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Abstract: Variational Mode Decomposition (VMD) is widely used for inspection purposes. The initial
parameters are usually set manually, which is a limitation of this technique. In this paper, a method
to automatically select these parameters through a combination of Singular Value Decomposition
(SVD) and Improved-VMD (IVMD) is proposed. VMD is applied multiple times with a varying
K-value parameter. The original signal and its sub-signals arising from VMD decomposition are
all subjected to SVD. An index representing the relevance between sub-signals and the original
signal is obtained by comparing eigenvalues, which are calculated by SVD. The result shows the
effectiveness of VMD with different initial K-value parameters. SVD is then further applied to the
VMD result for the selected K-value parameter to obtain Shannon entropy, which can be used in
the detection and classification of corrosion on the underside of the rail. Comparing with current
energy-based methods, the Shannon entropy obtained by IVMD-SVD has the advantage of reducing
environmental interference to obtain more uniform energy results. The proposed method can improve
the effectiveness of VMD for the impact response signal. The classification of underside corrosion of
rails can be realised according to the results obtained from the proposed method.

Keywords: impact response signal; VMD; SVD; rail; corrosion inspection; machine learning

1. Introduction

Rail corrosion is one of the common faults occurring in plain line railway tracks and has
attracted notable attention in recent years [1]. Herndndez [2] evaluated the corrosion risk,
according to chemical simulation of corrosion formation and propagation at the rail base.
Visual inspection techniques are commonly used in corrosion inspection processes [3—6].
However, most inspection focuses on the accessible surfaces of the rail. There are limitations
in the current inspection techniques, especially in regard to corrosion of the underside of
the rail. For example, it is difficult to detect corrosion through 3D visual inspection where a
mapping laser and optical scanner cannot be mapped, due to the location of the fault as it is
below the rail and not accessible. Additionally, electromagnetic methods can be limited in
extracting information from the underside of the rail where their signals are unable to pass
through the whole rail body, due to the skin effect [7] and other attenuation.

In this paper, acoustic inspection is a non-invasive technique that can be used widely
and provides accurate results. Acoustic techniques have been used in modern railway
inspection, but only in limited applications, such as bearing and gearbox monitoring,
in which there has been rapid development in recent years due to the capabilities and
effectiveness of acoustic techniques in detecting bearing and gearbox faults in the early
stages [8-10]. The sound generated from wheelsets passing through rail discontinuities,
such as crossing noses and insulted rail joints (IR]s), can be related to their structural
performances, which can potentially be used in fault detection. However, it is challenging
to obtain data from vehicles passing damaged rail discontinuities for safety reasons, and,
therefore, faulty track pieces have been in laboratory conditions for this kind of inspection.
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The signal generated by hammer impact is used for the analysis (impact response signal).
This approach has previously been used for classifying faults on railway tracks [11].

Signal decomposition techniques have commonly been used in signal processing
methods [8,12-15]. Variational Mode Decomposition (VMD) is a self-adaptive signal
de-composition method, proposed in 2014 [16], which has been adopted in inspection
applications, particularly for rotational machines. Wang [17] proposed an improved VMD
method, by combining VMD with a deep convolutional neural network (DCNN), for the
detection of rolling bearing element faults, which enhanced the visibility of the fault feature
and, therefore, improved the accuracy of diagnosis. Yi [18] considered the feasibility of
extracting fault features from turbine bearings through a combination of VMD and particle
swarm optimisation (PSO). This application has the advantage of being able to decompose
complicated signals, compared to conventional Empirical Mode Decomposition (EMD).
The authors in [19] proposed an application combining VMD and permutation entropy to
identify different fault types within bearings with high classification accuracy. Miao [20]
considered the application of inspection encoder signals from gearboxes. The signals were
decomposed using an advanced VMD method combined with a sparse representation to
extract fault information. Miao’s proposed method both suppressed noise and enhanced
fault impulses. Considering these works, VMD is often applied to signals emanating from
rotational machines. However, the features from impact response signals are somewhat
different. Considering the feasibility of impact response signals decomposed using VMD,
Yang [10] demonstrated that VMD is able to decompose impact response signals from
railway tracks with high classification accuracy. However, the faults considered did not in-
clude corrosion. This paper, therefore, used VMD for the application of acoustic inspection
to the detection and classification of corrosion on the underside of rails.

