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Figure 1: An intelligent interactive system views a user through sensors that include a keyboard and mouse and sometimes, 
camera, microphone and/or eye-tracker. What is the best way to infer a model of the user from these data? In the fgure gaze 
path is represented in red, mouse movements in black and text entered in blue. A camera captures the user’s gaze direction. 

ABSTRACT 
User models play an important role in interaction design, support-
ing automation of interaction design choices. In order to do so, 
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model parameters must be estimated from user data. While very 
large amounts of user data are sometimes required, recent research 
has shown how experiments can be designed so as to gather data 
and infer parameters as efciently as possible, thereby minimising 
the data requirement. In the current article, we investigate a variant 
of these methods that amortises the computational cost of designing 
experiments by training a policy for choosing experimental designs 
with simulated participants. Our solution learns which experiments 
provide the most useful data for parameter estimation by interact-
ing with in-silico agents sampled from the model space thereby 
using synthetic data rather than vast amounts of human data. The 
approach is demonstrated for three progressively complex models 
of pointing. 

CCS CONCEPTS 
• Human-centered computing → HCI theory, concepts and 
models; User models. 

KEYWORDS 
user models, adaptive experiment design, parameter estimation, 
active inference, computational rationality 
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1 INTRODUCTION 
User models take many forms in HCI, from simple lists of ‘psy-
chological factors’ including, perhaps, personality variables and/or 
product preferences to cognitive models that simulate the process-
ing of information in the mind. Some of the latter have focused on 
constraints imposed by the human perceptual and motor systems, 
others on the structure of human memory and others on control 
(what to do next). While these user models provide one of the theo-
retical anchors for the discipline, they are difcult to construct and 
difcult to ft to behaviour – sometimes requiring vast amounts of 
data from an expanding range of sensors (Figure 1). In the current 
article, we explore one particular approach to addressing this latter 
problem by automating model parameter estimation for three point-
ing tasks. The approach involves the design of an optimal sequence 
of experimental trials (or designs) that maximise the relevance of 
the available information. 

In the statistics literature ‘optimal experimental design’ (OED) is 
the problem of choosing which experimental trial to do next so as 
to maximize some objective. For example, an HCI researcher may 
want to measure the efect of a new pointing device on a user’s 
movement accuracy, but how far away and how big should the 
movement target be on each successive trial so as to maximize 
the information gained from observing the user performing the 
task? We present an approach to efciently solving this problem 
for estimating user model parameters in HCI. 

We argue that the presented approach has the potential to en-
hance the contribution that user models make to HCI by providing 
interactive systems with the means to automatically and rapidly ft 

user models to individual users and thereby personalise interaction 
so as to best ft the requirements of the individual. This capability 
is also important to cooperative/collaborative Artifcial Intelligence 
(AI), that is the problem of how to get machines to work with people. 
Personalisation and collaboration are important objectives for HCI, 
in part, because they directly address the desire to design interac-
tion for diverse users. While we do not investigate personalisation 
per se in the current article, we believe that user modeling is crucial 
to the future of personalisation and that this potential will only be 
fulflled if the parameter estimation problem can be solved. 

Fitting a user model to an individual was difcult in the early days 
of cognitive modeling, in part because models such as GOMS [6], 
were constructed manually. Production rules that mapped goals into 
actions were written by an analyst. Model constructing consisted 
of a painstaking and iterative process of protocol analysis, and 
production rule writing. 

Since then signifcant advances have been made on automatic 
construction of models. Rather than hand-coding production rules, 
modern modelling techniques now automatically learn a control 
policy (task knowledge) using deep reinforcement learning. In par-
ticular, machine learning can be used to learn a model’s control 
policy through exploration of simulated interaction.1 This approach 
has been successfully applied to the automatic construction of user 
models of menu search, decision making, gaze-based interaction, hi-
erarchical control, and touchscreen typing [9, 11–13, 16, 18, 22, 37]. 
However, ftting the quantitative parameters of these models to 
individual humans still requires a signifcant contribution from the 
analyst. 

One of the difculties with ftting learning-based user models 
to human data is that the control policy must be trained to make 
predictions for each set of possible parameters. For example, in the 
gaze-based interaction model reported in [11] oculomotor noise 
and perceptual noise parameters are properties of an individual 
user. Both parameters introduce uncertainty in aimed movements 
to a target. The optimal control policy chooses an aim point for a 
target in accordance with these uncertainties. For example, when 
oculomotor noise is high then it makes sense to deliberately under-
shoot the target and then make a corrective submovement. This is 
because on average this results in a lower overall movement time 
than overshooting (which takes longer) and correcting. 

Unfortunately then, while automatically learning human-like 
control policies solves part of the user modelling problem, it does 
not solve the parameter estimation problem. User models typically 
have many parameters and the control policy, and therefore be-
haviour, is adapted to these parameter values. For example, it is 
known that the human control policy for pointing is adapted to 
noise both in the motor system and the visual system. In general, 
the parameter estimation problem is to fnd a set of values for model 
parameters such that the predicted behaviour of an individual user 
is as close as possible to the observed (measured) behaviour. It is 
quite often formalised as an optimisation problem; how to generate 
the best estimate of the parameters from the available data. Typ-
ically, the objective will be to fnd parameters that minimise the 

1The control policy is a function that maps observations into actions. It can be learned 
with a number of machine learning algorithms. 
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diference between the model behaviour and human behaviour, that 
is maximising ft. 

Estimating parameters so as minimise the discrepancy between 
model and human requires high quality data; a fact that, as we have 
said, has given rise to work on optimal experimental design (OED) 
[35]. This problem has been conceptualised as a problem of how 
to maximise expected information gain (EIG). In other words, the 
purpose of an experiment is to maximise the information that is 
gained about the parameter values that best ft the model to the 
human. Various approaches have been proposed to this problem. 
In one class of approaches, Bayesian Optimal Experimental De-
sign (BOED), the idea is to choose experiments that maximise EIG 
between the prior probabilities of all possible parameters values 
and a posterior distribution that is conditioned on the expected 
observations [43]. BOED does not only give a point estimate of the 
best ftting parameter values but also a posterior probability that 
these (and all other parameter values) are the best ft. 

In some approaches, the choice of experiment is ‘amortised’ 
meaning that a near-optimal policy for choosing experiments is 
computed before the deployment of the policy for parameter es-
timation. In HCI, the advantage of amortisation is that design of 
experiments for estimating user models can be computed without 
slowing interaction with the user. Another advantage of amortisa-
tion is that experimental design can be non-myopic. This means 
that, rather than maximising EIG for each individual experiment, 
instead it can be maximised for a whole sequence of experiments. 
One approach to amortisation involves defning the optimal experi-
mental design problem as a reinforcement learning problem. 

In the current article we propose a new approach to user model 
parameter estimation in HCI that takes advantage of the recent 
advances described above. The contribution is in ofering a novel 
and practical method for estimating user model parameters through 
amortising the cost of choosing experiments. While the proposal 
is for a general method, we demonstrate its viability in this paper 
for pointing tasks. An overview of the approach is illustrated in 
Figure 2. The approach estimates the parameters of a user model for 
an individual human user (Phase 3), having previously computed 
an ‘ensemble’ user model for all possible parameter combinations 
(Phase 1) and then an optimal sequential experimental design policy 
(Phase 2). In phase 1, the ensemble model of the space of possible 
users is trained to perform the task for the distribution of possible 
parameter values and the distribution of possible task environments. 
The ensemble approach is an important recent advance in user mod-
elling that is described in more detail below [27, 34]. In phase 2, 
the Analyst is trained to conduct the best sequence of experiments 
for determining the model parameters. Simulated users are ran-
domly sampled given the parameter distribution and the Analyst 
learns to ft the model parameters to the simulated user. In phase 3, 
the trained Analyst conducts experiments on users and generates 
parameter fts. 

