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Introduction. Vascular endothelial dysfunction is characterised by lowered nitric oxide (NO) bioavailability, which may be
explained by increased production of reactive oxygen species (ROS), mitochondrial dysfunction, and altered cell signalling.
(-)-Epicatechin (EPI) has proven effective in the context of vascular endothelial dysfunction, but the underlying mechanisms
associated with EPI’s effects remain unclear. Objective(s). Our aim was to investigate whether EPI impacts reactive oxygen and
nitrogen species (RONS) production and mitochondrial function of human vascular endothelial cells (HUVECs). We
hypothesised that EPI would attenuate ROS production, increase NO bioavailability, and enhance indices of mitochondrial
function. Methods. HUVECs were treated with EPI (0-20μM) for up to 48 h. Mitochondrial and cellular ROS were measured
in the absence and presence of antimycin A (AA), an inhibitor of the mitochondrial electron transport protein complex III,
favouring ROS production. Genes associated with mitochondrial remodelling and the antioxidant response were quantified by
RT-qPCR. Mitochondrial bioenergetics were assessed by respirometry and signalling responses determined by western blotting.
Results. Mitochondrial superoxide production without AA was increased 32% and decreased 53% after 5 and 10 μM EPI
treatment vs. CTRL (P < 0:001). With AA, only 10 μM EPI increased mitochondrial superoxide production vs. CTRL (25%, P
< 0:001). NO bioavailability was increased by 45% with 10μM EPI vs. CTRL (P = 0:010). However, EPI did not impact
mitochondrial respiration. NRF2 mRNA expression was increased 1.5- and 1.6-fold with 5 and 10μM EPI over 48 h vs. CTRL
(P = 0:015 and P = 0:001, respectively). Finally, EPI transiently enhanced ERK1/2 phosphorylation (2.9 and 3.2-fold over
15min and 1 h vs. 0 h, respectively; P = 0:035 and P = 0:011). Conclusion(s). EPI dose-dependently alters RONS production of
HUVECs but does not impact mitochondrial respiration. The induction of NRF2 mRNA expression with EPI might relate to
enhanced ERK1/2 signalling, rather than RONS production. In humans, EPI may improve vascular endothelial dysfunction via
alteration of RONS and activation of cell signalling.

1. Introduction

Globally, cardiovascular disease (CVD) is the leading cause
of morbidity and mortality [1]. One major risk factor for
CVD is vascular endothelial dysfunction, which is typified
by impaired vasodilation and diminished blood flow [2, 3].

Several factors contribute to vascular endothelial dysfunc-
tion, including reduced nitric oxide (NO) bioavailability
and elevated oxidative stress [4]. A decline in NO bioavail-
ability has been attributed to lower endothelial nitric oxide
synthase (eNOS) content and activity, in part due to lower
phosphorylation of eNOS at Ser1177—at least in the aged
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vascular endothelium [5, 6]. Elevated oxidative stress might
be explained increased production of ROS [7–10] that are
cytosolic and mitochondrial in origin [9, 11–16].

Vascular endothelial health is also impacted by mito-
chondrial function. Indeed, ageing is associated with
reduced mitochondrial content in endothelial cells of con-
duit arteries, feed arteries, and capillaries [4, 17–19], which
could be due to blunted transcriptional responses [4, 19].
This potential reduction in mitochondrial biogenesis with
ageing may result from diminished NO bioavailability [20,
21] and/or lowered AMP-activated protein kinase (AMPK)
signalling [22], both of which are known to activate peroxi-
some proliferator-activated receptor gamma coactivator 1-
alpha (PGC-1α). A link between mitochondria and vascular
endothelial dysfunction has also been made from observa-
tions that human skeletal muscle feed arteries exhibit
impaired respiratory capacity and lower coupling efficiency
in middle- (55 years) and older-age (70 years) compared to
young adults [18, 23]. Furthermore, mitochondrial-targeted
antioxidants like mitoquinone (MitoQ) restore vascular
endothelial dysfunction in aged mice and patients with
peripheral artery disease, which likely results from reduc-
tions in levels of mitochondrial superoxide [23, 24].
Together, evidence points towards mitochondria as promis-
ing targets for interventions aimed at combatting vascular
endothelial dysfunction.

(-)-Epicatechin (EPI) belongs to a subclass of flavonoids
known as the flavanols. Not only is EPI highly bioavaila-
ble—reaching up to 10μM in circulation in humans
[25]—but EPI is also associated with several health benefits
[26, 27], including improved vascular endothelial function
[28–30] and increased NO bioavailability [30]. Additional
mechanisms thought to underly the therapeutic effects of
EPI include increased eNOS phosphorylation [31–33],
enhanced content or activity of enzymatic antioxidant pro-
teins [34, 35], and augmented mitochondrial biogenesis
[32, 36–38]. Whilst the potential of EPI to enhance markers
of mitochondrial biogenesis and antioxidant capacity seems
promising, it is unclear whether this effect translates to
enhanced respiratory function or altered ROS production
of vascular endothelial cells. In fact, one recent study
reported no impact of EPI on mitochondrial respiration
[39], but the authors demonstrated that EPI may lower
mitochondrial ROS production of HUVECs in the presence
of high glucose. The challenge remains to resolve whether
EPI modulates ROS production and mitochondrial function
of vascular endothelial cells.