Previous research indicates that the number of decomposition modes (K-value) is a
significant parameter in the performance of VMD. Current research in the selection of the
optimal K-value for VMD generally focuses on two aspects. Firstly, the relationship between
the original signal and sub-signals, which is known as Instinct Mode Function (IMF).
Yang [21] applied kurtosis to develop an indicator for the effect of the relationship on the
performance of the VMD algorithm. The improved VMD was then used to detect the early
failure of bearings through chatter signals. Li [22] proposed “envelope kurtosis maximum”
as an indicator to select the optimal K-value, again by evaluating the relationship between
the original signal and sub-signals.

The second popular approach for K-value selection considers the Initial Centre Fre-
quency (ICF) parameter. This approach is suitable for periodic signals, for which it is easy
to calculate a centre frequency [16,23]. Jiang [24] proposed an ICF-guide VMD algorithm
for extracting minor damage information from bearings.

However, impact response signals are different from the rotational signals considered
in the above references. Impact response signals are impulse signals with gradually de-
creasing energy, differing from rotational signals, which contain a periodic peak in the time
domain. Hence, kurtosis-based methods are generally not considered suitable, because of
their dependence on the distribution of peaks within the signal. Additionally, it is generally
difficult to calculate the centre frequency of non-periodic signals, such as impact response
signals. Hence, current techniques for determining K-value are not suitable for selecting
the optimal K-value for impact response applications. Therefore, it is necessary to seek an
algorithm to select the most suitable decomposed modes for VMD when applied to impact
response signals.

In this paper, based on the impact response signal, an improved algorithm for detecting
corrosion in the underside of rails is proposed. The algorithm combines VMD, Singular
Value Decomposition (SVD), and Shannon entropy techniques. The proposed IVMD-5VD
method, through its SVD component, automatically selects the initial parameters for the
VMD element. SVD is then further applied to the VMD result to obtain Shannon Entropy,
which is used in the detection and classification of underside corrosion. The classification
result from a Radial Basis Function (RBF) neural network indicated that the proposed
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method could be used in diagnosing underside corrosion. A flow chart describing the
structure of the proposed algorithm is provided in Figure 1.

Impact response acoustic

signal
C Y T |
| Selected optimal K-value |
. based on the second derivate
Conventional VMD |
of the fitted curve through
|  the fitted hrough | |
rocessing SVD result
| P g5 l |
l Obtain entropy based on the |
I results processed by VMD |- |
| and SVD with chosen K-value IVMD-SVD '
|________+____ _____________
Improved VMD

Y

Build dataset of entropy
results

!

Build up RBF neural network

Y

Fault diagnosis

Figure 1. Flow chart indicating underside corrosion diagnosis method.

2. Decomposition Methodology
2.1. Brief Introduction to VMD

VMD is a self-adaptive and non-recursive signal decomposition method based on
Wiener filtering, Hilbert transform, and frequency distortion [21]. The principle of the
VMD algorithm is to decompose components of a signal into different adaptive bands
for the development of a generalised Wiener filter. The input signal is decomposed into
limited bandwidth modes, 1y, with each sub-signal tightly focused around its own central
frequency. The bandwidth of each mode can be evaluated by solving the constrained
variational problem shown in Equation (1) [21].

i (B 160 +4) om0y 0

s.t.Zuk = f
k

where ¢ is the Dirac distribution; k is the number of the mode. uy, are the set of all modes;
and wy is the centre frequency of each mode.

In order to remove constraints on Equation (1), the constrained variational problem
can be solved considering a Lagrangian multiplier A(t) and a quadratic penalty term «,
which results in Lagrangian £, as shown in Equation (2):

z({uk},{wk},m:a;{y\ 0 [(8(6) + ) » (1) exprer H%}+ 156~ Zux(o) 13 o
+<A<t>,f<t> - Zuk<t>>

k

In order to obtain an optimal solution of the constrained variational model, the Alter-
native Direction Method of Multipliers (ADMM) is applied to solve Equation (2). Hence,
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the mode u; and centre frequency wy can be updated, as shown in Equations (3) and (4),
respectively:

uZH — argminL({u?jkl}, {ugrkl}, {wl’“l},/\”) 3)
U

w,’(’“ b argminL({ufH}, {ufjkl}, {w;gkl},)t”) 4)
Ug

Decomposition to identify all sub-signals (IMFs) can be achieved through continuous
iteration as presented in Equation (5):

