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1  |  INTRODUC TION

High-latitude stream systems are hotspots of biodiversity, support-
ing unique biological communities with taxa highly adapted to the 

often-harsh environmental conditions (Tolonen et al., 2018). A major 
driver of biodiversity in these systems is environmental heteroge-
neity, driven by variability in different water sources and flow paths 
(e.g. rainfall runoff, snowmelt, glacial meltwater and groundwater; 
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Abstract
Long-term records of benthic macroinvertebrates in high-latitude streams are es-
sential for understanding climatic changes, including extreme events (e.g. floods). 
Data extending over multiple decades are typically scarce. Here, we investigated 
macroinvertebrate community structural change (including alpha and beta diversity 
and gain and loss of species) over 22 years (1994–2016) in 10 stream systems across 
Denali National Park (Alaska, USA) in relation to climatological and meteorological 
drivers (e.g. air temperature, snowpack depth, precipitation). We hypothesised that 
increases in air temperature and reduced snowpack depth, due to climatic change, 
would reduce beta and gamma diversity but increase alpha diversity. Findings showed 
temporal trends in alpha diversity were variable across streams, with oscillating pat-
terns in many snowmelt- and rainfall runoff-fed streams linked to climatic variation 
(temperature and precipitation), but increased over time in several streams supported 
by a mixture of water sources, including more stable groundwater-fed streams. Beta-
diversity over the time series was highly variable, yet marked transitions were ob-
served in response to extreme snowpack accumulation (1999–2000), where species 
loss drove turnover. Gamma diversity did not significantly increase or decrease over 
time. Investigating trends in individual taxa, several taxa were lost and gained during a 
relative constrained time period (2000–2006), likely in response to climatic variability 
and significant shifts in instream environmental conditions. Findings demonstrate the 
importance of long-term biological studies in stream ecosystems and highlight the 
vulnerability of high-latitude streams to climate change.
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Heino et al., 2013). Environmental conditions in these high-latitude 
streams are responding to climate change and associated hydro-
meteorological trends—such as increased rainfall runoff in north-
ern hemisphere high latitudes (Arnell & Gosling,  2013; Zhang 
et al., 2013). There is, however, limited understanding of how these 
long-term environmental changes affect biotic communities inhabit-
ing streams (Hotaling et al., 2017).

Climate-driven alterations in water sources and flow paths in high-
latitude streams present a serious threat to various elements of bio-
diversity these environments support (Heino et al., 2020). Reductions 
in glacier ice and snowpacks, and subsequently, meltwater from these 
sources, will likely drive homogenisation of environmental conditions 
across streams (Hotaling et al., 2017). Without meltwater, streams in 
high-latitude systems would be dominated by groundwater and rainfall 
runoff, especially considering future predicted increases in precipitation 
(Arnell & Gosling, 2013). This in turn would potentially have significant 
effects on biodiversity at local and regional scales (see Cauvy-Fraunié 
& Dangles,  2019; also see Muhlfeld et al.,  2020). Within meltwater-
fed streams, specialist taxa, have evolved to cope with the harsh en-
vironmental conditions present in snowmelt and glacial meltwater-fed 
streams. This loss of specialist taxa adapted to these cool, high-latitude 
climates (i.e. glacial-meltwater specialists, such as the chironomid genus 
Diamesa; Milner & Petts, 1994) will lead to a turnover of species with a 
gain of generalist taxa. As the community composition of these streams 
is variable prior to environmental change, the loss of these specialist 
taxa and gain of more generalist taxa will be stream-specific, leading to 
variable changes in alpha-diversity (Cauvy-Fraunié & Dangles, 2019), 
including potential increases (Milner et al.,  2017). The loss of these 
unique taxa in certain streams would also homogenise communities at 
the regional scale as environmental conditions become more similar, 
leading to a reduction in beta-diversity and gamma-diversity (Hotaling 
et al., 2019; Jacobsen et al., 2012). The increase in generalist riverine 
taxa as the environmental conditions become more homogenised oc-
curs as they can expand their ranges, out-compete specialists and per-
sist in these altered conditions (Culp et al., 2022; Lento et al., 2022). 
The increasing incidence and severity of extreme events (e.g. floods) 
alongside changes in water sources will also limit the type of taxa that 
can persist under the new environmental conditions. All in all, these 
changes would mean that high-latitude stream system communities 
are more sensitive to further environmental change (Birrell et al., 2020), 
with reduced taxonomic (beta and gamma) and functional diversity 
leading to potential reductions in an ecosystem's ability to respond to 
climate change (Mori et al., 2013).

