

University of Birmingham

The Voting algorithm is robust to various noise
models
Aishwaryaprajna; Rowe, Jonathan E.

DOI:
10.1016/j.tcs.2023.113844

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Aishwaryaprajna, & Rowe, JE 2023, 'The Voting algorithm is robust to various noise models', Theoretical
Computer Science, vol. 957, 113844. https://doi.org/10.1016/j.tcs.2023.113844

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. May. 2024

https://doi.org/10.1016/j.tcs.2023.113844
https://doi.org/10.1016/j.tcs.2023.113844
https://birmingham.elsevierpure.com/en/publications/0242c023-866c-4ec8-b848-c7b653136ba9

Theoretical Computer Science 957 (2023) 113844
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The Voting algorithm is robust to various noise models ✩

Aishwaryaprajna a,∗, Jonathan E. Rowe a,b

a School of Computer Science, University of Birmingham, Birmingham, United Kingdom
b The Alan Turing Institute, London, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 June 2022
Received in revised form 16 March 2023
Accepted 21 March 2023
Available online 29 March 2023
Communicated by B. Doerr

Keywords:
Voting
Recombination
Noise

A simple Voting algorithm has been shown to be effective at solving the OneMax problem
in the presence of high levels of posterior noise in our previous research. In this paper, we
extend this analysis to several different noise models, and show that the Voting algorithm
remains robust in all of them. We consider the prior noise model and the partial evaluation
of randomly selected bits. The Voting algorithm has superior runtime bounds on these
problems compared to other published algorithms. We also introduce a new variant of
partial evaluation, and further consider the simple model when a comparison-based oracle
produces incorrect results with a fixed probability.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In black box optimisation, we have a search space (typically {0, 1}n) and an oracle. The oracle evaluates elements of the
search space, using a hidden objective function. The goal is to find an optimal element of the search space, as evaluated by
the oracle, with as few queries as possible [1]. A common benchmark problem class used in theoretical studies is OneMax,
in which the oracle returns the bitwise similarity (or, equivalently, Hamming distance) to a hidden target string. This can
be solved trivially in O (n) queries by starting with some initial string, and then evaluating the effects of flipping each
bit, one at a time. Less trivially, a method originating with Erdős, but derived independently in the context of black box
optimisation in [2], shows that �(n/ ln n) queries will suffice — one simply evaluates this number of random strings, and
this gives enough information to deduce the target.

The situation is made considerably more challenging when the oracle’s response is affected by noise. In the case of
posterior noise, the value returned by the oracle is the true value plus a random variate from some probability distribution.
One obvious approach here is to resample each string several times, and use the average as an estimate of the true value.
If the noise comes from a centred Gaussian distribution, with variance σ 2, then it can be shown that σ 2 ln T samples are
required for each string to guarantee accurate estimates across T different strings [3]. Thus, for OneMax with posterior
Gaussian noise, we get an overall runtime of O (σ 2n), using the Erdős method. It has been proposed [4] that the median
provides a better estimate than the mean when re-sampling noisy fitness functions. However, for additive Gaussian posterior
noise, the advantage only holds when the variance is very small, i.e. 0 < σ < 0.9538.

The compact genetic algorithm (cGA) is shown to handle posterior noise with (large) polynomial runtime bounds [5].
A better asymptotic runtime for OneMax with posterior Gaussian noise is proved for the Paired Crossover Evolutionary
Algorithm (PCEA) which just uses crossover, and no mutation [6].

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.