A A A
F(@) = it () + A4

N 41
”kn+ (w) = 2
1420 (w —w})

©)

2.2. Brief Introduction to SVD

Singular Value Decomposition (SVD) is an algorithm based on an orthogonal matrix
transformation. The matrix A(m x n), when processed by SVD, can be decomposed into
three matrices with different dimensions, as shown in Equation (6):

A=UsvT (6)

where U = [ug,up,...,u;] € R™™ and V = [v1,0p,...,01] € R™". The notation S
is a diagonal matrix with n singular values with descending order, showing as S =
[diag(A1, Ay, ..., Ay),0] € R™*". Singular values from S contain the information from
the original signal.

2.3. IVMD-SVD

The proposed IVMD-5VD method uses an algorithm to automatically select the
number of modes (K-values) to be used in the decomposition of the impact response signal.
The result, decomposed by the selected modes, is processed to obtain the Shannon entropy,
which is then used in further analysis.

The appropriate K-value is selected through consideration of the relationship between
IMFs (sub-signals) and the original signal. First, SVD is used to obtain eigenvalues from
both the IMFs and the original signal. Then, the ratio between eigenvalues of each IMF and
the original signal is calculated. This ratio is then used as an index in the evaluation of the
relationship between sub-signals and the original signal. This evaluation process selects
the optimal K-value, and, hence, the number of modes to be used in the decomposition
of the response signal. The process for selecting the optimal K-value is described in the
following section.

The mechanism by which the optimal K-value is selected is summarised in Figure 2.

The steps indicated in Figure 2 are as follows:

Step 1: Sub-signals, IMF;(t), are obtained by performing VMD using a range of
K-values from 2 to N, ie., VMD (i=1,2,...,N).

Step 2: The IMFs calculated from each VMD are combined to form Hankel matrix
representations [25] of each sub-signal using a phase—space reconstruction process, as
shown in Equation (7).

IMF;y IMF; IMF,;
IMF; IMF;3 .. IMFy,_q
X = : . . @)
IMFi(m*”JFl) IMPi(m7n+2) s IMEF;

where m is the sample number of the signal, and # is the dimension of the matrix.
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Step 3: Eigenvalues are calculated for each Hankel matrix IMF representation using
SVD, as shown in Equation (8).

A 0 0
SVD(IMF;(t)) = 0o . 0 (8)
0 0 Ay
/ [nitialise parameters /-"'f
."lr. *
|' For K=2:N |
/ Initialise VMD f
I_/r’_ h by
| Phase space reconstruction on IMF, (1)
. : /
Find all cigcnvalucs* -
/’/.- .\\\

Choose m eigenvalue by SyD(IMF, (1)) 35 (2, 2,4,,) |
| A, =SVD(IMF, (1))
A, =SVD(P(1))
=K r—ln) v

v

K

Relevance = Z

..\_\I

HE=H

N

n
j'ff
=1

Ui

e

{r J'(Relevance)- f. | '(Relevance) <0 1

T

Ka_p.rmm.n’ = ./;+1(2.) |

;

END

4

e

Figure 2. Process of selecting optimal K-value.
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At this stage, the original signal is also converted to a Hankel matrix representation
and SVD is applied, as shown in Equation (9):

A0 O
SVD(F)) = | o . o ©)
0 0 A

The {Ratio},; defined in Equation (10), represents the relationship between each sub-
signal and the original signal.

Ratz’olz Rati013 TN RatiolN
Zk: Ass ) . .
{Ratio}, = ( ]k 1M Ratioyy Ratiops Ratioyn (10)
ijl /\] Rati033 .
Rationn

As the number of IMFs and, thus, ratios vary with K-value, the mean ratio (Relevance)
is calculated to allow direct comparison. Relevance is a single measure of the relationship
between the original signal and all of its sub-signals. It is generated for each K-value. This
is shown in Equation (11):

N
Relevance = Y _{ratio};/i (11)
i=2

Step 4: The Relevance obtained from different K-values can be plotted to form a curve.
The second derivative is applied to this curve in the evaluation of the optimal K-value. The
optimal value is selected at the point of inflection above a specified threshold. An example
is presented in Section 3.