Long-term data offer the unique opportunity to understand 
inter-annual variation related to different biotic and abiotic factors, 
inter-decadal ecological responses to environmental drivers (e.g. cli-
mate change), as well as determining the trajectory of change in eco-
logical communities (Kuebbing et al., 2018). Indeed, to understand 
the potential effects of climate change on the different components 
of high-latitude stream biodiversity, these long-term datasets are 
essential. However, long-term ecological datasets (>10 years) are 
uncommon (Milner et al.,  2016), especially in high-latitude stream 
systems across the globe.

Here, we investigated long-term trends in high-latitude stream 
macroinvertebrate communities using a unique 22-year time se-
ries (1994–2016) across 10 streams in Denali National Park, Alaska. 
Three hypotheses were tested:

H1. Alpha-diversity will increases in some streams 
reflecting climatological and meteorological changes 
that would allow colonisation by generalist taxa from 
the regional species pool.

H2. Beta-diversity will decrease over time due to 
increased homogeneity in environmental conditions 
across the study region.

H3. Gamma-diversity will decline over time, as 
driven by the loss of specialist macroinvertebrate taxa 
and increased domination of generalists.

2  |  METHODS

2.1  |  Study region

Denali National Park, in central Alaska (Figure  1) covering nearly 
2.5 million ha, is one of the largest National Parks in the United States. 
The streams in this pristine subarctic region are dominated by glacial 
plains, braiding channels and permafrost, thereby supporting a wide 
diversity of habitats and organisms. Streams in the study region flow 
northwards eventually becoming tributaries of the Yukon River.

Studies were conducted in the same 15 m reach across the 10 
streams for 22 years (1994–2016) in Denali National Park (Figure 1). 
Each of the streams was fed by different water sources (snowmelt, 
glacial meltwater, groundwater and rainfall runoff). These flow 
pathways influence their flow regimes and physical and chem-
ical conditions (Table  1). Water sources were identified by use of 
maps, water temperature records and personal observations. Some 
streams were dominated by individual water sources (e.g. Igloo 
Creek [snowmelt] and Little Stoney Creek [groundwater]) and some 
through a combination of water sources (e.g. Highway Creek [snow-
melt and rain runoff]).

2.2  |  Climate, meteorology and other 
physical conditions

Large-scale climatological and regional-scale meteorological data 
were collated for the study period (1994–2016). Phases of the Pacific 
Decadal Oscillation (PDO), a recurring ocean–atmosphere climate 
pattern variation with a periodicity of approximately 3–7 years, were 
used as a key climatological variable for analyses. Changes in the PDO 
reflect variation in the sea surface temperature and atmospheric 
pressure in the Pacific Ocean, which in turn drive shifts from a posi-
tive (below average winter temperature and above average winter 
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precipitation) to a negative (above average winter temperature and 
below average winter precipitation) phase (Mills & Walsh,  2013). 
PDO data were collated from the National Oceanic and Atmospheric 
Administration (NOAA; https://www.ncei.noaa.gov/pub/data/cmb/
ersst/​v5/index/​ersst.v5.pdo.dat). Meteorological data, daily pre-
cipitation (mm), snowfall (mm), snowpack depth (mm), minimum, 
maximum and observed air temperature (°C) were collated from the 
McKinley Park Station (63°39′05.5′′ N, 148°48′58.4′′ W; 630 m a.s.l; 
Appendix S1 in the Supplementary Materials).

The bottom component of the Pfankuch Index was used to assess 
the stability of the sampling section of the stream channel, which in-
corporates attributes like rock angularity, percent stable materials, de-
gree of substrate packing and erosion and deposition (Pfankuch, 1975). 
The higher the score, the more unstable the channel is. Gradient was 
measured using a clinometer over a specified distance.

2.3  |  Macroinvertebrate sampling.

Six replicate macroinvertebrate samples were collected every year 
within August using a 0.093 m2 Surber sampler with a 335-μm mesh 

net. The 15 m sampling section was always upstream of the Park Road 
by at least 20 m. Samples were preserved with 70% ethanol prior to 
sorting in the laboratory and taxa were identified to genus level for 
Ephemeroptera, Plecoptera and Trichoptera and to family for other 
groups using Merritt and Cummins (2009) and Voshell  (2002). The 
six samples were identified individually in their entirety and then an 
average density per m2 was determined for each stream.