To this end, our aim was to investigate whether EPI
modulates reactive oxygen and nitrogen species (RONS)
production and mitochondrial function of human vascular
endothelial cells. We hypothesised that EPI would attenuate
ROS production, augment NO bioavailability, and enhance
indices of mitochondrial function.

2. Materials and Methods

2.1. Cell Culture and Treatment. Human umbilical endothe-
lial vein endothelial cells (HUVECs; Thermo Fisher Scien-
tific, Waltham, MA, USA) at passages 3-7 were used in

this study. HUVECs were not passaged more than 7 times
because of changes in cell phenotype that can occur with
multiple population doublings that ultimately lead to senes-
cence [40–42]. Following the plating of cells onto pregelati-
nised well-plates (0.2% gelatin) in complete endothelial cell
growth medium (EGM; Cell Applications Inc., San Diego,
CA, USA), ~80% confluent HUVECs were washed twice
with Dulbecco’s phosphate-buffered saline (D-PBS) and
switched to prewarmed (37°C) EGM in the absence (vehicle
[H2O], “CTRL”) or presence of EPI (0.5-20μM) over 24 h
and 48 h. Human umbilical endothelial vein endothelial cells
(HUVECs; Thermo Fisher Scientific, Waltham, MA, USA)
at passages 3-7 were used in this study. HUVECs were not
passaged more than 8 times because of changes in cell phe-
notype that can occur with multiple population doublings
that ultimately lead to senescence [40–42]. Following the
plating of cells onto pregelatinised well-plates (0.2% gelatin)
in complete endothelial cell growth medium (EGM; Cell
Applications Inc., San Diego, CA, USA), ~80% confluent
HUVECs were washed twice with Dulbecco’s phosphate-
buffered saline (D-PBS) and switched to prewarmed (37°C)
EGM in the absence (vehicle [H2O], “CTRL”) or presence
of EPI (0-20μM) over 24 h and 48h.

2.2. Cell Viability. The fluorescent CyQUANT® Proliferation
Assay kit was used to determine cell viability. HUVECs were
grown to 60-70% confluency in EGM in gelatinised 96-well
plates. Cells were subsequently dosed for 24 h in EGM +/-
EPI at 0-20μM. After 24h, wells were aspirated, washed
twice with D-PBS, and then frozen immediately at -80°C.
On the day of the assay, plates were thawed at room temper-
ature, and CyQUANT® GR dye/cell-lysis buffer was added
to each well according to manufacturer instructions. Plates
were gently mixed on an orbital shaker (80 rpm) for 5
minutes protected from light. Sample fluorescence was mea-
sured using a CLARIOStar plate reader (BMG Labtech,
Ortenberg, Germany) with 485/520 Ex/Em.

2.3. Mitochondrial ROS Production. Mitochondrial superox-
ide was detected in HUVECs using MitoSOX (Thermo
Fisher Scientific, Waltham, USA), a hydroethidine probe
which is targeted to mitochondria by a conjugated
triphenyl-phosphonium moiety [43]. HUVECs were seeded
at 3 × 104 cells/mL in gelatinised 12-well microplates and
at ~80% confluence dosed +/- EPI (0-10μM) for 24 h. Next,
cells were washed in Krebs-Ringer buffer (KRH; 135mM
NaCl, 3.6mM KCl, 10mM HEPES (pH7.4), 0.5mM MgCl2,
1.5mM CaCl2, 0.5mM NaH2PO4, 2mM glutamine, and
5mM D(+)-Glucose) prior to incubation at 37°C for 30
minutes, with or without 15μM antimycin A (AA) to stim-
ulate mitochondrial superoxide production. Next, AA-
containing KRH was removed and MitoSOX was loaded into
cells in fresh pre-warmed KRH to a final concentration of
2.5μM. Plates were immediately transferred to a plate reader
(ClarioStar, BMG Labtech), and fluorescence was monitored
continuously at 30 sec intervals over 30min at excitation/
emission of 510/580 nm. Rates of mitochondrial superoxide
production were determined from the slope of the resultant
progress curve over the 30-minute recording. Finally, plates
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were immediately fixed in 1% (v/v) acetic acid in methanol
for the determination of cell density by the sulforhodamine
B (SRB) assay, which was used to normalise obtained fluo-
rescence values. The plate reader’s focal height and gain were
optimised and fixed between different experiments.