2.4. Feature Extraction

Having used the IVMD approach to identify the optimal K-value, a process using the
selected K-value is then applied to achieve fault detection. VMD is performed using the
selected K-value to generate IMFs and SVD is then applied to generate eigenvalues for
each IME, followed by filtering to generate Shannon entropy, which is then used for fault
detection. The process of using the eigenvalues is as follows.

Each eigenvalue is divided by the sum of the eigenvalues for a particular IMF to obtain
a set of ratio results. The first / eigenvalues are selected, based on evaluating the value of
the ratio against a threshold a to eliminate redundant information. The process is shown in
Equation (12):

! 8
2 Nijl Y A > (12)
j=1 j=1
where g is the total number of eigenvalues. The total value of first | eigenvalues is then

used to calculate the Shannon entropy which is used in fault detection. By defining

!
pij = )tl-]- /Y Aij, the Shannon entropy of each IMF is calculated, using Equation (13):
j=1

I
E; =) pijlogpi (13)
j=1

The Shannon entropies from all IMFs can be combined, as shown in Equation (14), for
use in fault diagnosis:
E = [Ey,Ey, ..., Ef (14)
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3. Experimentation and Analysis
3.1. Laboratory Testing

In order to demonstrate the decomposition methodology described above, and to
investigate how impact response signals vary in the presence of underside corrosion, a
series of laboratory-based experiments were undertaken. A National Instrument (NI)
device was used to collect the signals. Different depths of artificial defects were created in
two rail sections, based on a railway maintenance standard [26], while a third rail section
was kept as a healthy rail sample. Details of the artificial defects are shown in Figure 3 and
described in Table 1.

Microphone

Fault A P — mpact position

Figure 3. Geometry of artificial corrosion.

Table 1. Artificial corrosion geometry.

Depth Area Position
0.1 mm .
6 mm X 6 mm 50 mm from the rail end
0.75 mm

The impact response acoustic signal generated by striking the healthy rail sample in
the location indicated in Figure 3 is shown in the time and frequency domains in Figure 4.

7 r 0.3 T T r T T

i 0.25}

o
[}
T

Amplitude
ja]
o

Accerlaration (m/ Sz)

0.1F
1 oosf
=20 L L L 1 1 0 “ul.JM\u.]. L L
0 0.25 0.5 0.75 1 1.25 1.5 0 3] 10 15 20 25
Time(s) Frequency(kHz)

Figure 4. Acoustic impact response signal.

As described above, the IVMD-SVD algorithm was used to decompose the experi-
mental signals. Initially K-values of 3 to 12 were used in the analysis.

To demonstrate the procedure for the selection of the optimal K-value, a curve obtained
from the relationship between IMFs generated using IVMD-SVD and the original signal
was used, and the curve is shown in Figure 5.
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0.6
0.5
g 04t x4
= J Y0.353688 |
5 \ X5
i} | Y 0.283878
& 0.3 | )
a \l
X6 |
0.2F Y 0.254357 55 ‘ E
Y 0.21271 ‘\
0.1 s a

3 4 5 6 7 8 9 10 11 12
K value

Figure 5. Optimal K-value selection from the acoustic impact response signal.

The curve in Figure 5 shows a general downtrend. If the K-value was large, the
sub-signals from the higher numbered decomposed modes were generally less relevant to
the original signal. Conversely, if the K-value was too small, useful information might be
excluded. The preferred K-value occurred at the first point of significant inflection in the
curve. This was identified by observing the sign and the difference in values of the second
derivative of the curve. The difference in values should be at least 0.05, as identified in [16].

Using the example in Figure 5, the values of the second derivative at K-value 5, and
K-value 6 were 0.0403 and —0.0121, respectively. The product of these two values was
negative. The absolute difference was larger than 0.05. Hence, the optimal K-value was
chosen to be K = 6.

3.2. Result Analysis

The result of Shannon entropy was then obtained using IVMD-SVD with the selected
K-value. The process was applied to 30 measurements of each of the three rail conditions
presented in Figure 6. The blue, red, and yellow bars represent healthy, 0.1 mm, and
0.75 mm depths of fault, respectively.

IMF

Figure 6. Entropy results from IVMD-SVD.

In order to evaluate the effectiveness of IVMD-SVD it was compared to the energy
ratio, which is a classic energy-based method [27]. The approach is based on the sum of the
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energy from the original signal considered in the frequency domain. The energy ratio was
calculated as the ratio between each IMF and the total energy, as shown in Equation (15):

E; = YIIMEH)[(i=1,2,...,m)
E= L (15)
i=1
pi = Ei/E

The comparison of results from the Shannon entropy obtained from IVMD-5VD and
the energy ratio methods are shown in Figure 7.

