the end of descriptions.

Formula Description

M
ar

ke
t

Sh
ift

(M
S)

fe
at

ur
es

∑𝑤=237
𝑡,𝑏 (𝑉𝑏)

∑𝑤=237
𝑡,𝑎 (𝑉𝑎)

Fraction of bid over ask volume for last 237 ticks
[MS0]

∑𝑤=237
𝑡,𝑏 (𝑇𝑏)

∑𝑤=237
𝑡,𝑎 (𝑇𝑎)

Fraction of bid over ask trades for last 237 ticks
[MS1]

∑𝑤=237
𝑡 𝑉𝑏

∑𝑤=237
𝑡 𝑉𝑎

−
∑𝑤=21

𝑡 𝑉𝑏
∑𝑤=21

𝑡 𝑉𝑎

Fraction of bid/ask volumes for long minus
short periods [MS2]

∑𝑤=237
𝑡 𝑇𝑏

∑𝑤=237
𝑡 𝑇𝑎

−
∑𝑤=21

𝑡 𝑇𝑏
∑𝑤=21

𝑡 𝑇𝑎
Fraction of bid/ask trades for long minus short
periods [MS3]

∑𝑤=237
𝑡 𝑚𝑎𝑥(𝑇 )𝑏

∑𝑤=237
𝑡 𝑚𝑎𝑥(𝑇 )𝑎

−
∑𝑤=21

𝑡 𝑚𝑎𝑥(𝑇 )𝑏
∑𝑤=21

𝑡 𝑚𝑎𝑥(𝑇 )𝑎
Max bid trade divided by ask for long periods
minus
short periods [MS4]

RSI(z∈ 𝑆) Technical indicator RSI with the stated periods z
[MS5𝑋]

MACD(𝑙𝑝 ∈ 𝑆; 𝑠𝑝 = 𝑙𝑝∕2) Technical indicator MACD with the stated long &
short periods lp, sp [MS6𝑋]

Ke
y

T - trades N - total ticks w - tick window V - volume
b - bid a - ask 𝑃𝑁 - price level neighbours until distance
max(X) - max value in set X S - ranges [20,40,80,120,160,200]
t - ticks z - time period
assessment. We use SHAP local explanations to understand how models
end up with particular outputs. Through the decision plot visualisa-
tions, we aim to find common decision paths across entries, as well as
informally compare models with small and large numbers of features.
The reproducibility package contains the code snippets as well as the
trained models, which allow repeating the experiments for all the
models and contracts used in the study.

3.1.8. Backtesting
The trading strategy is defined based on our definition of the crossed

and rebounded price levels, and shared as pseudocode in Fig. 4. It is a
flat market strategy, where we expect a price reversal from the price
level. Backtrader Python package1 is used for backtesting the strategy.

acktrader does not allow taking bid–ask spreads into account, that is
hy we are minimising its effects by excluding HFT trading opportu-
ities (by limiting peak widths) and limiting ourselves to the actively
raded contracts only. Since ES is a very liquid trading instrument, its
id–ask spreads are usually 1 tick, which however does not always hold
uring extraordinary market events, scheduled news, or session starts
nd ends. We additionally address the impact of spreads as well as order
ueues in the Discussion section.

In our backtests, we evaluate the performance of the models with
ifferent rebound configurations and fixed take-profit parameters, and
arying take-profits with a fixed rebound configuration to better un-
erstand the impact of both variables on the simulated trading perfor-
ance.

.2. Hypothesis testing, answering RQs

In the current subsection, we continue formalising the research
uestions by proposing the research hypotheses. The hypotheses are
imed to support the findings of the paper, making them easier to
ommunicate and build on top of. For both research questions, we run
tatistical tests on the precision metric, as justified above.

In the current study, we encode the hypotheses in the following
ay: H0𝑋 and H1𝑋 correspond to null and alternative hypotheses,

espectively, for research question X.