Phase 1 amortises the cost of computing the implications of dif-
ferent parameter values for model behaviour. Phase 2 amortises 
the cost of computing a non-myopic sequential policy for choos-
ing experiments and Phase 3 takes advantage of the computation 
conducted in Phases 1 and 2 in order to optimally gather data and 
estimate user model parameters without any user-noticeable inter-
action latency. 

One confusion that arises about our approach is that once we 
have trained a simulator model for all possible parameter values 
(the ’ensemble’ user model) then there is nothing else to learn. 
The confusion is resolved once it is realised that the ’ensemble’ 
is a model of the distribution of all possible users (technically, a 
distribution over the parameters of the user model) and all possible 
tasks within the defned space. The assumption is that if we know 
the exact parameter values for a specifc real-world user, then this 
model will accurately describe their behaviour, but the challenge is 
that, given a real-world user, we do not know the best parameters. 
We need the Analyst to design experiments and gather the data 
from the user in order to fnd the best parameters in the ensemble 
model. 

For training the Analyst, we generated hypothetical users by 
sampling parameters from the ensemble distribution, and exposed 
these known parameter values to the Analyst as a training signal, 
but there was no expectation that any individual real-world user 
will have the same parameter values. At test time, the Analyst had 
no knowledge of the user parameters (and the sets of training-time 
and test-time users are disjoint), and these parameters were inferred 
from the designed experiments. 

Another confusion is that it might seem that there is no point in 
learning about an individual user when Analyst already has a model 
of the distribution of all possible users. But, this model can only 
simulate an specifc user if it knows the correct parameters for that 
user. The point of Analyst is to infer the parameters of a user with 
unknown parameters (e.g. a new human user whose behaviour has 
not been observed before). Analyst needs to infer the best values of 
those parameters, and only then can the user model simulate that 
particular user. Further, it is the capacity to simulate a specifc user 
that promises a role for Analyst in interaction personalisation and 
cooperative Artifcial Intelligence. 

In what follows, we review the existing literature, formally defne 
our approach, test it on two abstract tasks chosen so as to demon-
strate the generality of the approach, and then report three studies 
of parameter estimation for user models of pointing. In the frst of 
the studies, we demonstrate the efectiveness of the approach for 
estimating the parameters of a pointing user model from mouse 
click data. The user model has a single parameter for movement 
noise that gives rise to Fitts’s Law like behaviour through a learned 
policy that generates multiple submovements to achieve point and 
click goals. 

In the second study, we extend the approach to simulated eye-
movement data for gaze-based pointing. These data consist of vari-
able length sequences of interleaved saccades and fxations. In this 
gaze-based model there are two parameters, one for oculomotor 
noise and the other for perceptual noise. This gives rise to a poten-
tial identifability problem. 

In the third study, we explore the capacity of the approach to 
not only identify perceptual/motor noise parameters but to also 
determine user preferences. Here the gaze-based model is applied to 
an interface in which pointing is achieved by looking at targets and 
pressing a button (a key on the keyboard). Because an experimental 
trial can be terminated at any time by pressing the button it gives 
rise to a speed/accuracy trade-of and the user’s policy is optimised 
for their preference, or otherwise, for accuracy over speed. In this 
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Figure 2: Our approach takes a user model as input. This user model has prior distributions over parameters � but has not been 
ftted to individual human behaviour. In Phase 1, an Ensemble Cognitive Model (ECM) is trained to perform the task for the 
distribution of possible parameter values. In Phase 2, the cognitive model Analyst is trained to conduct the best sequence of 
experiments for determining the model parameters. In Phase 3, the trained Analyst is deployed with users and a ftted model it 
generated as output. 

study both performance time and errors are used in the estimation 
of model parameters. 

2 BACKGROUND 

2.1 User models 
User models – computable representations of psychological con-
straints on interaction – have been infuential in HCI since its 
inception. GOMS, a rule-based model for representing hierarchi-
cal task knowledge, provides a formalism for HCI researchers to 
conduct detailed task analyses [6]. The Model Human Processor 
(MHP), a theory of the temporal properties of cognitive resources, 
supported the prediction of task performance time. ACT-R and 
EPIC provide means to simulate cognition and action; ACT-R with 
a particular focus on human memory and EPIC on constraints 
imposed by perceptual/motor systems [1, 24, 49]. Fitts’s Law, a 
mathematical formulation of the relationship between task dif-
culty and movement time, became a particularly infuential model 
of pointing [30, 48]. Computationally rational models, based on 
machine learning problems but with cognitive bounds, provided 
a means to automatically learn control policies. Rather than hand 
crafted production rules, computationally rational models derive 
predictions by learning a control policy that is bounded only by 
human like resource constraints [19, 28, 37]. 

Most of the approaches to user modelling described above remain 
actively and productively investigated but our focus here is on 
computationally rational models [37]. While it has a distinctive 

approach to the automation of a control policy, it shares a need 
for new approaches to parameter estimation. In what follows we 
look in detail at three computationally rational models in order to 
further understand the parameter estimation problem. 

One approach to computational rationality involves defning 
an interactive cognitive task as a Markovian problem and solv-
ing it using machine learning, usually reinforcement learning. For 
example, multi-attribute decision making can be defned as a Par-
tially Observable Markov Decision Problem (POMDP) in which 
information about relevant attributes is gathered using saccadic 
eye movements. The reward function specifes a trade-of between 
speed and accuracy such that information is only gathered if the 
benefts to decision accuracy outweigh the temporal cost [13]. As a 
consequence, once an optimal control policy has been learned, it 
generates attribute-wise, rather than option-wise information gath-
ering – much like humans. While automatically acquired optimal 
control policies address a major part of the user modelling problem, 
they leave open the question of how to set model parameters. In 
the case of multi-attribute decision making the predictions are only 
as good as the attribute weights that defne the user preference 
function. 

Similarly, gaze-based interaction can be defned as a POMDP in 
which partial observations are constrained by foveated vision and 
saccadic eye-movements by oculomotor noise [11]. The model of 
foveated vision imposes increasing localisation error with eccentric-
ity of the target from the fovea. The solution to this POMDP is an 
optimal control policy that – again like humans – undershoots the 
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target in order to minimise movement time (because undershoots 
take less time than overshoots). Again, the capacity to automatically 
generate a control policy is an important advance but it leaves open 
the question of how the parameter values are set so as to model 
individual users. In the case of gaze-based interaction parameters 
include the perceptual and oculomotor noise weights as well as the 
saccade duration intercept and slope parameters. 

An important aspect of user modeling is determining the prior 
distribution of possible parameter values. This distribution can be 
thought of as an hypothesis space that covers all of the possible 
behaviours of the population of users. It is constructed using knowl-
edge that is available before performing experiments on individual 
humans. This prior parameterisation of the model induces an en-
semble of possible user models, each of which can be expressed 
in the form of a particular POMDP. Importantly, this modelling 
framework is agnostic to the amount of prior information available, 
since the experimenter can specify arbitrary prior distributions 
for the parameters of the model. In the case of limited available 
prior knowledge, the simulator implementing the model can be 
initialised with non-informative priors, thus describing a diverse 
distribution of users with highly varying cognitive bounds and 
preferences. Once the prior distribution of possible user models is 
established then experiments on humans can be used to determine 
which user model (i.e. which parameter settings) best fts. 