2.4  |  Statistical analysis

All analyses were completed in R 4.2.1 (R Core Team, 2022). Data 
and scripts are openly available (DOI 10.5281/zenodo.7648859).

Climatological and meteorological variables were summarised 
over the year preceding a given sample period, that is, September 
1993 to August 1994 for the 1994 sample. The methods of sum-
marising data depend on the variables: (i) cumulative annual (i.e. 
sum of daily values) and coefficient of variation (CV) for precipita-
tion (PRCP) and snowfall (SNOW); (ii) mean and standard deviation 
for maximum daily temperature (TMAX), minimum daily tempera-
ture (TMIN), temperature at the time of observation (TOBS), annual 

F I G U R E  1  The study region and sample site locations across Denali National Park. (a) Denali National Park (green polygon) in Alaska, 
USA. (b) Locations of sample sites.

(a) (b)
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snowpack depth (SNWD) and winter snowpack depth (SNWD_win-
ter). Variables were then condensed using principal components 
analysis (Abdi & Williams, 2010), using the ‘prcomp’ function in the 
‘stats’ package. All variables were initially centred around zero and 
equally scaled as raw data were on different scales (by an order of 
magnitude in some cases). We selected principal components (PCs) 
that significantly explained variation in the meteorological data 
using a broken stick model (Peres-Neto et al., 2005).

A range of indices were calculated to summarise macroinver-
tebrate community diversity. For each combination of sample 
year and site, we calculated alpha-diversity (αdiv) as the Shannon-
Weaver Index (Shannon & Weaver, 1963) using the ‘diversity’ func-
tion in the ‘vegan’ package. We calculated beta-diversity (βdiv) across 
streams for each year with an abundance-based index, Bray–Curtis 
(Baselga, 2017), using the ‘beta.multi.abund’ function in the ‘betapart’ 
package (Baselga & Orme, 2012). This method also partitions total 
βdiv into balanced variation (βdivb; the individuals of some species in 
one site are substituted by the same number of individuals of differ-
ent species in another site) and gradient-abundance (βdivg; individu-
als are lost from one site to the other). We also calculated the change 
in beta-diversity (βdiv) between streams for pairwise comparisons of 
years (e.g. 1994–1995, 2002–2003) using the ‘ecopart.multi’ function 
in the package ‘ecopart’ (Tatsumi et al.,  2022). This method parti-
tions the change in βdiv (Δβdiv) into components, reflecting either 
homogenisation (decrease in βdiv) or differentiation (increase in βdiv) 
through species gains and losses. Finally, gamma-diversity (γdiv) was 
calculated using the Shannon–Weaver Index for macroinvertebrate 
data pooled across streams for each year (i.e. sum of abundance for 
all taxa across all streams for each year), again using the ‘diversity’ 
function in the ‘vegan’ package.

Macroinvertebrate indices were related to meteorological 
and climatological variables, in the form of PCs (see above), using 

generalised additive models (Wood, 2011) with the ‘gam’ function 
in the ‘mgcv’ package (Wood, 2017). Model structures are described 
in Appendix  S2 in the Supplementary Materials. Stepwise back-
wards selection was used to select the most parsimonious model 
with the greatest level of deviation explained and generalised cross-
validation score (Wood & Augustin, 2002).

To identify species contributing to the patterns in macroin-
vertebrate indices we investigated variation in macroinvertebrate 
community structure over time with non-metric multidimensional 
scaling (NMDS) using the ‘metaMDS’ function in the ‘vegan’ pack-
age (Oksanen et al., 2022). Distance matrices were computed using 
Bray–Curtis indices across two axes, and a Wisconsin double-rank 
standardisation was used to account for the effects of rare and com-
mon taxa. For the NMDS, we included taxa that occurred at >10 
sample units (i.e. greater than 10 occurrences across 220 sample 
points [10 streams × 22 years]), which resulted in species richness 
being reduced from 48 to 30 (Appendix  S3). This filtering proce-
dure was completed to prevent rare taxa (i.e. 1 Taeniopteryx was 
recorded in a single sample, across all sites and years) from biasing 
the results of subsequent analyses (Gauch, 1982). To provide statis-
tical support for the NMDS analyses we used a negative binomial 
multivariate generalised linear model (M-GLM) using the ‘manyglm’ 
function in the ‘mvabund’ package (Wang et al., 2012). We tested for 
differences in community structure across streams and over time as 
well as investigated the relationships between community structure 
and PCs. Finally, to quantify the levels of community variation over 
time we calculated the perimeter and area of the convex hull for the 
different sites in NMDS space using the function ‘convhulln’ in the 
‘geometry’ package (Roussel et al., 2022), such that relatively small 
perimeters and areas would indicate low variation in macroinverte-
brate communities and vice versa. Dunn tests (Dunn,  1964) were 
then used to assess whether the median area and perimeter of the 