3 — . . . . . 0.6
2.5 i 0.5
I

L i £ 04

§ o
g1s 7203

o =

= £
1 = 0.2
0.5 0.1

1 2 3 4 5 6
IMF

IMF

Figure 7. Comparison of results obtained using the IVMD-SVD and energy ratio methods.

The statistical parameter Distinction degree (D) was used to evaluate the uniformity
of the distribution of energy-based results obtained for the same rail conditions. Firstly,
considering each rail condition, each entropy in each IMF (E;;) was divided by the mean
value of all entropies to obtain a set of ratios (R;;), using Equation (16):

Rij = Eij/ (Z Ez’j/z) (16)
=1

where z is the number of signals obtained from a particular rail condition.

Secondly, the absolute difference (D;) between each two adjacent ratios (R;; and Ry +1))
was calculated. Then, the distinction degree (D) was obtained by summing these differences
(D;) as in Equation (17):

Z

D=y

Rij — Rj(j+1) ‘ (17)
=1

Finally, the set of distinction degrees including all IMFs was represented as Equation
(18):
D = [Dy,D,,...,Dj] (18)
A comparison of the distinction degree obtained using the two energy-based methods
is shown in Figure 8.
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— | VMD-5VD Entropy

Energy ratio

Distinction degree

oSN O

0.75mm

0.1mm

1 Health Track condition

Figure 8. Comparison of distinction degrees between two methods for acoustic signals.

Figure 8 shows that, for all health conditions, the average distinction degree obtained
from the entropy result was lower than that obtained using the energy ratio. This indicated
that the entropy results processed using IVMD-5VD were more uniform than those ob-
tained using the energy ratio method. The proposed method was, therefore, considered
more robust against environmental interference, such as that caused by a change of impact
location or force.

In order to further validate the effectiveness of the IVMD-SVD algorithm, the evalua-
tion process was repeated using vibration-based impact response signals. A vibration-based
impact response signal is another impact response signal closely related to acoustic signals.

The optimal K-value selection from the vibration-based impact response signals is
shown as Figure 9. The products of the second derivatives at K-value 5 (—0.038) and
K-value 6 (0.019) were negative. The absolute difference of these two second derivatives
was 0.057 which was larger than the threshold of 0.05. This indicated that the optimal
K-value was 6, which was the same as the conclusion drawn for the acoustic version of the
impact response signal.

03F T r T T T T
x4

Y 0.30366

025} \ X6

s \ Y 0.22998

Y 0.24791
02t \

s,
X7
Y 0.192821

Relevance

3 4 5 6 7 8 9 0 11 12
K value

Figure 9. Comparison of distinction degrees between two methods for vibration signals.

The distinction degree results from IVMD-SVD entropy and energy ratio are presented
in Figure 10.
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— [VMD-$VD Entropy

04 ] ——[nergy ratio

Distinction degree

0.75mm

0.Imm

1  Health
Track condition

Figure 10. Comparison of distinction degrees between two methods for acoustic signals.

The result for the vibration-based signal presented in Figure 10 was similar to that
obtained from the acoustic signal. The distinction degree values calculated from IVMD-
SVD were lower than those calculated from the energy ratio. Therefore, it was further
demonstrated that IVMD-SVD produced more uniformly decomposed signals, and that
there was consistency when applied to both acoustic and vibration-based signals. Hence,
it was considered that the approach was suitable for reducing environmental effects in a
range of recorded signals.

To illustrate the effectiveness of appropriately selecting the K-value on fault classifica-
tion, an index representing the capacity for identification (Cy) of different rail conditions was
calculated. The index could be described as a subtraction of the maximum and minimum
differences from the mean value of entropy [10], as given in Equation (19).

Cmax i = max|g - Eij|
Cmin i = min|Cj — Ejj| (19)

K
Cr = 'El|cmax i — Cmin i|
i=

where the C; is the mean value of IMF;(t). The identification capacity index results for each
K-value, generated for the acoustic impact response signals, are shown in Figure 11.

Capacity for identification

T T T

0.15 —

0.1t
Ck

0.05 ¢

3 4 5 6 7 8 9 10 11 12
K-value

Figure 11. Capacity for identification.