2.2 Adaptive Experimental Design in ML 
In Bayesian approaches to experimental design the starting assump-
tion is that the posterior probability of a parameter value given 
an experiment is proportional to the likelihood of the data times 
the prior � (� |�, �) ∝ � (� |�, �) × � (� ). The key question is how 
to choose experiments that maximise the utility of the data. In 
Bayesian Optimal Experimental Design (BOED) it is assumed that 
the objective is to choose experiments that maximise Expected In-
formation Gain (EIG). BOED usually relies on a likelihood model 
� (� |�, �) for predicting the probability of data � (the outcome of an 
experiment) given an experimental design � and parameter values 
� . The objective is then to optimise EIG. EIG can be thought of as 
the mutual information between � and �. 

BOED methods have been successfully applied to the design op-
timisation problem in various settings [2, 8]. However, BOED can 
require computationally expensive calculations, such as updating 
the posterior or estimating the mutual information between the 
model parameters and experiment outcomes. As these calculations 
are needed between the time steps of the experiment, this approach 
becomes impractical for many real-life settings. More recent work 
has amortised the cost of experiment selection using pre-trained 
deep neural networks. As an example, Foster et. al [17] suggest a 
policy network, parameterised by a deep neural network, to pro-
duce informative experimental design values. In their approach, the 
loss function is based on calculating a lower bound of the mutual 
information instead of costly exact values. This work was extended 
in [21], in which likelihood functions can be unknown, thus ex-
panding this approach to implicit models. Another line of work 
is based on using the mutual information as the main criteria for 
selecting design values, but using neural estimators on the mu-
tual information or its lower bounds [4, 25, 26, 39]. Blau et al [5] 

present a Reinforcement Learning formulation for design optimi-
sation. They defned sequential experimental design as a Markov 
decision process (MDP), highlighting the strong exploration capabil-
ity of RL-based methods. In their approach, the optimisation target 
is the lower bound of expected information gain (EIG), comparable 
to the DAD method in [17]. 

3 THEORY 
We present the theory in two parts. In the frst part, we describe a 
user model with parameters that must be estimated from data. The 
user model is an example of a class of simulation-based reinforce-
ment learning model that has recently become infuential in HCI 
[12, 13, 22, 37] but which because of their complexity currently lack 
adequate parameter estimation methods (though see [23, 34]. 

In the second part of the current section we introduce our pro-
posed Analyst. Like the user model, Analyst is also an RL agent and 
care is needed not to cause confusion. Where for the user model, 
RL learns a policy that models human cognitive control knowledge, 
for the analyst, RL learns an policy for choosing experiments and 
inferring parameters. 

3.1 User model 
We extended a reinforcement learning model of gaze based target 
selection previously reported in [11]. The key assumption in the 
model is that the control of movement is computationally rational: 
that is, the saccade path and fxations are determined by an attempt 
to optimise some objective function (e.g. to minimise selection time) 
given the bounds imposed by the perceptual/motor system. The 
predicted eye movement strategies are therefore an adaptive conse-
quence of the following constraints: (1) target eccentricity, (2) target 
size, (3) oculomotor saccade noise, (4) a target detection threshold, 
and (5) location and target size estimation noise in peripheral vision. 
The interaction between the target size, target eccentricity, signal-
dependent oculomotor noise, eccentricity-dependent estimation 
noise and size- and eccentricity-dependent target detection results 
in a multi-step gaze-based selection process. Two-step selections 
are typical in humans but under some circumstances either one-
step (for large targets) or 3-plus-steps (very small targets) can be 
observed [32]. 

The user model architecture is illustrated in Figure 3. The blue 
box contains processes (represented as white rectangles) that con-
stitute a theory of human cognition in interaction with a ‘world’. 
Each trial begins with the controller choosing an ‘intent’ – a motor 
movement to an aim point (a location in the world). The chosen 
intent is implemented via a noisy ‘motor’ process. The motor pro-
cess results in an ‘action’ which is the actual end point of the motor 
movement in the world. Additionally, the controller can perform 
a keypress that terminates the episode. Subsequently, a new stim-
ulus is generated by the world which is the target location and 
width viewed from the new fxation. This stimulus is perceived by 
a foveated vision process that generates a noisy estimate of the tar-
get location and size (the ‘observation’). The observation provides 
evidence as to the location and size of the target. This evidence is 
optimally integrated in a Bayesian ‘memory’ process which outputs 
a ‘belief’. The memory is observed by the ‘control’ process and by 
a ‘utility’ function. The utility function generates a reward signal 
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Figure 3: User model architecture. Human cognition is modelled as fve processes in interaction with a World. The Motor 
process models movement noise. Perception models increasing visual noise with eccentricity from the fovea. Memory integrates 
multiple observations using Bayesian inference and Utility generates a reward signal that captures the trade-of between factors 
such as speed and accuracy. 

that is used to train the controller. The controller’s ‘intents’ are 
thereby conditioned on the belief. 2 The architecture implements 
an action-observation-reward cycle which repeats until the target 
is selected or the maximum step count for the episode is reached. 
Learning adjusts the mapping between the observation and the 
action so as to maximise the cumulative discounted rewards. The 
architecture can be described formally as a POMDP. 

• State space � : At each time step � , the environment is in a 
state �� ∈ � . A state represents a possible target position and 
width, and denotes as � = (�� , ��, �� , ��,�) where (�� , �� ) is 
the fxation location and (�� , �� ) is the target location. For 
both, �,� ∈ [−1, 1], with −1 and 1 being the edge of the 
display, and � ∈ [0, 1]. 

• Action space � : An action, �� , is taken at each time step 
� . On each of these steps the controller decides where to 
attempt to fxate next (the aim point). An aim point is denoted 
as a coordinate � = (�� , �� ) where �� , �� ∈ [−1, 1]. 

• Reward function � (�, �): At each time step � , a reward is 
generated by a utility function that models the preference 
utilities of a user. We assumed that users can trade speed 
for accuracy. Faster speeds are accompanied by more er-
rors. The reward at time � is based on a linear gaze duration 
model � (�� , �� ) = −(�� ×��������� (�)+�� ), where the slope 
�� and intercept �� are parameters of the user. If the user 
performs a keypress, the episode is terminated and a value 
���� × ���� � ������ is added to the fnal reward if the target 
is fxated (gaze is within target radius), otherwise the reward 
is −���� × ���� � ������ if the target is not fxated (an error). 
3 The parameter ���� � ������ ∈ [0, 1] describes the speed-
accuracy preference of the user. Additionally, if the maxi-
mum amount of steps is reached without a keypress, a ter-
mination penalty is added to the fnal reward. 

2Note, that the frst action is selected before any observations are made. Therefore, 
while it is not conditioned on an observation, it may through training with the reward 
be informed by a prior expectation of the distribution of target locations.
3Here the utility is conditioned directly on the state (cf. Figure 3). 

• Transition function� (�� +1 |�� , �� ): The environment switches 
to a new state according to a stochastic transition func-
tion. The target location remains unchanged but the fxation 
location changes according to the outcome of the action 
aim point. Aim points are corrupted by noise. Therefore, 
� (�� +1 |�� , �� ) = � ((�� , �� ) | (�� , �� ), ������� (�)). The oculo-
motor noise is linearly dependent on the saccade distance 
(the amplitude) ������� (�) = ������� × ��������� (�). 