TA B L E  1  Physical characteristics of the study streams in Denali National Park.

Stream Order Predominant water source
Riparian vegetation 
proximity

Stability 
(Pfankuch index 
value)

Gradient 
(%)

Catchment 
area (km2)

Moose Creek 3 Mixed (all except glacial 
meltwater)

Close border High (27) 2.1 13.1

Little Stoney Creek 2 Groundwater Close border High (25) 1.4 1.4

Highway Creek 2 Snowmelt and rain runoff Absent Low (42) 7.6 7.6

East Fork Toklat tributary 
(EFTT)

2 Snowmelt and rain runoff Close border Moderate (33) 3.8 67.2

Tattler Creek 1 Snowmelt and rain runoff Close border High (30) 4.7 4.7

N4 1 Snowmelt and rain runoff Absent Low (40) 17.4 3.4

Igloo Creek 2 Snowmelt Close border High (31) 2.8 13.5

Sanctuary River 3 Snowmelt and minor 
glacial meltwater

>10 m Moderate (37) 4.4 97.5

Hogan Creek 2 Groundwater Close border High (25) 2.0 8.9

Savage River 4 Snowmelt and minor 
glacial meltwater

>10 m Moderate (38) 2.6 89.4

Note: Data are from 1995 and adapted from Conn (1998). Stream order refers to Strahler order, where 1 is a headwater stream prior to any 
confluence. Stability is the bottom component of the Pfankuch Index (Pfankuch, 1975).
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convex hulls for different streams were significantly different be-
tween their stability states – high, moderate or low (Table 1).

3  |  RESULTS

3.1  |  Climatological and meteorological patterns

Over the period studied (1994–2016), climate and meteorology ex-
hibited significant variation. Meteorological and climatic data were 
summarised on the first three PCs explaining a total of 72.5% of 
variation (Table S4). PC1 (36.1%) was dominated by air temperature 
(maximum, minimum and observed), which was negatively loaded, 
PC2 (24.3%) was dominated by snowfall and snowpack depth (snow-
fall, annual and winter snowpack depth) which were negatively 
loaded, and PC3 (12.1%) was dominated by variation in temperature 
(maximum, minimum and observed) which were positively loaded 
(Table S4). PCs varied significantly over the study period (Figure 2) 
and several years experienced extremes in meteorological and cli-
matological conditions, particularly during 2003 and 2011–2012, 
where some of the most extreme negative and positive values of 
PC1 and PC2 were measured.

3.2  |  Changes in macroinvertebrate diversity 
across scales

Over the study period, 48 taxa were collected in the 10 streams, of 
which Chironomidae and Simuliidae were dominant, but only iden-
tified to family. Of the mayflies, Baetis was dominant followed by 
Epeorus and Cinygmula. Baetis was found in all streams over most 
of the 22-year period. Of the stoneflies, Capnia was dominant fol-
lowed by the nemourids Podmosta and Ostrocerca. Trichoptera were 

less numerous by an order of magnitude than mayflies and stone-
flies, with Glossoma and Ecclisomyia being the most abundant. The 
streams that supported the most taxa were Hogan Creek, Tattler 
Creek and Little Stoney Creek whereas the streams with the lowest 
diversity were N4 and Highway Pass Creek. Oligochaetae were only 
found at one site for 1 year (Table S3).