1 Available at: https://www.backtrader.com/
10
CatBoost versus no-information model (RQ1). In the first research ques-
tion, we investigate whether it is feasible to improve the baseline
performance for the extrema datasets using the chosen feature space
and CatBoost classifier. We consider the baseline performance to be the
precision of an always positive class output estimator. The statistical
test is performed on the following hypothesis:

H11: CatBoost estimator allows classification of the extracted ex-
trema with a precision better than the no-information approach.

H01: CatBoost estimator allows classification of the extracted ex-
trema with a worse or equal precision in comparison to the no-
information approach.

2-Step versus single-step feature extraction (RQ2). The second research
question assesses if the proposed 2-step feature extraction gives any
statistically significant positive impact on the extremum classification
performance. The statistical test addresses the following hypothesis:

H12: 2-step feature extraction leads to an improved classification
precision in comparison to using features extracted from any of the
steps on their own.

H02: 2-step feature extraction gives equal or worse classification
precision than features extracted from any of the steps on their own.

In the current setting, we are comparing the target sample (the 2-
step approach) to the two control samples (MS and PL components).
We are not aiming to formally relate the MS and PL groups, hence only
comparisons to the 2-step approach are necessary. To reject the null
hypothesis, the test outcomes for both MS and PL components should
be significant.

4. Results

In the current section, we communicate the results of the study.
Namely: the original dataset and pre-processed data statistics, model
performance for all the considered configurations, statistical evaluation
of the overall approach and the 2-step feature extraction, and, finally,
simulated trading and model analysis. An evaluation of these results is
presented in Section 5. Further analysis is provided in Supplementary

Materials for completeness.

https://www.backtrader.com/
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Fig. 4. The code sample illustrates the steps of the trading strategy in a form of pseudocode. The pseudocode assumes that price_lvls is a list of previously observed price levels
nd classify() is a function that takes in input features and returns a prediction of ‘‘crossing’’ or ‘‘reversal’’. It also assumes that there are functions to get the current price from
he data feed and to submit a limit order at a certain price.
Table 3
The table communicates the numbers of reconstructed ticks per contract, the number of
positive labels, as well as the total number of entries per contract. ’Reb.’ corresponds
to the rebound — the required number of ticks for the positive labelling. Rebound
columns show numbers of positively labelled entries.

Contract No. ticks Reb. 7 Reb. 11 Reb. 15 Total

ESH2017 1 271 810 896 804 703 4911
ESM2017 1 407 792 951 881 756 4181
ESU2017 1 243 120 858 812 693 3446
ESZ2017 1 137 427 689 640 518 12317
ESH2018 2 946 336 2014 1983 1953 11537
ESM2018 2 919 757 1965 1936 1868 6534
ESU2018 1 825 417 1271 1226 1095 16331
ESZ2018 3 633 969 2677 2620 2565 11718
ESH2019 3 066 530 1990 1949 1883 9743
ESM2019 2 591 000 1711 1692 1630 10389
ESU2019 2 537 197 1761 1735 1704 6191

4.1. Raw and pre-processed data

The considered data sample and processed datasets are provided
in Table 3. We provide the number of ticks per contract in the first
columns. The contracts are sorted by the expiration date from top
to bottom, in ascending fashion. The number of ticks changes non-
monotonically — while the overall trend is rising, the maximum num-
ber of ticks is observed for the ESZ2018 contract. And the largest
change is observed between ESZ2017 & ESH2018.

We perform the whole study on 3 different rebound configurations:
7, 11 and 15 ticks price movement required for the positive labelling.
We communicate the numbers of positively labelled and total numbers
of entries used in the classification tasks in Table 3. As one can see,
the numbers of the extracted extrema do not strictly follow the linear
relation with the number of ticks per contract. Considering the numbers
of positively labelled entries, the numbers decrease for the larger
rebound sizes.