• Observation space � and observation function � = 
� (�, �): After taking the action (i.e, saccade to and fxate 
at a new position on the display), a new observation is re-
ceived, which is a function of state and action �� = � (�� , �� ). 
The observation of the target position is dependent on the 
true target location and width (state), and the current fx-
ation location (action). Specifcally, the spatial uncertainty 
of the target position (standard deviation) in peripheral vi-
sion is linearly dependent on the distance between the tar-
get and the current fxation position, i.e., eccentricity. We 
similarly assume a linear dependency between the uncer-
tainty and the target size. Therefore, the perceived target 
position is �̃�,� ∼ � (��,� , �� (�)), �̃�,� ∼ � (��,� , �� (�)), where 
�� (�) = �������� × ������������ (�) − �� × � + �� , �������� , 
�� and �� are parameters of the model. We also assume that 
the observed target width is corrupted by a Gaussian noise 
source �̃ � ∼ � (�� , �� ). Finally, a binary random variable 
�� ∼ � (� |�� , �� ), � ∈ {0, 1}, indicates whether the user de-
tects the target. Thus the full observation at time � is the 
tuple �� = (�̃� , �̃� , �̃ � , �� , �� ). 

• Discount rate 0 ≤ � < 1). The model receives a scalar 
reward at each time step, � (�� , �� ). The optimal strategy is the 
one that maximises the expected long-term sum of rewards: 

� [ Í� 
�� � (�� , �� )], given the constraints on the model defned 

� =0 
above. 

3.1.1 Belief update. If the target is detected by the user (i.e. if 
�� = 1 in the observation) the memory is updated by integrating 
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the current belief �� −1 and the new observation �� using Bayes 
rule (a Kalman flter) [15, 42]. After taking an action (fxating at 
a location), the model receives noisy observations of the target 
location and width, which are sampled from a Gaussian distribution, 
��,� ∼ � (�� , ��,� (�)), with � ∈ {1, 2, 3} (see Observation function 
above). We omit the index subscript � for clarity. At the time step 
1, �1 = �1, �2 (� = 1) = �� 

2 (� = 1). The belief update from � to � + 1
�

is shown in Equation (1) below. 

�� +1 = �� + �� +1 [��+1 − �� ] 
�� 

2 (� + 1) = �� 
2 (�) − �� +1�� 

2 (�) 
�� (�)2 

(1) 

� (�� +1) = 
�� (� )2 + �� (� + 1)2 

3.1.2 Training. For each study, an ensemble model was trained, 
meaning that the parameters to be estimated were sampled from 
their prior distributions and given as additional inputs to the con-
troller, thus distilling a population of user models covering the de-
sired space of behaviours into a single set of neural network weights. 
The controller was implemented as a simple fully-connected feed-
forward neural network and optimised with the proximal policy 
optimisation (PPO) algorithm [45]. The POMDP was solved for the 
restricted class of policies that conforms to the task bounds outlined 
above. 

3.2 Analyst 
As was the case for the user model, the environment of the An-
alyst is also formulated as a POMDP. The Analyst architecture 
is illustrated in Figure 4. The blue boxes form the reinforcement 
learning agent, and the green boxes represent the environment. 
The ‘user model’ represents the simulator of a synthetic user. By 
sampling user parameters from a specifed prior distribution, and 
conditioning the user model on these parameters, a range of difer-
ent behaviours can be simulated. The user model is also conditioned, 
and its behaviour afected, by the design values produced by the 
controller. The parameterised user model generates data given a 
specifc experimental design. The Analyst tries various experimen-
tal designs to learn about the user model and thereby estimate its 
parameters. 

The ‘memory’, which is considered as an internal process of the 
agent, stores the history of experimental designs and outcomes. 
The ‘control’ process includes the policy function that efectively 
maps the contents of the memory to a probability distribution over 
actions. The action contains the design for the next experiment as 
well as estimations of the user parameters with data collected from 
past experiments. The ’discrepancy’ unit is used during the training 
of the Analyst to produce the reward signal for the RL agent. More 
formally, the Analyst POMDP is specifed as follows: 

• State space � : At each time step � , the environment is in 
a state �� ∈ � . A state �� = (�� , �� , �� ) represents the tuple 
consisting of the design value �� that was used to run the 
experiment at that time step, the experiment outcome �� , 
and the user parameter vector �� . 

• Action space � : An action, �� , is taken at each time step � . 
The action �� = (�� +1, �� ) tuple of the analyst includes de-
signs �� +1 for the next experiment and parameter predictions 
�� based on the information gathered so far. 

• Reward function � (�, �): At each time step � , a reward is 
generated by a discrepancy function, which measures the 
similarity of predicted and true parameters of the user model 
as the negative L1 error � (�� , �� ) = −||�� − �� | |1. The reward 
is directly infuenced by the ability of the analyst to estimate 
parameters, but it is crucially also indirectly infuenced by 
the analyst’s ability to design informative experiments. 

• Transition function� (�� +1 |�� , �� ): The environment switches 
to a new state according to the transition function. The user 
parameter vector �� is sampled from the prior � (� ) at the 
beginning of the episode, and remains fxed until the end 
of the episode. At each time step � , the user parameters �� 
and the design �� +1 chosen by the analyst are used to run 
the simulator and produce an outcome �� +1 ∼ � (� |�� , �� +1), 
which gives the new state �� +1 = (�� +1, ��+1, �� ). 

• Observation space � and observation function � = 
� (�, �): At each time step � , the state is passed through an 
observation function �� = � (�� , �� ) = (�� , �̃� ) before given to 
the analyst, where �̃� is a corrupted measurement of the true 
experiment outcome �� . The user parameters �� are treated 
as a latent variable, they are included in the state but not the 
observation. 

The partial observability of the environment motivates a pol-
icy that is conditioned on the full history of observations �≤� = 
�1�2 ...�� . The analyst policy is a stochastic function that samples 
parameter predictions and designs for the next experiment condi-
tioned on the observation history as �� ∼ ����� ��� (�� |�≤� ). The 
objective of the analyst is to maximise the expectation of discounted 

return � [ Í� 
�� � (�� , �� )] where � is the number of experiments per-

� =0 
formed for a specifc user and � is the exponential discount rate. 
This objective is non-myopic since credit assignment for a partic-
ular experiment is performed based on the quality of all future 
parameter estimations. 

3.2.1 Policy network. The studies reported below use two diferent 
architectures for representing the policy network. In our frst study, 
the observation includes information of the movement time and 
fnal fxation, target location and target width. In this case, the 
policy network implementation is a multilayer perceptron (MLP) 
network followed by mean pooling across experiments, output layer 
and heads for action distribution and value estimation (see fgure 
5, left). In studies 2 and 3, the observation includes eye movement 
data and information about the target location and width. In these 
studies, the policy network architecture uses an inductive bias to 
support relational inference [3, 44] (see fgure 5, right). 

Considering the Studies 2 and 3 policy architecture, the output 
of the local pooling is an embedding of the observations over one 
episode, 

�∑ 
� ������� � ������� 

�� = ���� (������� , � , � ) (2)� � +1 
� =1 
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Figure 4: Analyst architecture. The problem for the reinforcement learner is to learn a sequential policy for the ‘control’ process 
by acting in an environment that consists of a sequence of user models with stochastically sampled parameters. Actions consist 
of a (�, �� ) pair where � is a specifcation of the experiment and �� is an estimate of the model parameters. The ‘discrepancy’ 
function calculates a reward by comparing the estimated parameters to the true parameters �� . The ‘memory’ stores the 
sequence of experiment designs � and data � that have been conducted for the latest sampled parameters. 