2.4. Cellular ROS. Cellular ROS were detected using the Cell-
ROX® Deep Red reagent by spectrophotometry. HUVECs
were seeded at 3 × 104 cells/mL into gelatinised 12-well
microplates and at ~80% confluence dosed +/- EPI (0-
10μM) for 24 h. After treatment, HUVECs were washed in
KRH with or without 15μM AA and incubated at 37°C for
30 minutes, prior to KRH removal and CellROX loading
using fresh, prewarmed KRH buffer, to a final concentration
of 2.5μM. Following 30 minutes CellROX incubation pro-
tected from light, cells were washed 2× with D-PBS and
immediately transferred to a plate reader (ClarioStar, BMG
Labtech), where fluorescent CellROX oxidation products
were excited at 640nm and light emission detected at
665nm. The plate reader’s focal height and gain were opti-
mised and fixed between experiments. Upon completion of
the reading, plates were immediately fixed for the determi-
nation of cell density by as discussed above.

2.5. Nitric Oxide Bioavailability. To assess intracellular NO
bioavailability, HUVECs were plated and cultured as previ-
ously described. At ~80% confluency, cells were treated with
0, 5, or 10μM EPI for 24 h. After treatment, HUVECs were
washed 2× with D-PBS and loaded with DAF-FM™ diacetate
(4-amino-5-methylamino-2′,7′-difluorofluorescein diace-
tate; Molecular Probes, Invitrogen) to a final concentration
of 1μM in KRH buffer and incubated at 37°C for 45 minutes
protected from light. Following dye loading, cells were
washed 2× with D-PBS and immediately trypsinised prior
to pelleting and resuspension in D-PBS. Sample fluorescence
was subsequently detected at 495/515 Ex/Em by flow cytom-
etry (BD Accuri C6, BD Biosciences, Wokingham, UK).
Data were recorded from 5,000 events and median values
reported.

2.6. RT-qPCR: Gene Expression Quantification. HUVECs
were grown to ~70% confluency in EGM in gelatinised 12-
well plates and lysed in 125μL TRIzol. Total RNA was then
extracted using the phenol-chloroform method. RNA
concentrations were determined by spectrophotometry
(NanoDrop™ 2000, Thermo Fisher Scientific, Waltham,
USA). Specific primers used in each PCR are outlined in
supplementary Table 1. After preparation, reaction tubes
were transferred to a Rotor-Gene Q PCR thermal cycler
for product amplification using a one-step protocol
(QuantiFast SYBR® Green RT-PCR Kit, Qiagen, UK). The
amplification protocol was as follows: reverse transcription
(10 minutes at 50°C), transcriptase inactivation, and initial
denaturation (95°C for 5min) followed by 40×
amplification cycles consisting of 95°C for 10 s
(denaturation) and 60°C for 30 s (annealing and extension);
followed by melt curve detection. Critical threshold (CT)
values were derived from setting a threshold of 0.09 for all
genes. To quantify gene expression, CT values were used to

quantify relative gene expression using the comparative
Delta Delta CT (2-ΔΔCT) equation [44], whereby the
expression of the gene of interest was determined relative
to the internal reference gene (RPL13a) in the treated
sample, compared with the untreated zero-hour control.

2.7. Mitochondrial Respiration. HUVECs (passages 4-6)
were seeded in XFe 24 well plates (Agilent, Santa Clara,
CA, USA) at 30,000 cells per well in 200μL EGM for 48 h.
After 48 h, HUVECs were washed twice with D-PBS and
replaced with fresh EGM containing 0, 5, and 10μM EPI
for 24h. On the day of the assay, HUVECs were washed with
prewarmed XF Dulbecco’s Modified Eagle Medium pH7.4
(DMEM; Agilent, Santa Clara, CA, USA), supplemented
with 5.5mM glucose, 1mM sodium pyruvate, and 2mML-
glutamine, and brought to a final well volume of 500μL.
The cells were incubated in this medium for 45 minutes at
37°C in a non-CO2 incubator and then transferred to a Sea-
horse XFe24 extracellular flux analyser (Agilent, Santa Clara,
CA, USA) maintained at 37°C. After an initial 15-minute
calibration, oxygen consumption rate (OCR) was measured
by a 3-4 loop cycle consisting of a 1min mix, 2min wait,
and 3min measure to record cellular respiration. After mea-
suring basal respiration, 2mM oligomycin was added to
selectively inhibit the mitochondrial ATP synthase. Subse-
quently, 3μM BAM15 was added to uncouple OCR to deter-
mine maximal respiration, and finally, a mixture of 2μM
rotenone and 2μM AA was added to inhibit complex I
and III of the electron transfer system, respectively, to deter-
mine nonmitochondrial respiration. Rates of oxygen con-
sumption were corrected for nonmitochondrial respiration
and expressed relative to the cell number of the appropriate
well, determined by the CyQUANT® assay. The raw values
of extracellular acidification rate (ECAR) and OCR were
divided into component rates to calculate the relative contri-
bution of glycolytic (ATPglyc) and oxidative ATP-producing
reactions (ATPox) to total ATP production, as previously
described [45]. Three independent experiments were per-
formed that contained at least two technical replicates.