4.2. Evaluation methodology for the trading pattern (price-levels)

4.2.1. Automatic extraction
The first step of the pipeline was detecting peaks, which is done

automatically, the same way as shown in Fig. 3. We mark peaks with
grey circles, and the associated peak widths are depicted with solid
grey lines. In our setting, some of the peaks are not automatically
discovered, as they were not satisfying the conditions of the algorithm
by having insufficient widths or being not prominent enough (see
Section 2.1.2 for the definitions of both).
11
4.2.2. Classification of the extrema
For all the considered models, we performed feature selection and

parameter tuning. We made the optimisation results available as a
part of the reproducibility package. The model precision obtained on a
per-contract basis for the 2-step feature extraction, PL and MS feature
spaces, and no-information model is reported in Table 4. The relative
changes in the precision across contracts are preserved across the
labelling configurations. We also provide the confusion matrices for
the 2-step feature extraction as aggregate performance across all the
contracts in Fig. 5.

We report the rest of the metrics for the 2-step feature extraction
method, PL and MS feature in the supplementary data, in Tables S2,
S2, and S3, respectively.

4.3. Price levels, CatBoost versus No-information estimator (RQ1)

Below, we present the effect sizes with .95 confidence intervals (CIs)
(Table 5) associated with the research question. Concretely, we use pre-
cision as the measurement variable for comparing the no-information
model and the CatBoost classifier. No configurations were showing
significant effect sizes. The largest effect size was observed for the 15-
tick rebound labelling. Large CIs were observed, partially due to the
small sample size.

We tested the null hypothesis for rejection for the 3 considered
configurations. The original data used in the tests are provided in
Table 4 - ‘2-step’ and ‘Null’ columns. We reported test outcomes in a
form of test statistics and p-values in Table 5. Additionally, in the same
table, the sample statistics are included. We illustrate the performance
of the compared groups in the supplementary materials, in Figure S3.
There was no skew in any of the labelling configurations — medians
and means do not differ within the groups. We saw around 2 times
larger standard deviations for the CatBoost model in comparison to
the no-information model. The potential reasons and implications are
discussed in Sections 5.2 and 5.6, respectively. There are 3 tests run in
this experiment family, hence after applying Bonferroni corrections for
multiple comparisons, the corrected significance level was 𝛼 = .05∕3 =
.0167.

4.4. Price levels, 2-step feature extraction versus its components (RQ2)

We display the effect sizes related to the second research question in
Table 4 — ‘2-step’, ‘PL’, and ‘MS’ columns. We report them separately
for PL and MS components versus the 2-step. There were no significant
effects observed for any of the labelling configurations. Moreover, for
the considered sample, MS effect sizes were negative for rebounds 7 and
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Table 4
Precisions of CatBoost classifier with the 2-step feature extraction (’2-step’) and always-positive output classifier (’Null’). As well as Precisions
of the Market Shift (MS) and Price Level (PL) feature spaces. For 7, 11 and 15 ticks rebounds.
Contract Rebound 7 Rebound 11 Rebound 15

2-step Null MS PL 2-step Null MS PL 2-step Null MS PL

ESH2017 .20 .19 .20 .19 .20 .18 .19 .17 .15 .15 .15 .15
ESM2017 .22 .21 .24 .21 .23 .19 .20 .19 .19 .17 .16 .18
ESU2017 .25 .20 .25 .23 .15 .19 .23 .17 .18 .15 .15 .19
ESZ2017 .17 .16 .18 .16 .17 .16 .16 .16 .19 .16 .16 .15
ESH2017 .19 .17 .19 .17 .18 .17 .18 .18 .17 .16 .17 .16
ESM2018 .21 .19 .22 .19 .21 .19 .21 .20 .18 .17 .18 .17
ESU2018 .17 .16 .17 .15 .16 .16 .17 .16 .16 .16 .16 .15
ESZ2018 .18 .17 .18 .17 .17 .17 .17 .18 .16 .16 .17 .16
ESH2019 .18 .18 .19 .18 .18 .17 .18 .17 .18 .17 .17 .17
ESM2019 .18 .17 .18 .18 .17 .17 .18 .17 .17 .16 .18 .16
Fig. 5. Confusion matrices for all the rebound configurations, built for the 2-step feature extraction method.
11 (Table 5). The negative effect size in the considered setting meant
that the MS compound performs better than the 2-step approach. This
effect was insignificant and hence does not generalise to the population.