Figure 5: Two diferent policy network architectures. Study 
1 uses a simpler policy network, whereas Studies 2 and 3 use 
a policy network architecture which implements relational 
reasoning. 

where ���� denotes a relation network encoder (in our case an 
MLP network), conditioned on information of the target location 

������� and information of the locations of two subsequent fxations 
� ������� � ������� 
� and � at time steps � and � + 1. The output of the � �+1
global pooling is an embedding over � experiments 

�∑ 
�� = �(��

� ) (3) 
�=1 

where � is the number of experiments and �(.) is an MLP net-
work. The embedding �� is fed to an fully connected output layer 
and to policy and value heads. 

User models formulated as POMDPs, instead of closed form mod-
els, ofer the possibility of capturing and simulating complicated 
and realistic human-like behaviour, but at the same time they raise 
some challenges. With such user models, we are often only able to 
draw samples from the simulator, without the possibility of evaluat-
ing the likelihood or diferentiating through the simulator. Because 
of this, new methods are needed that fulfll this requirement. In 
addition to the requirement for non-diferentiable user-models, 
other desired properties are amortisation, non-myopic designs, and 
adaptation to the experiment outcomes. Table 1 summarises the 
capabilities of various recent approaches for optimal experimental 
design. Our method is the most fexible as it is able to generate 
amortized, non-myopic and adaptive solutions in likelihood-free 
environments without the need to diferentiate through the simula-
tor. 

3.3 Training 
The policy network is trained by using both score-based and path-
wise gradient estimators [33]. Since the design values are sampled 
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Table 1: Comparison of the capabilities of recent methods for optimal experimental design. * In MINEBED, a backup method is 
also described based on Bayesian optimisation, which does not require diferentiable simulator. 

Algorithm Amortized diferentiable 
simulator not 

needed 

non-myopic Adaptive likelihood-free 

DAD [17] ✔ ✔ ✔ ✔ ✗ 
iDAD [21] ✔ ✗ ✔ ✔ ✔ 
Blau et al [5] ✔ ✔ ✔ ✔ ✗ 
MINEBED [25] ✗ ✔* ✔ ✔ ✔ 
Valentin et al 
[47] 

✗ ✔ ✔ ✔ ✔ 

Our method ✔ ✔ ✔ ✔ ✔ 

from the action distribution, it uses a score-based gradient estimator 
implemented with PPO [45]. Since the parameter estimations can 
be directly optimised with a loss function, extra parameter updates 
can be conducted with the pathwise gradient estimations thereby 
reducing variance. 

The training method uses an exponential moving average (EMA) 
method in order to regularise the training process [46]. The pa-
rameters of a separate EMA network are updated based on the 
parameters from the policy network, and the previous values of the 
EMA network: 

� 
′ 
= ��� 

′
−1 + (1 − �)�� (4)� 

where � 
′ 
is the EMA network parameter vector at time step � , �� � 

is the parameter vector of the policy network, and � is the smooth-
ing coefcient hyperparameter. The rewards for the policy network 
parameter updates are calculated by using parameter predictions 
from the EMA network, instead of the actual policy network. As a 
result, the policy parameter updates are less noisy and training is 
more efcient. 

The training was conducted by using the Stable Baselines 3 
(SB3) library [40] by implementing custom policy networks for the 
relation network, and by using the SB3 callback system for EMA 
implementation. 

4 NON-MYOPIC AND ADAPTIVITY 
DEMONSTRATIONS 

Our method produces amortised design strategies and parameter 
estimations in likelihood free settings without the need to diferen-
tiate through the simulator. As presented in Table 1, the existing 
methods are not applicable to our setting. To gain confdence for 
our method, its performance and range of applicability, we ran ex-
periments on abstract tasks requiring non-myopic design strategies 
and adaptivity. 

4.1 Non-myopic demonstration 
We demonstrate frst the capability of our method to produce non-
myopic design selection strategies with an abstract task. We use a 
1-dimensional Gaussian process to sample functions with a spec-
ifed kernel. Depending on the selected kernel, nearby points are 
correlated. As a baseline for comparison to our approach, we use 

a one step lookahead algorithm which minimises expected uncer-
tainty reduction over the design space. This myopic algorithm will 
converge to non-optimal design strategy with two data points as 
the algorithm selects designs that are less uniformly distributed. In 
contrast, our non-myopic algorithm is able to take into account the 
total number of trials to be conducted and can design a whole series 
of experiments that lead to higher information gain overall. The 
fgure 6 illustrates examples of design selections of both algorithms. 
In the left panel, the design is calculated with one-step lookahead so 
as to optimally reduce uncertainty. The mid-point design is chosen 
frst in ’ignorance’ of the fact that another experiment is to be con-
ducted and as a consequence the overall distribution of experiments 
is not optimal. In the right panel, our non-myopic algorithm has 
successfully learned to choose designs that more evenly cover the 
design space, thereby gaining more information over the whole 
series of experiments and optimally reducing uncertainty overall. 

The discrepancy function for the Analyst is the L2 distance be-
tween the true and estimated function. We measured the quality of 
the designs with two metrics, namely the L2 distance between the 
estimated and ground truth functions, and the reduction of vari-
ance as calculated with the integrated mean-squared error (IMSE) 
method as used in Chen et al. 2019 [10]. As the myopic algorithm is 
analytically calculated to reduce variance, the latter metric ofers a 
reliable comparison to the baseline. The results are shown in table 
2, indicating a clear beneft of the non-myopic method. 

Table 2: Results of the non-myopic experiment. The Analyst 
learns a non-myopic design strategy that outperforms the 
optimal myopic design strategy. The mean and standard error 
was computed over an evaluation batch with 100 functions 
sampled from the prior. 

Metrics mean standard error 

Analyst discrepancy 0.0812 0.0089 
Baseline discrepancy 0.1580 0.0204 

Analyst IMSE 0.3909 0.1194 
Baseline IMSE 0.7087 0.0 
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Figure 6: Examples of design selections by myopic and our non-myopic methods. Left panel: A myopic method has selected a 
design to reduce variance with optimal one-step lookahead. Right panel: Our method has learned a non-myopic design strategy 
and can select more informative design values as the designs are chosen to more evenly cover the whole space. 

4.2 Adaptivity demonstration 
The adaptivity is demonstrated in a setting where the task is to 
estimate a parameter that afects the positioning of a logistic sig-
moid function on the x-axis. The data is generated by conducting 
Bernoulli trials where the probability � (�� = 1) is defned by a 
logistic function: 

1 
� (�� = 1|�, �) = 

1 + �−(�+� )

where �� is the outcome of the �:th trial in the experiment, � is the 
parameter to be estimated and � is the design value. To train a non-
adaptive baseline, we masked the outcomes from the Analyst until 
the last time step of the episode. In contrast, when the outcomes of 
the previous trials during the episode are available, the Analyst can 
generate an adaptive strategy where design choices are afected by 
the previous outcomes during the episode. To compare Analyst to 
the baseline, we use the MSE of the estimated parameter. The table 
3 indicates a clear beneft of the adaptive design strategy over the 
non-adaptive strategy. The adaptivity of the designs is illustrated in 
Figure 7 which shows how the Analyst design selections converge 
on the mid-point of the slope in the sigmoid function. 