2.8. SDS-PAGE and Immunoblotting. Total protein and
phosphoprotein levels were detected by western blot.
Following treatment, HUVECs were lysed and scraped in
ice-cold 1× precipitation assay buffer containing: 25mM
Tris-HCl pH7.6, 150mM NaCl, 1% NP-40, 1% sodium
deoxycholate, and 0.1% SDS, supplemented with 1× Prote-
ase Inhibitor Cocktail Set V (Merck Life Science, UK). Cell
lysates were centrifuged for 15 minutes at 18,000× g (4°C),
and the supernatant was stored at -80°C before analyses for
total protein by the Pierce BCA™ assay. Samples were subse-
quently resuspended in 4× Laemmli buffer (Bio-Rad Labora-
tories, Hertfordshire, UK) containing reducing agent (1×
working concentration: 31.5mM Tris-HCl [pH6.8], 10%
glycerol, 1% SDS, 0.005% bromophenol blue, and 355mM
2-mercaptoethanol) and were loaded and electrophoresed
on 10% SDS-stain-free polyacrylamide gels (supplementary
Figure 1). Semidry transfer of proteins to a nitrocellulose
membrane was performed using the Trans-Blot® Turbo™
Transfer System. Following blocking for 1 hour in Tris-
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buffered saline Tween-20 (TBS-T) containing 5% nonfat
dried milk (NFDM), membranes were incubated overnight
with rabbit antiphosphorylated or total antibodies: AMPKα
, pThr172-AMPK, p44/42 MAPK, pThr202/Tyr204-p44/42
MAPK, eNOS, and pSer1177-eNOS, at a dilution of 1 : 500-
1 : 4000 in 5% bovine serum albumin (BSA) made up in
TBS-T (see Table 1). After overnight incubation, the
membranes were washed 3 times in TBS-T for 5 minutes
and incubated for 1 hour in HRP-conjugated antirabbit
antibodies (Cell Signaling Technology, London, UK) at
dilution of 1 : 5000-1 : 10,000, following optimisation.
Proteins were visualised by enhanced chemiluminescence
(Thermo Fisher Scientific Inc., Waltham, USA) and
quantified by densitometry (ChemiDoc™ MP imaging
system, Bio-Rad Laboratories, Inc. CA, USA). Analysed
western blot images are presented in supplementary
Figure 2.

2.9. Statistical Analysis. One-way ANOVAs were employed
to detect effects of EPI treatment. Two-way ANOVAs were
employed to detect main effects (e.g., dose, time, or antimy-
cin A) and potential significant interactions between two
main independent factors. Multiple comparisons between
experimental conditions were adjusted for multiple tests,
using Dunnett’s or Sidak’s where appropriate. All data are
presented as mean ± SEM and significance accepted when
P < 0:05.

3. Results

3.1. EPI Does Not Cause Vascular Endothelial Cell Toxicity.
After 24 h EPI treatment (0.5-20μM dose responses), there
was a significant main effect of dose on cell proliferation
(P = 0:018; Figure 1). However, multiple comparisons
revealed no significant difference between doses of EPI ver-
sus CTRL. Given that EPI did not cause cell toxicity, and
prior knowledge of physiologic EPI concentrations in vivo
(up to 10μM), subsequent experiments were performed with
doses of 5 and 10μM.

3.2. EPI Dose-Dependently Modulates Mitochondrial RONS
Production. Next, we assessed whether EPI, in the absence
or presence of the complex III inhibitor, AA, impacted mito-
chondrial superoxide emission. There was a significant main
effect of dose and AA on rates of MitoSOX oxidation

(P < 0:001) and a significant dose × AA interaction
(P < 0:001; Figure 2(a)). Post hoc comparisons revealed that,
in the absence of AA (-AA), 5μM EPI significantly increased
and 10μM EPI decreased rates of MitoSOX oxidation com-
pared to CTRL, respectively (CTRL: 8:1 × 10−5 ± 0:2 × 10−5;
5μM EPI: 10:7 × 10−5 ± 0:2 × 10−5; 10μM EPI: 3:8 × 10−5 ±
0:2 × 10−5 RFU/sec-1/cell-1; P < 0:001). The associated raw
traces of MitoSOX oxidation are displayed in Figure 2(b).
In the presence of AA (+AA), 5μM EPI did not affect Mito-
SOX oxidation versus CTRL (5μM EPI: 35:4 × 10−5 ± 0:4 ×
10−5 vs. CTRL: 35:4 × 10−5 ± 0:5 × 10−5 RFU/sec-1/cell-1;
Figure 2(a)). Whereas 10μM EPI significantly increased
rates of MitoSOX oxidation compared to CTRL (10μM
EPI: 44:4 × 10−5 ± 0:6 × 10−5 vs. CTRL: 35:4 × 10−5 ± 0:5 ×
10−5 RFU/sec-1/cell-1; P < 0:001). In contrast to mitochon-
drial ROS, cellular ROS production (not mitochondrial-spe-
cific) was not altered by EPI (Figure 2(c)).