We performed statistical tests to check if the null hypothesis H02
could be rejected. The original data used in the tests are provided
in Table 4, for the target (2-step) and control groups (MS and PL),
respectively. We communicate the test outcomes in Table 5. For the
sake of reproducibility, in the same table, we reported the compared
groups’ standard deviations, means and medians. We interpreted the
results of the tests in Section 5.3. Finally, to support the reader, we
plot the performance of the considered groups in the supplementary
data, Figure S4. There are 6 tests run in this experiment family, hence
after applying Bonferroni corrections, the corrected significance level
was 𝛼 = .05∕6 = .0083.

4.5. Model analysis

Here we show the exploratory analysis of the trained models. We
choose two models trained on the same contract but with different
labelling configurations. Namely, we report the analysis of the models
trained on the ESH2019 contract, with rebounds 7 and 11. The choice
is motivated by very different numbers of features after the feature
selection step.

The core analysis is done on the decision plots, provided in Fig. 6.
Since no pattern was observed when plotting the whole sample, we
illustrate a random subsample of 100 entries from the top 1000 entries
sorted by the per-feature contribution. There are 29 features in the
12
model trained on the rebound 11 configuration, and 8 features in the
one trained on the rebound 7 labels. 7 features are present in both mod-
els: PL23, MS6_80, MS0, PL24, MS2, MS6_20, MS6_200. Contributions
from the features in the rebound 7 model are generally larger, also,
the overall confidence of the model was higher. We noticed that the
most impactful features were coming from the Market Shift features.
In Fig. 6 one can see two general decision patterns: one ending up at
around 0.12–0.2 output probability and another one consisting of sev-
eral misclassified entries ending up at around 0.8 output probability. In
the first decision path, most of the MS features contributed consistently
towards the negative class, however, PL23 and PL2 often pushed the
probability in the opposite direction. In the second decision path, PL23
had the most persistent effect for the positive class, which was opposed
by MS6_80 in some cases and got almost no contribution from MS0 and
MS6_200 features.

Further analysis of ESH2019, rebound 11 configuration (omitted
for brevity) showed that there was a skew in the output probabilities
towards the negative class. Contributions from the PL features were
less pronounced than for the rebound 7 model — the top 8 features
belonged to the MS feature extraction step. There was no obvious de-
cision path with misclassified entries. At the same time, we saw strong
contributions toward negative outputs from MS6_20 and MS6_40.

4.6. Simulated trading

In the current Section, we report the cumulative profits for the
3 different labelling configurations in Figure S6. In addition to the
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Fig. 6. Feat. contributions to the output on a per-entry basis for the CatBoost model, trained on ESH2019, rebound 7 configuration. The 𝑋-axis shows the strength of the
contribution either towards a positive class (when the change is >0) or towards the negative one. blue corresponds to the negative class (crossing) and red - to the positive
(rebound). Misclassified entries are depicted with dashed lines.
Table 5
Statistics supporting the outcomes of the Wilcoxon test which assessed whether the
CatBoost estimator with the 2-step feature extraction (‘CB’ column) lead to a better
classification performance than the always-positive output classifier (‘Null’ column) and
whether the CatBoost estimator with the 2-step feature extraction (‘2-step’ column) lead
to a better classification performance than each of the single-step feature extraction
(‘PL’ and ‘MS’ columns). The result is reported for the rebound labelling configurations
of 7, 11 and 15 ticks.