Macroinvertebrate αdiv was highly variable, both between 
streams and over time (GAMαdiv: Adjusted R2 =  .52, n = 198; Scale 
estimate = 0.09). Three streams displayed significant and directional 
temporal variation in αdiv over time (Hogan, Moose and East Fork 
Toklat tributary [EFTT]), with others showing high but inconsistent 
inter-annual variation (Figure 3). Of these three, both stable streams, 
Hogan Creek and Moose Creek, displayed positive trends over time, 
whereas EFTT, a less stable stream, showed more variation over the 
time series. However, temporal variation in Hogan Creek and Moose 
Creek and all other stable streams was not significantly related to 
PC1 (Table S2b). However, temporal variation of αdiv in the less sta-
ble streams (Sanctuary, Savage and Highway), was significantly re-
lated to PC1 (Table S2b).

The values of βdiv across these stream systems were high (0.74–
0.93), as was temporal variation (total and components) (Figure 4a). 
This variation in βdiv, however, was not significantly related to year 
or PCs in a linear or non-linear manner, with all models failing 
to explain a significant amount of variation. Although temporal 
trends were not significant, patterns were observed in Δβdiv, in 
particular, subtractive processes (homogenisation and differenti-
ation; Figure 4b) were dominant over the time series, particularly 
during 1999–2000, indicating species losses caused the observed 
changes in βdiv.

Macroinvertebrate γdiv was variable over time (GAMγdiv: Adjusted 
R2 =  .25, n = 22; Scale estimate = 0.06). Although a significant re-
lationship between γdiv and the sample year was not found, γdiv was 
significantly related to PC1—with high annual values of PC1 (lower 

F I G U R E  2  Temporal variation in PCs over the study period. For a complete description of variable loadings for each PC refer to Table S4. 
PC1 positive values indicate low air temperature and negative values high air temperature, PC2 positive values indicate high snowfall and 
snowpack depth and negative values low snowfall and snowpack depth, and PC3 positive values indicate high variation in air temperature 
and negative values indicate low variation in air temperature. Note the significant shift in PC1 and PC2 between 1999 and 2000, specifically 
the high values of PC1 (high air temperature) and the low values of PC2 (high snowfall and snowpack depth) in 2000. PC, principal 
component.
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air temperature) related to high values of γdiv (F1,22 = 7.93, p = .011; 
Figure 5b).

3.3  |  Variation in macroinvertebrate 
community structure

Macroinvertebrate community structure was highly variable and the 
variation was driven by overall shifts in the abundance of different 
specific invertebrate taxa (Figure 6a). In general, there is a shift in 
community composition over time in all streams (Figure 6c), which 

appears somewhat related to climate and meteorology (Figure 6d) 
with similar patterns shown in NMDS gradient plots. Nevertheless, 
an M-GLM (R2 = .2, Likelihood Ratio Test = 51.92, p = .018) showed 
that only the stream and the year, independently, were related 
to the overall community structure (w9,188  =  1815.1, p < .001; 
w1,187 = 585.1, p < .001; respectively).

Streams showed generally different temporal patterns in com-
munity composition (Figure  6b), yet there were some consistent 
patterns, with 2007 consistently appearing as an outlier across 
streams due to the high relative abundance of Diptera (Simuliidae 
and Chironomidae; Figure  6a). Although the overall differences in 
convex hull areas between streams with different levels of environ-
mental stability were not significant (Kruskal–Wallis rank-sum test: 
χ2 = 2.9, df = 2, p = .24), the convex hull area between streams with 
low and high channel stability was significant (Dunn test: z = −1.7, 
p = .045).

Individual taxa, as well as driving changes in the overall commu-
nity structure (in the case of more abundant organisms), were lost and 
gained in streams over the study period (Figure 7). Capnia, Doddsia 
and Ostrocerca were not observed in any streams prior to 2003 and 
increased in both occurrence and abundance across streams be-
tween 2003 and 2016. Conversely, Despaxia and Rhithrogena were 
only collected before 2001 and 2006, respectively, and have not 
been collected in any stream since those years.