5 STUDY 1: ESTIMATION OF SUBMOVEMENT 
NOISE FROM SUMMARY DATA 

Following Meyer’s law we assume that people make a series of 
submovements to achieve a goal [31]. In the frst study, we apply our 
approach to a scenario where only summary statistics are provided 
to the analyst at the end of each episode. The summary statistics 
includes movement time from the beginning of the episode until the 
end of the episode, the target location, target width and the location 
of the fnal submovement. Although individual submovements are 
not observed, the goal is to infer the noise parameter afecting these 
movements. The movement time is calculated with the formula 
�� = 

Í� (���� + �� ), where � is the number of user steps within � 
the episode, �� is the distance of the submovement during the 
current user step � , �� is the slope parameter, and �� is the intercept 

Table 3: Results of the adaptivity demonstration. To provide 
a baseline, the Analyst trained without information of the 
previous outcomes during the episode learns a non-adaptive 
strategy. In contrast, when previous outcome information is 
available, the Analyst produces an adaptive strategy which 
beats both the non-adaptive baseline and a random baseline. 
The MSE mean and MSE standard error was computed over 
an evaluation batch with 10000 models sampled from the 
prior. 

Method MSE mean MSE standard error 
Adaptive Analyst 2.018 0.034 

Non-adaptive baseline 6.265 0.085 
Random design baseline 14.434 0.234 

parameter of the movement time model. In Study 1, (though not 
in subsequent studies) both of these movement time parameters 
are fxed. The goal in Study 1 is to estimate the movement noise 
parameter. 

5.1 Results 
The larger the movement noise, the further the actual movements 
can be from the intended aim points. As a result, with large noise 
values the user model requires more steps to reach the target. In 
order to verify that the user model has adapted to the various 
movement noise values, we plot the number of steps that the user 
model needs to reach the target on average. Figure 8a shows that 
the fully trained user model require more steps to reach the target 
when the noise levels are higher. As the user model’s behaviour is 
impacted by the parameter value, it should be possible to train the 
Analyst to infer the movement noise from behavioural observations. 

We tested the ability of the Analyst to estimate parameters and 
the results are reported in Figure 9. In each of the panel’s (a), (b) 
and (c) the true value of the movement noise is plotted against the 
estimated value. A linear regression ft was performed to all three 
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Figure 7: The Analyst learns to adapt to the data collected so far during the episode. Left panel: When the Analyst has 
information about the previous trials, it adapts to them and converges to the midpoint of the sigmoid function slope, which 
provides most information. Right panel: When information about the previous trial outcomes are not available, the Analyst 
learns a non-adaptive strategy in which the design values are sparsely distributed rather than focused where they are needed. 

scatter plots (� = 0.99, � = 0.91, �2 = 0.80 for panel (a), � = 0.83, � = 
0.01, �2 = 0.77 for panel (b), � = 1.00, � = 0.03, �2 = 0.54 for panel 
(c)). The panels difer in the level of the perceptual noise, with low 
perceptual noise in panel (a), higher perceptual noise in panel (b) 
and highest perceptual noise in panel (c). Across all three panels it 
is clear that the Analyst is able to provide some level of estimate of 
the oculomotor noise, however, it is also clear that the estimates 
are much better when the perceptual noise is lower (panel (a)). 

Figure 9 also illustrates the distribution of experimental design 
choices made for each level of perceptual noise. Panels (d) and (e), 
which correspond to panel (a), show that for low perceptual noise, 
experimental designs tend toward higher eccentricities and large 
targets (though there is some variance). However, as perceptual 
noise increases, the analyst is incentivised to select targets closer to 
the origin, in order to avoid corrupting the data with very noisy ob-
servations. This claim is supported by panels (f) and (h) which show 
more experiments with smaller eccentricities at higher perceptual 
noise values. 

Finally, the quality of the design optimisation can be verifed by 
training the analyst with random design values, and comparing the 
accuracy of the parameter estimations with an analyst trained to 
optimise design selections. The right panel of Figure 8 is a plot of 
the error in the estimate against the experiment number. With zero 
experiments there is no data and the parameter estimate is simply 
the learned prior of the parameter distribution. After the data from 
each experiment are incorporated into a new parameter estimate, 
the error decreases, and it decreases more quickly with Analyst 
designed experiments. It demonstrates a clear improvement in the 
accuracy of the parameter estimations with optimised designs. 

6 STUDY 2: INFERENCE OF PERCEPTUAL AND 
MOTOR NOISE FROM GAZE MOVEMENTS 

In Study 2, we applied the Analyst to a user model of eye-movements. 
Instead of using summary statistics as in Study 1, we allowed Ana-
lyst to observe the gaze fxations of each step during the episode. 
We also extended the model with a target detection requirement. As 
a consequence, whether or not the user model observes the target is 

probabilistic. The probability of not observing the target increases 
when the target size is far away and target width is small. 

In this study we report the results of the Analyst inferring three 
parameters: oculomotor noise, perceptual noise and movement 
time intercept. The observations include fxations at each time step, 
duration of each gaze, information about the target location and 
target width. A key diference between Study 1 and Study 2 is that, 
where there is a fxed amount of data per experiment in Study 1, in 
Study 2, experiments that with more distance and smaller targets 
can generate more data. As we will see, this fact impacts the selected 
designs. 

6.1 Results 
As with Study 1, we frst measured the efect of changes in the user 
model parameters on the behaviour. When considering oculomotor 
and perceptual noise values, increasing one of these noise values 
while keeping another fxed should cause the user model to require 
more gaze fxations to reach the target. This is clearly visible in 
the panel (a) in Figure 10, where the perceptual noise value versus 
required gaze steps to reach the target is plotted. The near linear 
increase in number of steps with increasing noise suggests that 
the parameter should be readily recoverable. The oculomotor noise 
is equivalent to movement noise in study 1, the efect of which is 
shown in Figure 8 of Study 1. 

In Study 2, the goal of Analyst is to select the most informative 
experiments for inferring the oculomotor noise, perceptual noise 
and the intercept parameters for the movement time model. Analyst 
performance is illustrated in panels (e) to (g) of Figure 10. A linear 
regression was performed to assess the quality of the fts for each 
parameter (� = 0.85, � = 0.01, �2 = 0.76 for panel (e), � = 0.87, � = 
−0.01, �2 = 0.84 for panel (f), � = 1.00, � = 0.04, �2 = 0.99 for 
panel (g)). The selected design values are illustrated in panels (b) 
and (c) in Figure 10. In this case, the analyst has learned to design 
experiments with small targets and large eccentricities. 

Finally, the performance of the analyst is compared against an 
analyst trained by using random experimental designs. Panel (d) 
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Figure 8: Study 1 results. Panel (a), The number of steps required by the user model to reach the target against increasing 
movement noise values. Panel (b), The Analyst makes better parameter estimations the more it makes experiments. The 
analyst also performs better across stages compared to a baseline that samples designs uniformly. In panel (a), the shaded area 
represents ± 1 standard error over an evaluation batch with 1000 user episodes. In panel (b), the shaded area represents ± 1 
standard error over an evaluation batch with 1000 models sampled from the prior. 

Figure 9: Study 1 results. Panels a-c illustrate the accuracy of the movement noise estimations when the user model has low 
(panel a), medium (panel b) or high (panel c) perceptual noise. Below the scatter plots, the corresponding design selections 
(target distance from origin and width) by the analyst are illustrated as histograms (panels d-i). 

in Figure 10 shows a clear beneft of the optimised designs across 
experiments. 