Statistics Test groups

Rebound 7

RQ1 RQ2

PL MS

One-tailed Wilcoxon test 𝑝-value < .001 .0049 .96
Test Statistics 55.0 52.0 11.0
Effect Size (Hedges g𝑎𝑣) 0.64 ± 1.02 0.57 ± 1.15 −0.1 ± 1.07

CB Null 2-step PL 2-step MS
Mean (Precision) .19 .18 .19 .18 .19 .20
Median (Precision) .18 .17 .18 .18 .18 .19
Standard Deviation (Precision) .025 .0151 .025 .018 .025 .028

Rebound 11

RQ1 RQ2

PL MS

One-tailed Wilcoxon test 𝑝-value .053 .080 .58
Test Statistics 44.0 42.0 26.0
Effect Size (Hedges g𝑎𝑣) 0.38 ± 0.96 0.6 ± 1.16 −0.02 ± 1.06

CB Null 2-step PL 2-step MS
Mean (Precision) .18 .17 .18 .18 .18 .19
Median (Precision) .18 .17 .18 .18 .18 .18
Standard Deviation (Precision) .022 .0112 .022 .012 .022 .017

Rebound 15

RQ1 RQ2

PL MS

One-tailed Wilcoxon test 𝑝-value .0049 .052 .35
Test Statistics 52.0 44.0 32.0
Effect Size (Hedges g𝑎𝑣) 1.05 ± 1.16 0.8 ± 1.22 0.2 ± 1.07

CB Null 2-step PL 2-step MS
Mean (Precision) .17 .16 .17 .16 .17 .17
Median (Precision) .17 .16 .17 .16 .17 .17
Standard Deviation (Precision) .012 .0055 .012 .006 .012 .010

cumulative profits, we report annualised Sharpe ratios with a 5% risk-
free annual profit. These results are reported for 15 ticks take-profit, as
shown in Listing 4. There was a descending trend in the Sharpe ratios
13
across all the configurations. However, the behaviour of rebound 15
differed from the rest by performing worse until Oct 2018, then had a
profitable period which was not observed for the other configurations.
We also ran experiments with altered take-profits for 15 ticks rebound
labelling and found out that decreasing take-profit led to slightly worse
cumulative profits and comparable Sharpe ratios (Fig. 7). It seems that
the profitability period after Oct 2018 relied on the take-profit value
and vanished if the take-profit is reduced.

When computing the net outcomes of the trades, we add $4.2 per-
contract trading costs based on our assessment of current broker and
clearance fees. We did not set any slippage in the backtesting engine,
since ES liquidity is large. However, we execute the stop-losses and
take-profits on the tick following the close-position signal to account
for order execution delays and slippages. This allowed for taking into
account uncertainty rooted in large volatilities and gaps happening
during the extraordinary market events. The backtesting was done on
the tick data, therefore there are no bar-backtesting assumptions made.

5. Discussion

This Section breaks down and analyses the results presented in Sec-
tion 4. Results are discussed in relation to the overall pattern extraction
and model performance, then research questions, model analysis and,
finally, simulated trading. Also, we discuss the obtained results in the
context of the proposed methodology, as well as the limitations of every
component and how they can be addressed. Finally, we present our
view on implications for practitioners and our intuition of potential
advancements and future work in this area.

5.1. Pattern extraction

The numbers of price levels and ticks per contract followed the same
trend (Table 3). Since the number of peaks was proportional to the
number of ticks, we can say that the mean peak density is preserved
over time to a large extent. In this context, the peak pattern can be
considered stationary and appears in various market conditions.

5.2. Price levels, CatBoost versus No-information estimator (RQ1)

The precision improvement for the CatBoost over the no-information
estimator varied a lot across contracts (Table 4). At the same time,
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Fig. 7. Cumulative profit curves for the rebound of 15 ticks and take-profits of 7, 11 and 15 ticks for the years 2017–2019 with the corresponding annualised rolling Sharpe
ratios (5% risk-free income). The trading fees are already included.
the improvement was largely preserved across the labelling configu-
rations. This might have been due to the original feature space, whose
effectiveness relied a lot on the market state — in certain market states
(and periods) the utility of the feature space dropped, and the drop was
consistent across the labelling configurations. Extensive research of the
feature spaces would be necessary to make further claims. The overall
performance of the models was weak on an absolute scale, however, it
is comparable to the existing body of knowledge in the area of financial
markets (Dixon, Klabjan, & Bang, 2017).