After revealing that rates of mitochondrial ROS produc-
tion were dose-dependently altered by EPI, we assessed
whether EPI modified intracellular NO levels. There was a
significant main effect of EPI dose on NO levels (P = 0:003;
Figure 2(d)). Whilst 5μM EPI did not impact NO levels,
10μM EPI significantly increased NO levels compared to
CTRL conditions (10μM EPI: 4:38 × 105 ± 0:43 × 105 vs.
CTRL: 3:02 × 105 ± 0:18 × 105 AU; P = 0:010).

3.3. EPI Dose-Dependently Impacts the Expression of Genes
Associated with Energy Metabolism in Vascular Endothelial
Cells. Next, experiments were performed to resolve whether
EPI alters the expression of genes linked with mitochondrial
function and the antioxidant response. First, the expression
of genes associated with mitochondrial function and remod-
elling was quantified. In the presence of EPI, there was a
significant main effect of dose (P = 0:018) and time
(P = 0:002) on dynamin-related protein 1 (DRP1) expres-
sion (Figure 3(a)), but no significant dose × time interaction.
At 48h, 10μM EPI increased DRP1 expression 2.2-fold
compared to CTRL (P = 0:010). There was a significant main

Table 1: List of antibodies and dilutions used.

Antibody
Primary ab
dilution

Secondary ab
dilution

AMPKα 1 : 1000 1 : 5000

pThr172-AMPK 1 : 1000 1 : 10,000

p44/42 MAPK 1 : 2000 1 : 10,000

pThr202/Tyr204-p44/42
MAPK

1 : 2000 1 : 10,000

eNOS 1 : 500 1 : 5000

pSer1177-eNOS 1 : 500 1 : 5000

All antibodies were purchased from Cell Signaling Technology.
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Figure 1: EPI does not cause vascular endothelial cell toxicity.
HUVECs were treated with 0-20 μM EPI for 24 h. Data are means
± SEM, representative of 3 independent repeats with 3 replicates
of each condition. Statistical significance was tested for by one-
way ANOVA and Dunnett’s test for multiple comparisons. α

Significant main effect of dose (P < 0:05).
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effect of dose on mitofusin-2 (MFN2) mRNA expression in
cells treated with EPI (P = 0:035; Figure 3(b)). With 10μM
EPI, MFN2 expression increased 1.6-fold versus CTRL
(P = 0:024). Parkin, PGC-1α, and transcription Factor A
(TFAM) expression were not changed by EPI treatment
(supplementary Figure 3).

Genes associated with the antioxidant response were also
quantified. There was no effect of dose or time on catalase or
eNOS expression. There was a significant main effect of
dose and time on NADPH oxidase 4 (NOX4) expression
in EPI-treated cells, respectively (P = 0:015 and P = 0:006).
A significant main effect of dose was found on nuclear
factor-erythroid factor 2-related factor 2 (NRF2) expression
in the presence of EPI (P < 0:001; Figure 3(c)). NRF2
mRNA abundance was increased 1.5-fold and 1.6-fold with
5 and 10μM EPI over 48 h when compared to CTRL
(P = 0:015 and P = 0:001, respectively). There was a signifi-
cant effect of time on superoxide dismutase 2 (SOD2)
expression in EPI-treated cells only (P = 0:024). Multiple

comparisons revealed that SOD2 expression was increased
2.1-fold in the presence of 10μM EPI versus CTRL condi-
tions (P = 0:040; Figure 3(d)).

3.4. EPI Does Not Alter Mitochondrial Bioenergetics of
Vascular Endothelial Cells. Having described that EPI influ-
ences RONS production and alters the expression of genes
linked with mitochondrial function, we tested whether EPI
impacted vascular endothelial cell bioenergetics. There was
no significant main effect of EPI on rates of basal respiration,
maximal respiration, ADP phosphorylation, proton leak,
spare respiratory capacity (%), or coupling efficiency,
regardless of dose (Figures 4(a), 4(b), and 4(d)). There was
no effect of EPI on the relative contribution of ATPglyc or
ATPox to total ATP production (Figure 4(c)).

3.5. EPI Rapidly and Transiently Promotes ERK1/2
Phosphorylation, Independent of AMPK. To further probe
how EPI might alter vascular endothelial transcription, we

αδ; α×δ
5×104

4×104

3×104

2×104

1×104

0

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

-AA

CTRL

EPI 5
 μM

EPI 1
0 μ

M
CTRL

EPI 5
 μM

EPI 1
0 μ

M

RF
U

/s
ec

/c
el

l

+AA

(a)

1.5

1.0

0.5

0.0
0 600 1200 1800

Time (s)

CTRL
CTRL+AA
EPI 5 μM

EPI 10 μM
EPI 5 μM+AA

EPI 10 μM+AA

RF
U

/s
ec

(b)

δ1.5

10

5

0

RF
U

/c
el

l

-AA

CTRL

EPI 5
 μM

EPI 1
0 μ

M
CTRL

EPI 5
 μM

EPI 1
0 μ

M

+AA

(c)