In summary, the results of Study 2 extend Study 1 by showing 
that the analyst can choose experimental designs and accurately 
infer multiple parameters at the same time. In addition, it can do 
so when each experiment returns a sequence of data (fxation lo-
cations and movement times) and not just point values. Finally, 
estimating parameters with selected designs outperforms doing so 
with random designs. 

7 STUDY 3: INFERENCE OF PREFERENCES 
In Study 3, we test to see whether Analyst can discover user model 
preferences. Preferences are important to HCI as they capture per-
sonal and sometimes discretionary aspects of how a person wants 
to interact with a computer. Preferences include preferences for 
music genre and/or movie directors, for example, but here we focus 
on speed-accuracy trade-ofs. As we have said, the speed-accuracy 
trade-of is a signifcant determinant of how people choose to in-
teract with computers [48] and is readily detectable in behaviour. 
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Figure 10: Results of Study 2. Panel (a) shows the efect of the user model’s perceptual noise parameter on number of steps 
taken. Panels (b) and (c) show the distribution of the experimental designs chosen by the Analyst. Panel (d) shows the the 
improvement in parameter estimates with Analyst designed experiments versus with random experiments. The panels on 
the lower row show the accuracy of the parameter estimations for perceptual noise (e), oculomotor noise (f), movement time 
interception parameter (g). In panel (a), the shaded area represents ± 1 standard error over an evaluation batch with 1000 user 
episodes. In panel (d), the shaded area represents ± 1 standard error over an evaluation batch with 1000 models sampled from 
the prior. 

The speed-accuracy trade-of determines the error rate which is a 
key property of interaction. The faster users attempt to perform 
a pointing task then the more errors that they make. In Study 3 
we tested the extent to which Analyst was capable of estimating 
these preference parameters. To do so, we simulated a task in which 
the user model is able to end an episode by pressing a key on a 
keyboard. The observation space is extended to include information 
about whether the user has pressed a key or not. 

7.1 Results 
As with the previous studies, we frst test whether the parameters, 
particularly the preference parameter, make an identifable difer-
ence to the behaviour of the user model. In this case a useful metric 
for measuring the response of the parameters to the behaviour of 
the user agent is the error rate, which describes how often the user 
model ends the episode when the gaze is not in the true target, or 
the maximum number of gazes is reached without a keypress by 
the user. Figure 11, panels (a) to (d) show the error rate for four of 
the model parameters. Panel (c) shows how the error rate is larger 
when the preference is biased towards speed, and approaches zero 
when the preference is biased towards accuracy. 

The lower row, panels (e)-(h) of Figure 11 shows the capability 
of the analyst to simultaneously infer all four parameters. As the 
Study 3 task is made more difcult by the increased number of 

parameters, the error of the estimates is greater when compared 
to Study 2. However, there is a good correlation between ground 
truth and parameter estimate for all four parameters. Having said 
that the worst of the four estimates is for the preference parameter 
which has a noticeable skew. 

Figure 12 shows the Analyst’s distribution of experimental design 
choices in two histograms. It always picks the smallest target (panel 
b) but shows a broader distribution of choice of distances. It is 
instructive to compare this distribution to that for Study 2. 

In Study 2, a good strategy for the analyst was to select a small 
target, as far away from the fovea as possible. In contrast, less 
extreme distances are selected in Study 3. One reason for this dif-
ference may be that because of the speed-accuracy trade-of there 
is a risk that the smallest most distant targets are not selected at 
all and therefore there is little evidence gathered to inform the 
speed-accuracy trade of preference parameter. Therefore, in Study 
2 it makes sense to select experimental designs in which the user 
model stands some chance of high accuracy. Lastly, the Analyst’s 
optimal experiments outperform an analysis conducted with data 
from random experimental designs (Figure 12 panel (c)). 

In summary, Study 3 demonstrates that Analyst can simultane-
ously estimate multiple parameters, and importantly, it can estimate 
both capacity parameters (e.g. oculomotor and perceptual noise) 
and preference parameters (e.g. speed-accuracy trade of) – from 
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Figure 11: Results of Study 3. The upper row illustrates the adaptation of the user model to parameters for the perceptual 
noise (a), oculomotor noise (b), speed-accuracy preference (c) and movement time intercept (d). The lower row illustrates the 
corresponding accuracy of the parameter estimates. In panels (a) - (d), the shaded area represents ± 1 standard error over an 
evaluation batch with 1000 user episodes. 

Figure 12: Results for Study 3. Panels (a) and (b) show the histograms of Analyst selected experimental designs. Panel (c) shows 
the performance gain that follows from inferring parameters on the basis of the designs selected by the analyst compared to 
random designs. In panel (c), the shaded area represents ± 1 standard error over an evaluation batch with 1000 models sampled 
from the prior. 

the same experiments. While there is a noticeable decrease in the 
quality of the parameter estimates with the increase in the num-
ber of parameters under consideration, compelling correlations are 
still generated. As with the other two studies the analyst selected 
experimental designs outperformed the random designs. 

8 DISCUSSION 
We have explored the properties of a new method of user model 
parameter estimation and shown that, for three progressively com-
plex pointing tasks, it can make rapid estimates of parameter values 
for individual simulated users. It does so by learning a near-optimal 
policy for choosing the experiments that are most likely to generate 
informative data. 

All three of the studies showed that the learned policies lead 
to more accurate parameter estimates than random experiments. 
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Parameters could be estimated both with data that summarised 
a sequence of user submovements (Study 1), as well as with data 
that included multiple steps in a single experimental observation 
(Studies 2 and 3) – two important types of user data found in HCI. 
Further, in Study 1, 2 and 3, each of four successive designed ex-
periment led to an improvement in the parameter estimates and a 
concomitant reduction in the prediction error. This improvement 
was more rapid for designed experiments than for random experi-
ments. The estimated parameter values were highly correlated with 
the true value after only four experiments. 

While we have demonstrated the viability of the amortised ap-
proach for pointing tasks, more work is needed to verify that it 
generalises to other HCI tasks. While we believe that the approach 
is structured so as to provide design of experiments and inference of 
parameters for any complex simulation-based user models, further 
empirical work is needed. If generalisation is possible then, while 
very high computational costs are paid during training (between 3 
and 9 hours of wall time on a laptop for the simulations reported 
above), the result is a very fast (milliseconds), data-lean (four ob-
servations) deployment. In other words, the approach trades the 
high cost of training an ensemble model and training the analyst, 
for a subsequent reduction in the time required to infer user model 
parameters. Post-training, not only can the best next experiment be 
determined in milliseconds but in addition the analyst can minimise 
the total number of experiments required to determine best ftting 
parameter values. However, further empirical work is required to 
see whether this promise is delivered for a broad range of HCI tasks. 

Additional properties of our approach include that it provides 
adaptive, non-myopic designs (See the experiments in Section 4) and 
that it can be trained with arbitrary non-diferentiable simulators 
with intractable likelihoods. As we see in the next Section, these 
properties compare well with other work in this area. 

8.0.1 Comparison to related approaches. The work reported above 
was inspired and informed by recent work in both HCI and ma-
chine learning. Of particular importance was work on ensemble 
user models [27, 34] and work on reinforcement learning based 
experimental design and inference [5]. Also of importance is the 
work on Bayesian approaches to optimal experimental design [7, 
17, 25, 26, 36] and work on relation nets [44] which was crucial to 
tractable reinforcement learning. 