Effect sizes in RQ1 Table 5 were not significant. The significance
here means that the chosen feature space with the model significantly
contributed to the performance improvement with respect to the no-
information model. A positive but insignificant effect size meant that
there is an improvement that is limited to the considered sample and
is unlikely to generalise to the unseen data (population).

Assessing the results of the statistical tests, we used the significance
level corrected for the multiple comparisons. Tests run on the rebound
7 and 15 configurations resulted in significant p-values, whilst rebound
11 was insignificant (Table 5). Hence, we rejected the null hypothesis
H01 for the labelling configurations of 7 and 15 ticks. This outcome
was not supported by the effect sizes. This divergence between the
test and effect sizes indicated that the proposed trading pattern cannot
be efficiently used in the machine learning setting with the consid-
ered feature space. Interestingly, standard deviations differ consistently
between the compared groups across the configurations. While no-
information model performance depends solely on the fraction of the
positively labelled entries, CatBoost performance additionally depends
on the suitability of the feature space and model parameters — this
explains higher standard deviations in the CatBoost case.

5.3. Price levels, 2-step feature extraction versus its components (RQ2)

For the effect sizes in Table 5 we compared the 2-step feature
extraction approach to its components — PL and MS. We did not see
any significant effects showing supremacy of any of the approaches.
Negative effect sizes in the case of the Market Shift component mean
that in the considered sample, MS performs better than the 2-step
approach. This result did not generalise to the unseen data, as its
confidence intervals cross the 0-threshold. The possible explanation
of the result is the much larger feature space of the 2-step approach
(consisting of PL and MS features) than the MS compound. In case
PL features were generally less useful than MS, which was empirically
supported by our model analysis, this meant they might have had a
14
negative impact during the feature selection process by introducing
noise.

For assessing the statistical tests, we used the significance level
corrected for 6 comparisons. The p-values from Table 5 show that there
was no significant outcome, and the null hypothesis H02 could not be
rejected. While the 2-step approach did not bring any improvement
to the pipeline, there is no evidence that it significantly harmed the
performance either. It might have been the case that if PL features were
designed differently, the method could have benefited from them. In
this study, we withheld from iteratively tweaking the feature space to
avoid any loss of statistical power. We find this aspect interesting for
future work, however, it would require increasing the sample size to
be able to account for the increased number of comparisons.

5.4. Simulated trading

In the simulated trading, we observed an interesting result — data
labelling configuration had more impact on the profitability than the
take-profits (Figs. 7,S6). We hypothesise that the reason for this is that
the simplistic trading strategy is overused by the trading community
in various configurations. In contrast, the labelling configuration is
less straightforward and had more impact on profitability. Note that
the obtained precision (Table 4) could not be directly related to the
considered trading strategy, as there might be multiple price levels
extracted within the time interval of a single trade. Consequently, there
might have been extrema which were not traded.

It is hard to expect consistent profitability considering the simplicity
of the strategy and lack of optimisation of the feature space, however,
even in the current setting one can see profitable episodes (Figure S6).
The objective of the study was not to provide a ready-to-trade strategy,
but rather to showcase the proposed methodology. We believe that the
demonstrated approach is generalisable to other trading strategies.

5.5. Methodology

The point we have highlighted in this study is that by looking at
the machine learning model performance or simulated trading results
on their own, one might be drawn into believing that the considered
trading pattern and the feature extraction method might work. This,
consequently, would lead to additional time, effort and financial risks
until one discovers that the applications of the proposed pattern are
limited.
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On the other hand, using the proposed methodology, one could
withhold further development at the point of computing the effect sizes
and the confidence intervals. Not only does the proposed methodology
optimises the whole automated trading platform component design
approach, but it also allows uniform and comparable reporting of the
component design.

As it was shown in Section 2.6, profitability is often used as a
measure of success when evaluating trading patterns and trading strate-
gies. The profitability of the price levels pattern might look promising
for certain intervals of the considered timeline (Fig. 7), especially
considering that the trading fees are taken into account. However,
being guided by the proposed methodology, it becomes clear that the
considered pattern does not warrant attention in the current setting.
This is a common example of how the profitability metric itself might
be misleading if reported on its own.