6×105

4×105

2×105

0

M
ed

ia
n 

FL
1-

A
Fl

ou
re

sc
en

ce
 in

te
ns

ity

CTRL

EPI 5
 μM

EPI 1
0 μ

M

⁎

(d)

Figure 2: EPI dose-dependently impacts RONS production in vascular endothelial cells. (a) MitoSOX oxidation rates in HUVECs after 24 h
EPI treatment and 30 minutes incubation with or without antimycin A. (b) Mean unnormalized MitoSOX oxidation rates measured in 30-
second intervals over 30 minutes. (c) CellROX oxidation in HUVECs after 24 h EPI treatment. (d) DAF-FM oxidation in HUVECs after 24 h
EPI treatment measured by flow cytometry. Data aremeans ± SEM of three independent repeats with two replicates per treatment. Statistical
significance was tested for by a two-way ANOVA, with dose and antimycin A as factors: αSignificant main effect of dose; δSignificant main
effect of AA (P < 0:05). ∗P < 0:05 and ∗∗∗∗ P < 0:0001.
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Figure 3: Gene expression responses following acute EPI treatment. HUVECs were treated with 0, 5, and 10 μM EPI over 48 h and lysed for
analysis of gene expression. (a) DRP1, (b) MFN2, (c) NRF2, and (d) SOD2. Data are means ± SEM from 3 independent experiments.
Statistical significance was determined by a two-way ANOVA, with dose and time as factors. Multiple comparisons were performed
by Dunnett’s test to determine differences in gene expression between conditions.αMain effect of dose; βmain effect of time (P < 0:05);
∗P < 0:05, ∗∗P < 0:01.
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Figure 4: EPI does not directly affect mitochondrial bioenergetics. (a) Mitochondrial bioenergetics of HUVECs following 24 h EPI
treatment (0, 5, and 10 μM). (b) Coupling efficiency of oxidative phosphorylation. (c) Relative contribution of glycolytic (grey) and
oxidative (black) ATP production to total ATP production rates. (d) Representative trace of oxygen consumption rates during the
mitochondrial stress test. Data from 3 independent experiments are normalised to cell number (1 × 103) and presented as mean ± SEM.
Max: maximal respiratory capacity; PL: proton leak; ADPphos: ADP phosphorylation; SRC: spare respiratory capacity.
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assessed cell signalling responses. There was a significant
main effect of treatment and time on AMPKα phosphoryla-
tion, and a significant interaction was observed (P < 0:001;
Figure 5(a)). Multiple comparisons revealed a significant
increase in phosphorylation of AMPKα at Thr172 at 1 h ver-
sus 0 h (1 h: 2:24 ± 0:22 vs. 0 h: 1:16 ± 0:19AU) under CTRL
conditions (P = 0:006), whereas there was no significant
change at 1 h versus 0 h with EPI (1 h: 0:47 ± 0:18 vs. 0 h:
1:16 ± 0:19AU; P = 0:157). However, there was a significant
reduction in AMPKα phosphorylation in the presence of
EPI vs. CTRL at 15min (EPI: 0:35 ± 0:09 vs. CTRL: 1:86 ±
0:29AU; P < 0:001) and 1h (EPI: 0:47 ± 0:18 vs. CTRL:
2:24 ± 0:22AU; P < 0:001). From 3 hours, AMPKα phos-
phorylation was suppressed under both CTRL (3 h: 0:54 ±
0:08 and 24 h: 0:39 ± 0:12AU vs. 0 h: 1:16 ± 0:19AU; P =

0:046 and P = 0:026, respectively) and EPI conditions com-
pared to 0 h CTRL (3 h: 0:37 ± 0:08 and 24 h: 0:46 ± 0:08
AU vs. 0 h: 1:16 ± 0:19AU; P = 0:021 and P = 0:049,
respectively).

Whilst ERK1/2 is not involved in the AMPK/eNOS
pathway, ERK1/2 signalling may mediate the effects of EPI
upon vascular endothelial cell adaptation. There was no
main effect of treatment (P = 0:141), but a significant main
effect of time on ERK1/2 phosphorylation (P = 0:039;
Figure 5(b)). There was also a significant treatment × time
interaction (P = 0:003). Under CTRL conditions, despite a
2.7-fold increase in ERK1/2 phosphorylation at 3 h, ERK1/
2 phosphorylation did not reach significance vs. 0 h until
24 hours posttreatment (0 h: 0:38 ± 0:10 vs. 24 h: 1:15 ±
0:28AU; P = 0:022). By contrast, EPI significantly increased
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Figure 5: EPI rapidly and transiently activates ERK1/2 signalling whilst blunting AMPK phosphorylation. (a) AMPKα phosphorylation at
Thr172 in HUVECs in the absence (-; clear bars) or presence (+; green bars) of EPI. (b) ERK1/2 phosphorylation at Thr202/Tyr204. (c)
eNOS phosphorylation at Ser1177. (d) Representative images of n = 3 independent experiments. Cell lysates were analysed by SDS-PAGE
and western blotting with indicated antibodies. Data are expressed as means ± SEM; ∗P < 0:05 and ∗∗∗ P < 0:001. αSignificant main
effect of treatment; βsignificant main effect of time (P < 0:05).
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ERK1/2 phosphorylation at 15 minutes vs. 0 h (15min:
1:09 ± 0:24 vs. 0 h: 0:38 ± 0:10AU; P = 0:035), which was
retained at 1 hour (1 h: 1:22 ± 0:07 vs. 0 h: 0:38 ± 0:10AU;
P = 0:011), before returning to baseline levels, suggesting a
change in the temporal pattern of ERK1/2 activation because
of EPI treatment. Indeed at 1 hour, EPI treatment resulted in
a 4.3-fold increase in ERK1/2 phosphorylation vs. the 1-hour
untreated CTRL (P = 0:007).