Bayesian experimental design has the clear potential advantage 
of mathematical rigour, as well as estimates of the posterior dis-
tribution of parameter values, rather than point estimates. The 
Bayesian framework, reviewed briefy above, tackles the problem of 
experimental design by optimising the expected information gain 
e.g. how much more certain we will become about the values of 
the parameters we are ftting. EIG is equivalent to maximising the 
Mutual Information (MI) between the parameters and data when 
performing the experiment design. However, EIG does not account 
for inaccuracies resulting from the amortisation in the parameter 
estimation. Thus, it is not clear that optimising EIG leads to good de-
signs in our setting. Instead of optimising EIG, in the RL approach it 
is possible to directly optimise the designs for amortised parameter 
estimation through a joint objective. Also, estimating the MI in the 
conventional BOED framework is doubly intractable [21, 41]. Due 
to this computational complexity, estimating Bayes optimal designs 

is not feasible when doing experiments. This has led to approaches 
that amortise the cost to a pre-trained deep network by using a 
tractable approximation to the MI [5, 17, 21]. Tractable computation 
of the MI objective for implicit models is further complicated by 
the fact that the likelihood function of the parameter is not known 
[14, 29]. Ivanova et al. [21] tackle this problem by introducing a 
separate critic network. Their approach however requires the use 
of a diferentiable simulator. Using RL alleviates this need, as the 
score function gradient estimator directly calculates gradients from 
the specifed reward. 

8.1 Future work 
The results reported above represent a preliminary investigation 
of the potential of RL-based experimental design and inference 
in HCI. They suggest a number of future studies. Perhaps most 
signifcantly, the efectiveness of the method must be tested with 
human participants. While the simulated participants used to test 
the approach above are sampled from the distribution of real users 
and previous studies have demonstrated the human-like behaviour 
of these simulations [11], further work is needed. While human 
studies are beyond the scope of the current article, the software 
that we have built makes it very easy to deploy the Analyst learned 
policies in interactive software with an eye tracker. This software 
would – without lag – choose the best experimental design (target 
distance and width), observe a user’s saccades and fxations, update 
model parameters, update the observation history and repeat. 

The approach must also be tested on a broader range of tasks so 
as to empirically establish its generality. While we have formalised 
the method in terms that we believe to be fully general, in this 
paper, we have only tested it on abstract problems and pointing 
tasks. A broader range of HCI-related tasks would include menu-
search tasks [12], decision making tasks [13], and biomechanical 
control tasks [20], to name but three. 

In the future, user models with rapid parameter estimation could 
help enhance interaction for each individual user. Mouse gain func-
tions, text completion, icon sizes, colour pallet, etc. are almost 
always never tuned to an individual’s preferences and capacities. 
Instead, interfaces provide settings by which the interaction can be 
‘adapted’ manually requiring the user to actively choose confgura-
tions in accordance with their beliefs about what is good for them. 
We believe that this process could be complemented with automatic 
personalisation methods based upon the RL-based Analyst reported 
above. 

In addition, further work is needed on picking good hyperparam-
eters for the Analyst. As the reported studies became more complex, 
training of the neural networks became more challenging and some 
amount of hyperparameter tuning was involved in generating the 
results reported above. Finding the very best possible performance 
with extensive hyperparameter search was not within the scope of 
the current article. Therefore, the performance for both optimised 
Analyst and Analyst using random designs could be improved. 

Lastly, further work is needed to explore the implications of RL-
based amortised parameter estimation for a range of HCI-related 
problems. A/B testing, for example, can be enhanced by frst ft-
ting a user model and then selecting an interaction design accord-
ingly. With amortised methods, it may be possible to do this in 
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real time. Similarly, recommender systems and decision support 
systems might be enhanced by ftting simulation-based user models 
to user preferences and selecting recommendations with the aid of 
the ftted user model. 

In conclusion, we have demonstrated, in-silico, the potential 
utility of amortised experimental design and parameter estimation 
based on an RL algorithm that learns how to choose experiments 
for estimating user model parameters. By doing so, it can reduce the 
subsequent time cost of interaction with humans and the amount 
of human data. 
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A APPENDIX: ARCHITECTURE AND 
HYPERPARAMETERS DETAILS 

All simulations were run using PyTorch deep learning [38] and 
Stable Baselines3 (SB3) Reinforcement Learning [40] libraries. As 
the focus on this paper is to show the capability of our method, we 
mainly use network architectures and hyperparameters that are typ-
ical for neural network training with only minor hyperparameter 
search. 

A.1 User model 
We use the same user model in Studies 1 and 2. The user model in 
Study 3 includes additional functionality for a key press. The policy 
functions use a feature extractor network. 

Layer description dimension activation 
H1 fully connected 32 ReLU 
H2 fully connected 64 ReLU 
H3 fully connected 128 ReLU 
H4 fully connected 128 ReLU 

The feature extractor is followed by the policy and value heads, 
which have identical architectures: 

Layer description dimension activation 
H1 fully connected 128 ReLU 
H2 fully connected 64 ReLU 

SB3 produces Gaussian distributions for actions and value predic-
tions, from where mean values are used as point estimates for 
actions and value predictions. We used the Proximal Policy Opti-
mization (PPO) algorithm [45] to train the user model with Rein-
forcement Learning. The most important PPO parameters are given 
in the table below. 

Parameter value 
Training iterations 3 000 000 

learning rate 2e-4 
gamma 0.99 

clip range 0.18 
entropy coefcient 0.001 

maximum gradient norm 0.55 
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A.2 Analyst model 
As described in the body text, the Analyst uses a relation network 
with a mean pooling MLP network. The Analyst has the following 
layers: 

Layer description dimension activation 
H1 fully connected 32 ReLU 
H2 fully connected 64 ReLU 
H3 fully connected 128 ReLU 
H4 fully connected 256 ReLU 
H5 - pooling layer no activation 
H6 fully connected 256 ReLU 
H7 fully connected 64 RelU 

The feature extraction network is followed by identical policy and 
value networks with the following dimensions: 

Layer description dimension activation 
H1 fully connected 64 ReLU 
H2 fully connected 64 ReLU 

As with the user model, SB3 produces Gaussian distributions for 
actions and value predictions, from where mean values are used 
as point estimates for actions and value predictions. Similarly, the 
Analyst is trained with the PPO algorithm. The most important 
PPO parameters are given in the table below. 

Parameter value 
Training iterations 4 000 000 

exponentially decaying learning rate start 5e-5 
gamma 0.99 

clip range 0.10 
entropy coefcient 0.01 

maximum gradient norm 0.55 

A.3 Non-myopic demonstration 
The Non-myopic demonstration was trained using the Soft Actor 
Critic (SAC) algorithm with SB3 default hyperparameters. The An-
alyst network is simplifed so that the relation network is replaced 
by a multilayer perceptron, therefore data point pairwise calcula-
tions (defned in equations (2) and (3)) are not used. The policy and 
Q networks have 2 layers, each with 128 hidden units and ReLU 
activations. 

A.4 Adaptation demonstration 
The Adaptation demonstration uses PPO with SB3 default settings. 
The EMA network (described in Section 3.3) is not used. The feature 
extractor network consists of 4 Layers followed by ReLU activations. 
The dimensions of the layers are 256 for layer H1, 256 for layer 
H2, 128 for layer H3 and 256 for layer H4. This is followed by a 
mean pooling layer H5 and a layer H6 of width 256 followed by 
ReLU activations. The policy and value heads are identical with 
two layers with a width of 256 units followed by ReLU activations. 
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