The proposed methodology not only allowed us to answer the
research questions but also led to a detailed discussion on every aspect
of the studied system, something that is not often seen in the field (and
maybe not even possible if following other evaluation methodologies).

5.6. Limitations

The proposed methodology is one of the many ways the financial
markets can be studied empirically. We encourage practitioners to
adjust our proposed methodology to their needs and setting while
keeping the interpretability and comparability of the study in mind.

Depending on the data distributions, size of the data sample, etc.,
one might use different statistical tests and effect size measures without
any loss of interpretability. For example, while it is advised to use
Glass’s 𝛥 in case of significantly different standard deviations between
groups, this measure does not have corrections for the paired data.
Hence, in our experiment design, we choose to stick to the Hedge’s 𝑔𝑎𝑣.
For the sake of completeness, we verified the results using Glass’s 𝛥 -
nd 15 ticks rebound effect size becomes significant in RQ1.

In the backtesting we used the last trade price to define ticks, we
o not take into account bid–ask spreads. In live trading, trades as
xecuted by bid or ask price, depending on the direction of the trade.
t leads to a hidden fee of the bid–ask spread per trade. This is crucial
or intraday trading, as average profits per trade often lay within a
ouple of ticks. Moreover, when modelling order executions, we do not
onsider per-tick volumes coming from aggressive buyers and sellers
bid and ask). It might be the case that for some ticks only aggressive
uyers (sellers) were present, and our algorithm executed a long (short)
imit order. This leads to uncertainty in opening positions — in reality,
ome of the profitable orders may not have been filled. At the same
ime, losing orders would always be executed.

Another limitation is that we do not model order queues, and,
onsequently, cannot guarantee that our orders would have been filled
f we submitted them live even if both bid and ask volumes were
resent in the tick. This is crucial for high-frequency trading (HFT),
here thousands of trades are performed daily with tiny take-profits
nd stop-losses, but has less impact on the trade intervals considered
n the study. Finally, there is an assumption that our entering the
arket does not change its state significantly. We believe it is a valid

ssumption considering the liquidity of S&P E-mini futures.
Last but not least, there are limitations associated with the re-

ources required for adjusting the proposed methodology to the existing
ipelines. Or, in the case of starting from scratch, steepening the
earning curve that, in addition to financial markets and machine
earning, would include statistical methods. However, in the context
f global competition in financial markets, it is rather unrealistic to
xpect that one could consistently outperform the market without a
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eep understanding of every component. p
.7. Implications for practitioners

We provide a systematic approach to the evaluation of automated
rading platform components. While large market participants have
nternal evaluation procedures, we believe that our research could
upport various existing pipelines. For instance, one is encouraged to
hoose a market of interest with an arbitrary trading pattern. The
hoice of the market defines the statistical and fundamental properties
ne operates within. Consequently, the modelling approach would
ary. As an example, one could use technical analysis tools like TA-lib.
t offers methods for automatic recognition of more than 60 trading
atterns and provides a set of over 200 technical indicators to design
he feature space (Fortier, 1999). In terms of model selection, both
onventional machine learning and deep learning can be used for
lgorithmic trading. Hence, there are a number of options, starting
rom simpler and transparent regressions, and ending up with trans-
ormer deep learning architectures. All these design decisions can be
mplemented and assessed within the proposed methodology.

We highlight that the proposed methodology is general enough to
e applied within any trading pattern, feature space and model. At the
ame time, it makes the findings directly comparable for the whole
ariety of design decisions. Namely, the considered methodology allows
or dealing with varying trading pattern frequencies, varying sizes of
he feature space, as well as the use of multiple baselines. Considering
he state of the field, and the current trend of not publishing code and
ata, we are confident that the demonstrated approach can be used
owards improving the generalisability and reproducibility of research.
pecific methods like price extrema and 2-step feature extraction, used
s we have described, can serve as useful indicators of the experimental
ffect sizes in the field of algorithmic trading

.8. Future work

While the proposed methodology is an initial step towards repro-
ucible and comparable research in the field of financial markets, we
elieve that it can be further standardised and expanded to a framework
ontaining a set of hypotheses that one would typically test for. This
ould be an extra step towards comparability in the field.