To help establish whether the increase in NO brought
about by EPI was associated with eNOS signalling, phos-
phorylation of eNOS at Ser1177 was assessed. There was
no main effect of treatment or time on eNOS phosphoryla-
tion (Figure 5(c)), and no treatment × time interaction
(P = 0:100). At 3 h, eNOS phosphorylation was ~60% higher
under CTRL versus EPI conditions (CTRL: 0:38 ± 0:10 vs.
EPI: 1:15 ± 0:28AU, P = 0:038).

4. Discussion

Resolving EPI’s mode of action using vascular endothelial
cells as a model will help to establish its potential efficacy
in mitigating vascular endothelial dysfunction. We tested
the hypothesis that EPI would attenuate ROS production,
augment NO bioavailability, and enhance mitochondrial
function of human vascular endothelial cells in culture. We
demonstrated that physiologic EPI concentrations, dose-
dependently, modulated RONS emission but did not directly
impact mitochondrial respiration. Moreover, the influence
of EPI on RONS emission was associated with the induction
of increased NRF2 mRNA, which appears downstream of
rapid and transient activation of ERK1/2 signalling. Taken
together, our findings expand our knowledge of EPI’s mech-
anisms of action in vitro and support further research on EPI
as a potential instigator of cell signalling and NRF2 activa-
tion in vivo.

4.1. EPI Dose-Dependently Modulates RONS Production. We
have demonstrated that EPI dose-dependently altered mito-
chondrial ROS production in the absence of additional cell
stress. Increased rates of mitochondrial ROS production,
reported in the presence of 5μM EPI, support previous
observations that 10 days EPI supplementation increased
superoxide production in mitochondria isolated from mouse
heart tissue [46]. However, EPI has been demonstrated to
increase the abundance and/or activity of key antioxidant
proteins like SOD2 and catalase [47, 48], and even to blunt
hydrogen peroxide production from isolated brain and heart
mitochondria [49]. In a similar way, we found that higher
(10μM) EPI concentrations attenuated the rate of mito-
chondrial superoxide production, which may have been
facilitated by increased SOD2 mRNA expression. Clearly
and importantly, the divergent effects of EPI on mitochon-
drial ROS production suggest EPI’s biological effects are
highly dose-dependent. Future studies should investigate
whether EPI alters the vascular endothelial cell redox state
and its potency relative to known mitochondrial antioxi-
dants. Another noteworthy observation of this study was
that EPI did not rescue AA-induced increases in mitochon-
drial ROS. Likewise, one recent study reported that 1μM EPI

did not lower the production of mitochondrial superoxide in
HUVECs after acute AA treatment [39], suggesting limited
efficacy for EPI in overcoming conditions associated with
elevated mitochondrial ROS production in the vascular
endothelium of humans.

The potent stimulation of NO production by EPI is well
documented in studies using cell, human, and rodent models
[30, 32, 33, 50, 51], although not all studies have reported
such effects [52]. Here, we demonstrated that EPI increased
NO levels of vascular endothelial cells, suggesting that EPI
may be a promising strategy to combat vascular endothelial
dysfunction, although further in vivo studies are required.
Previous studies have attributed elevated NO bioavailability
in the presence of EPI to increased phosphorylation of eNOS
at Ser177 [31, 32, 53–55]. Given that we and others demon-
strated unaltered eNOS phosphorylation in the presence of
EPI [39], it is plausible that arginase inhibition is the poten-
tial mechanism by which EPI increases NO production in
HUVECs [56]. However, this may not be the case in arterial
endothelial cells, where EPI has repeatedly been shown to
enhance eNOS Ser1177 phosphorylation [31, 32, 55].