4  |  DISCUSSION

Macroinvertebrate communities varied significantly in space and 
time across Denali National Park during the study period 1994–
2016. The αdiv of macroinvertebrate communities exhibited differ-
ent temporal patterns across different streams. Communities in 
streams with stable channels and less variable flow regimes (more 
dominated by groundwater) exhibited more constancy over time, 
with some increases in macroinvertebrate diversity (Hogan Creek 
and Moose Creek). In comparison, in streams with less stable flow 
regimes (i.e. snowmelt and glacial meltwater-fed streams) mac-
roinvertebrate communities exhibited higher variation over time, 
related to changes in climatological and meteorological conditions 
(air temperature, precipitation and snowpack depth). Differences in 
macroinvertebrate communities between streams, and their variable 
relationships with climate and meteorology, led to high but continu-
ally shifting levels of βdiv. Turnover in βdiv in both space and time was 
primarily driven by gains and losses of taxa. In particular, taxa were 
lost in response to high air temperature and a large accumulated 
snowpack in 2000 leading to extremely high spring stream flows. At 
the regional scale, γdiv was also variable and was highest during peri-
ods with lower air temperature. However, we acknowledge that the 
sampling points represent a low proportion of streams relative to the 
large area of catchments in Denali National Park. Nevertheless, our 
unique long-term study (>20 years) highlights the temporal variabil-
ity of macroinvertebrate communities across streams supported by 
different water sources and demonstrates the importance of spatial 

F I G U R E  3  Temporal variation in αdiv across the 10 streams. 
Grey lines represent the 3-year moving average. Lines with colour 
for Hogan Creek, Moose Creek and EFTT indicate significant 
relationships from generalised additive models with the dark 
grey ribbon representing standard errors. EFTT, East Fork Toklat 
tributary.
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variation in macroinvertebrate communities for the persistence of 
aquatic biodiversity in high-latitude catchments (Lento et al., 2022).

Long-term trends in αdiv across the streams provided some sup-
port for H1, with two streams exhibiting increases in alpha diversity 

over the time series. Patterns in αdiv in streams have been investi-
gated in detail across high-latitude streams (Culp et al., 2019; Heino 
et al.,  2013; Lento et al.,  2022; Tolonen et al.,  2018), including 
those in Denali National Park (Milner et al.,  2006, 2016; Windsor 

F I G U R E  4  Change in βdiv over time. 
(a) Temporal variation in βdiv across all 
sites. The dotted line indicates balanced 
variation. The dashed line indicates 
gradient abundance. (b) Partitioning 
of Δβdiv change between years, either 
positive or negative, resulting from losses 
or gains of taxa. Black points indicate 
Δβdiv.
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F I G U R E  5  Variation in γdiv. (a) Temporal variation in γdiv (measured using the Shannon-Weaver Index). The grey line is the 3-year rolling 
average value. (b) Relationship between γdiv and PC1 (inverse of air temperature; see Table 1). Grey shading represents a 95% confidence 
interval. PC, principal component.
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et al., 2017). The long-term trends observed here match those ob-
served in shorter studies, with flow and morphological stability re-
sponsible for differences in diversity (Brown et al., 2006; Docherty 
et al., 2018; Milner et al., 2020) and persistence of this diversity over 
time (Milner et al., 2006). Two stable streams, dominated by ground-
water, supported an increase in αdiv over time, unrelated to climate or 
meteorology. For these streams, the increase in αdiv may be a result 
of an increase in the diversity of flow paths and thus organic matter 
contributions in these more stable streams, allowing a more diverse 
macroinvertebrate community to persist (Crossman et al.,  2023). 
Macroinvertebrate diversity in streams with greater contributions 
from meltwater, both snow and glacial ice, were related to climatic 
and meteorological variables—especially air temperature and snow-
pack depth, which act as a useful proxy for meltwater contributions 
to streamflow in alpine streams (Windsor et al., 2021). As reported in 
shorter-term studies (Milner et al., 2010), our findings indicate that 
water source dynamics play an extremely important role in affecting 
the biodiversity within high-latitude streams.

Differences in the relationships between αdiv, climate and me-
teorology across streams were manifested in high levels of βdiv 

and γdiv. There was, however, no support for H2, as there was no 
consistent decrease in βdiv over time. Over the time series, periods 
of climatological and meteorological instability (i.e. 1999–2006 ex-
hibited high levels of inter-annual variation), were related to the 
highest βdiv values. Thus, stream environmental conditions across 
streams, supported by different water sources, are likely most 
different under variable or extreme climate or meteorology (Rolls 
et al., 2016), and, as a result of environmental heterogeneity across 
streams, there are large differences in species composition. Under 
current climate conditions, high inter-annual variability in mete-
orological conditions promotes high βdiv, yet with further change 
(i.e. increases in mean air temperature or net alterations in total 
precipitation as expected over time with climate change) such vari-
ation may lead to reduced macroinvertebrate diversity and a loss 
of specialist taxa.