In the current study, we evaluate the utility of the price levels
rading pattern. The next step would be to propose a more holistic
attern. We would aim to extend the market properties to volumes and
olume profiles.

Another direction is to assess the price levels for trading trends
instead of reversals) - in this case, one would aim to classify price level
rossings with a statistically significant improvement with respect to
he no-information model. A different definition of the price crossing
t the point of data labelling is necessary for that.

In terms of improving the strategy, there are a couple of things that
an be done. For instance: take-profit and stop-loss offsets might be
inked to the volatility instead of being constant. Also, flat strategies
sually work better at certain times of the day — it would be wise
o interrupt trading before the USA and EU session starts and ends, as
ell as scheduled reports, news and impactful speeches. Additionally,
ll the mentioned parameters we have chosen can be looked into and
ptimised to the needs of the market participant.

It would be interesting to investigate other means for feature design
nstead of the manually defined feature space. For instance, Deep
earning networks can be used to obtain market representations at
very moment of time (Wang, Wang, Weng, & Vinel, 2020). It should
e noted though that such an approach would substantially limit the
ransparency of the pipeline.

In terms of the chosen model, it would be useful comparing the
atBoost classifier to deep learning models like DA-RNN (Qin et al.,
017), as it makes use of the attention-based architecture designed
ased on the recent breakthrough in the area of natural language

rocessing (Radford et al., 2019). Moreover, it would be useful to



Expert Systems With Applications 223 (2023) 119836A. Sokolovsky and L. Arnaboldi

W

B

B

B

B

B

B

B

B

B
C

C

C

C

C

C

C

C

C

C

D
D

D

D

D

D

D

consider model calibration approaches to obtain more realistic output
class probabilities from the model (Vaicenavicius et al., 2019).

Finally, we see a gap in the available FLOSS (Free/Libre Open
Source Software) backtesting tools. To the best of our knowledge, there
is no publicly available backtesting engine taking into account bid
and ask prices and order queues. While there are solutions with this
functionality provided as parts of the proprietary trading platforms,
they can only be used as a black box. An open-source engine would
contribute to transparency and has the potential to become the solution
for both the research and industry worlds.

6. Conclusion

Our work proposed a generic methodology for the systematic eval-
uation of APT components. Then, it showcased the proposed approach
to the trading pattern and the feature space design ATP components.

Whilst extrema have been discussed as potentially high-performance
means for trading decisions, there has been no work proposing their
automatic extraction and assessment from the statistical point of view.
While the pattern is commonly used by practitioners in various settings
and might be indeed useful for manual trading, its applications in
the machine learning setting are only partially supported by statistics.
While the proposed 2-step feature extraction method is inspired by
domain knowledge and market understanding, there is no statistical
evidence that it benefits ATP.

This paper has presented every single aspect of data processing,
feature extraction, feature evaluation and selection, machine learning
estimator optimisation and training, as well as details of the trading
strategy. Moreover, we statistically assessed the findings. We rejected
the null hypothesis answering RQ1 — our approach performs statis-
tically better than the baseline, however, the effect sizes stay non-
significant. We did not observe any significant effect sizes for RQ2
and could not reject the null hypothesis. Hence, the use of the 2-step
feature extraction does not improve the performance of the approach
for the proposed feature space and the model. There is no evidence
that it hurts the performance, either. We hope that the proposed
methodology and the showcased scenarios will enable the adoption of a
more uniform and sound methodology in the field of financial markets.
We conclude by providing samples of our code online (Sokolovsky &
Arnaboldi, 2022), each of the methodology steps is presented including
the statistical tests used to answer the research questions.
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