The values presented in Figure 11 represent the differences in signals obtained from
different rail conditions, considered by K-value used in the processing. The effect of the
signal decomposition was better when the value of C; was higher. The figure shows that
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the highest value of Cj corresponded to K = 6. This further demonstrated that the selected
K-value was the most appropriate in differentiating the different rail conditions.

This section demonstrated that the proposed method was suitable for the differentia-
tion of rail conditions. The following section explores how the approach can be used to
develop a fault classification system, based on acoustic impact response signals.

3.3. Fault Classification

To evaluate the effectiveness of the proposed algorithm for fault classification, the
experimental signals were decomposed using VMD with different K-values (3 to 12). The
entropy results from the different VMD applications were used as the dataset for an RBF
neural network, which was used to identify the health condition of the rail.

Example results for classification accuracy and the confusion matrix are presented in
Figures 12 and 13. The results shown in the figures are for the selected K-value, K = 6.

R220.94157 —#— Truevalue

—e— Predictive value

Predictive Sample

Figure 12. Accuracy of RBE.

Confusion matrix

100.0%

12.5%

True lable
0.75mm 0.Imm Health

100.0%

100.0% 100.0%

12.5%

Predicted lable

Figure 13. Confusion matrix of RBF.

The two figures show that, for the selected K-value, both healthy and faulty rails could
be classified with over 94% accuracy. This suggested that acoustic impact response signals
obtained from different rail conditions could be effectively classified using the proposed
IVMD-SVD method. All healthy and all 0.75 mm samples were identified correctly. One
0.1 mm sample (12.5%) was incorrectly identified as healthy. However, this was considered
to be due to the small size of the defect, which might also have been too small to diagnose
using existing approaches.
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The accuracy results for the different K-values (3-12) are shown in Table 2 and
Figure 14.

Table 2. Accuracy results for different K-values.

K-Value Accuracy
3 0.625
4 0.931
5 0.921
6 0.949
7 0.936
8 0.873
9 0.875
10 0.845
11 0.791
12 0.764

=
o

Mean value
=
N

=
[

3 4 5 6 7 8 9 10 11 12
K value

Figure 14. Accuracy results for different K-values.

The figure suggests that it was difficult to classify signals when K = 3, which had only
around 60% accuracy. The highest accuracy was achieved when K =4 to 7 with the absolute
greatest accuracy occurring for K = 6.

Hence, it was demonstrated that the value of K = 6, automatically selected by the
proposed IVMD-5VD process, had the greatest effectiveness in decomposition of acoustic
impact response signals for use in fault classification. Furthermore, it was demonstrated
that underside corrosion of the rail could be effectively diagnosed using the IVMD-SVD
method.

4. Conclusions

In this paper, a novel algorithm IVMD-5SVD) was proposed to automatically select
the initial parameters for use in the VMD algorithm. Shannon entropy obtained from the
proposed IVMD-5VD was used to categorise the significance of rail base corrosion.

The statistical parameter distinction degree was used to compare the uniformity of
distribution of both energy-based results obtained for particular rail conditions. Compared
with the energy ratio results, the proposed entropy-based method was more robust re-
garding environmental interference, such as that caused by a change of impact location or
force.

A further index, based on maximum and minimum differences from the mean value,
was applied to evaluate the capacity for identification of different track conditions. It



Appl. Sci. 2023, 13, 942 14 0of 15

demonstrated that using the proposed method to select the K-value allowed effective
identification of track conditions and faults from acoustic impact response signals.

An RBF neural network was then used for fault classification. The results showed that
the proposed method could effectively classify signals from different rail conditions and
that the effectiveness was maximised when using the automatically selected K-value.

In conclusion, this paper describes a new method (IVMD-5SVD) and demonstrates
its particular effectiveness in extraction of features from impact response signals. The
proposed method efficiently selects the optimal K-value to be used in the initialisation of
the VMD algorithm, thereby maximising its effectiveness for the decomposition of impact
response signals. Furthermore, the results obtained from the algorithm were shown to be
effective in the identification and classification of different extents of rail corrosion.

Additionally, some work needs to be completed in the future. Firstly, the size of the
dataset needs to be expanded. Secondly, the current algorithm is only specifically used
for the impact response signal. The effectiveness of the proposed method on other signals
needs further research.
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