Species loss was the main driver of macroinvertebrate diversity 
patterns in this long-term study. Both homogenisation (loss of βdiv) and 
differentiation (gain of βdiv) driven by subtraction contributed signifi-
cantly across the study—in particular species loss occurred between 
1999 and 2000 as a result of the heaviest snowfall and snowpack 

F I G U R E  6  Macroinvertebrate community structure. (a) NMDS results for samples (red stars) with species influences (grey circles). 
(b) NMDS results separated by stream, with points represented as sample years. Convex hulls are drawn for the sites using the ‘chull’ 
function. (c) Samples coloured by year. (d) Samples coloured by PC1 value (higher values = lower air temperature). NMDS, non-metric 
multidimensional scaling; PC, principal component.
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depth observed, combined with warm air temperatures in spring, 
resulting in high-flow events in early 2000 (Milner et al., 2006). Two 
notable taxa lost during the 2000s were Rhitrogena and Despaxia. 
Rhithrogena are typically reliant on fast-flowing conditions and well-
oxygenated waters and are consequently sensitive to climate change 
(Hauer et al., 1997). The possibility exists that reduced cool-water 
inputs into streams and increases in water temperature may have led 
to their loss from streams over the time series. The leuctrid stonefly 
Despaxia, on the other hand, may have been lost due to the semi-
voltine life cycle of this genus (2 years; Richardson, 2001) preventing 
resistance and resilience against extreme events such as the spring 
floods in 2000. A number of taxa also colonized streams through-
out the study. Specifically, winter stoneflies (Capnia, Doddsia and 
Ostrocerca) increased in both presence and abundance. This is po-
tentially a result of climate change-driven reductions in meltwater 
contributions or low oxygen concentrations in summer favouring or-
ganisms that complete their lifecycles in winter and spring (Stewart 
& Anderson,  2010) and those which have resilient life cycles (e.g. 
have a long diapause such as Ostrocerca; Harper, 1990). Definitive 
statements on the drivers of species losses and gains, however, re-
quire further studies focusing on understanding the habitat prefer-
ences, diet, traits and ultimately the ecological niche of these taxa, 

to better understand the mechanisms underlying both the species 
losses and gains.

At the regional scale, there was a general turnover in macroin-
vertebrate communities between years, providing limited support 
for H3, with no clear loss in specialist taxa or domination by gener-
alists over the 22 years, as might have been expected with climate 
change. Furthermore, regional macroinvertebrate diversity, γdiv, did 
not exhibit a net increase or decrease over the 22-year study pe-
riod. However, γdiv was significantly related to air temperature, with 
the highest diversity observed under lower temperatures. Firstly, 
over the duration of the study (1994–2016), there were consistent 
increases in mean air temperature across interior Alaska (Overland 
et al., 2019). Although γdiv did not clearly decline, the negative re-
lationship between air temperature and γdiv indicates that if tem-
peratures are to continue to increase then it is likely that γdiv would 
decrease in the future. Secondly, there are predicted increases in ex-
treme air temperature and precipitation events for Alaska (Bennett 
& Walsh, 2015), posing a significant future threat to regional diver-
sity in these high-latitude streams. Thus, although as of this moment, 
there is no marked decline in diversity observed at large scales, it 
is likely that further climatic change may bring about reductions in 
stream macroinvertebrate biodiversity across all scales.

F I G U R E  7  Temporal patterns in the 
abundances of macroinvertebrate taxa 
gained (Capnia, Doddsia, Ostrocerca) 
or lost (Despaxia, Podmosta and 
Rhithrogena) across sites over the time 
series (1994–2016). Colours indicate 
different streams. Note the different y-
axis scales for different taxa.
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5  |  CONCLUSION

Long-term studies on macroinvertebrates in streams are rare, yet by 
exploring trends from 1994 to 2016 we show they are extremely 
valuable for understanding relationships between community struc-
ture and climatic variation. We demonstrate a strong relationship 
between macroinvertebrate communities (diversity and structure) 
and climatological and meteorological variables, particularly air tem-
perature and snowpack depth. This informs ecological theory of the 
dominant role of physical variables in stream ecosystems. Although 
significant reductions in beta and gamma diversity over time were 
not observed in the streams of Denali National Park as suggested by 
ecological theory, the relationships identified in this study provide 
useful insights into the biodiversity changes that may occur under 
future climate change.
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