4.2. EPI Augments the Expression of Genes Linked with the
Antioxidant Response and Mitochondrial Dynamics. To bet-
ter understand the mechanisms underlying EPI’s effects, we
measured the transcription of genes associated with energy
metabolism. Interestingly, EPI increased the expression of
genes DRP1 and MFN2, respectively, involved in mitochon-
drial fission and fusion. Despite these effects, EPI did not
impact mitochondrial respiration, at least over 24 hours.
Although mitochondrial dynamics can influence respiratory
function [57, 58], the lack of functional change in mitochon-
drial respiration could reflect a discord between cellular
mRNA responses and changes in protein abundance and/
or function. Regardless of dose, EPI significantly enhanced
NRF2 mRNA expression. This observation implies that the
induction of NRF2 mRNA by EPI is independent of RONS
production and might be explained by alternate factors that
control NRF2 activity, like phosphorylation status [59].
Although posttranslational modifications of NRF2 were not
assessed in this study, flavonoids have been shown to promote
NRF2 phosphorylation and nuclear translocation [60, 61],
which would likely increase the transcription of genes related
to the antioxidant response, including NRF2 itself.

4.3. EPI Does Not Impact Mitochondrial Respiration. One
important finding was that EPI does not impact mitochon-
drial respiration of HUVECs in culture. Although mito-
chondria have been proposed as potential molecular targets
of EPI [62], previous investigations into EPI’s effects on
mitochondrial respiration have produced equivocal results.
Some studies have demonstrated increased state 3 respira-
tion in rat beta cells following EPI (0.1-2.5μM) supplemen-
tation [63, 64], whilst others have reported inhibited or
similar state 3 respiration rates with EPI, depending on the
substrates provided [65]. One recent study using HUVECs
as a model reported that 0.1 and 1μM EPI treatment over
2 hours had a negligible impact on mitochondrial respira-
tion [39]. Taken together, our data suggest that the
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therapeutic potential of EPI is not related to changes in
mitochondrial respiration in vascular endothelial cells,
pointing to alternate potential mechanisms of action like cell
signalling activation [66].

4.4. EPI Rapidly and Transiently Activates ERK1/2
Signalling. The serine/threonine protein kinase AMPK is
an important regulator of mitochondrial adaptation [67].
However, in our studies, AMPK phosphorylation was sup-
pressed in the presence of EPI for up to 1 h and was without
further impact for up to 24 h, compared with controls. Sup-
porting these findings, 2 h EPI treatment (1μM) did not
affect the phosphorylation of AMPK in HUVECs [39].
Although EPI is capable of augmenting AMPK activity in
liver and muscle tissue and several cell types [68–70], it
seems that AMPK activation is not responsible for the ther-
apeutic actions of EPI in HUVECs in culture. Together with
the negligible impact of EPI on mitochondrial respiration,
the data suggest that EPI does not directly alter vascular
endothelial cell energy metabolism, in vitro.

Importantly and of novelty, we reported that ERK1/2
phosphorylation at Thr202/Tyr204 was rapidly and tran-
siently increased by EPI in HUVECs (Figure 5). This finding
supports recent observations of increased ERK1/2 signalling
after 0.1μM EPI treatment in bovine coronary artery endo-
thelial cells that may be associated with phosphorylation of
CaMKII [51]. How EPI promotes ERK1/2 phosphorylation
in vascular endothelial cells remains to be described, but cur-

rent evidence suggests EPI activates ERK1/2 by binding to
the G-protein coupled estrogen receptor (GPER) on the cell
membrane [51, 71]. Given the induction of NRF2 mRNA
expression found in this study, it would be useful to deter-
mine if acute activation of ERK1/2 signalling by EPI is a pre-
requisite for the induction of NRF2 activity.

4.5. Limitations. We did not use metabolites of EPI that
appear in circulation after ingestion of EPI-containing foods
or supplements in vivo [72]. Therefore, the present findings
may have limited translational potential. In our study, we
harnessed HUVECs to model the vascular endothelial cell,
and given that these cells are venous in nature, their physiol-
ogy may not well reflect the arterial vasculature or microcir-
culation where EPI potentially exerts its beneficial effects.
Further, not all assays were performed in the presence of
additional cell stress. Thus, caution should be taken when
translating our findings to human populations with disease.
Finally, posttranslational modifications of NRF2, which are
critical for regulating NRF2’s activity, were not measured
in this study.

5. Conclusion

We demonstrate that physiologic EPI concentrations do not
impact mitochondrial respiration but do modulate reactive
oxygen and nitrogen species production and the signalling
and transcriptional activities of vascular endothelial cells
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Figure 6: Schematic of the potential mechanisms by which EPI exerts its biological effects in vascular endothelial cells. Solid arrows/lines
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in vitro. EPI’s dose-dependent alteration of reactive oxygen
and nitrogen species production occurred in parallel with
enhanced and transient ERK1/2 signalling and the induction
of NRF2 mRNA (Figure 6). The fact that EPI enhanced
NRF2 mRNA expression regardless of dose implies that
alterations in reactive oxygen and nitrogen species produc-
tion alone were not solely responsible. Further research will
help clarify the precise way in which EPI promotes ERK1/2
signalling and NRF2 activity and its relevance to vascular
endothelial health in vivo.
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