* Corresponding author.
E-mail addresses: aishwaryprajna@gmail.com (Aishwaryaprajna), j.e.rowe@cs.bham.ac.uk (J.E. Rowe).
https://doi.org/10.1016/j.tcs.2023.113844
0304-3975/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.tcs.2023.113844
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.113844&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:aishwaryprajna@gmail.com
mailto:j.e.rowe@cs.bham.ac.uk
https://doi.org/10.1016/j.tcs.2023.113844
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
In the case of prior noise, the oracle evaluates the value of a string which has been mutated with some probability. The
performance of the hill-climber (1 + 1)EA on OneMax with prior noise was examined by an early theoretical result [7],
showing that super-polynomial time is needed when the probability of mutating even a single bit is ω(log(n)/n). In [8] it
is shown that if the fitness is estimated by sampling each string 3 times, then the runtime reduces to O (n log n). Using the
median, rather than the mean, can also reduce the runtime to polynomial, but in this case much larger sample sizes of
O (n3) are required [9].

The well-studied LeadingOnes problem, where the oracle provides the maximum length of the prefix of a string having
all values set to one, requires step by step improvement in a particular sequence to reach the optimum. The threshold
between polynomial and super-polynomial expected runtimes for the (1+1)EA on LeadingOnes with one-bit prior noise is
shown to be located at p = �(log n/n2) in [10].

It has been recognised for a long time that the population size can affect the ability of an EA to handle noise [11,12].
The results in [7] was generalised in [13] to consider populations using the (μ + λ)EA, and showed that populations are
beneficial in both prior and posterior noise. However, they show that (1 + 1)EA can only tolerate posterior Gaussian noise
when the variance is very small (less than 1/(4 log n)). The results in [14] also show that (1 + 1)EA has O (n log n) only for
very small variances of posterior noise. A more recent theoretical study by [15] shows that a low mutation rate enables a
particular mutation-population algorithm to handle arbitrary posterior noise for the OneMax problem in polynomial time,
although the bounds given are large. A recent study [16] with a non-elitist population-based EA which mutates the tour-
nament winner and adds it to the next population on the OneMax problem in presence of one-bit and multiple-bit prior
noise models showed the runtime bounds to be O (n2) and o(n3 log n) for one-bit and multiple-bit prior noise respectively.

In [17], we presented the Voting algorithm, which improves on the runtime for OneMax with posterior noise. For One-

Max with posterior noise taken from any unimodal distribution with finite mean and variance, this algorithm has a runtime
of O (n ln n) when σ 2 = O (n) and O (σ 2 ln n) when the variance is greater than this. In this paper, we extend this work by
analysing the performance of the Voting algorithm on OneMax with several different noise models as follows:

• Posterior noise — the results of [17] are restated for completeness.
• Prior noise — in which the string to be evaluated is mutated beforehand.
• Random bit evaluation — in which bits have a fixed probability of being considered by the oracle.
• Random subset evaluation — in which a random subset of bits, of a fixed size, are evaluated.
• Deceptive oracle — the oracle lies when comparing two strings with a fixed probability.

It was observed in [17] that, since the Voting algorithm samples only uniformly random strings, its behaviour on OneMax

is identical to its behaviour on Jump, in which the gap size is αn for any constant 0 ≤ α < 1/2. The same observation applies
in this paper with regards the application of posterior noise, and the deceptive oracle. In the case of prior noise, the gap
range must be restricted to 0 ≤ α < 1/3, to avoid the possibility that strings are mutated into the gap.

Voting has previously been considered as a mechanism to enhance evolutionary algorithms, for example in [18–20]. In
our work, the selection and voting process may be considered as a simplification or abstraction of various evolutionary
approaches. For example, the algorithm is equivalent to doing a single iteration of UMDA [21], using binary tournament
selection, and then considering whether the bit frequencies have changed (with high probability) towards the correct values.
Alternatively, it can be seen as a version of the compact genetic algorithm [22] in which the bitwise probabilities are not
updated between iterations, and the final result depends on information from the entire runtime history. Finally, there are
close similarities with the use of crossover, since when crossing two strings, the bits which are the same are untouched, but
the bits which are different are randomised. Performing a tournament selection between two offspring of the same parents
therefore induces a drift towards the correct bit values on OneMax, which is large enough to overcome significant levels of
noise (see particularly [6]).

It is worth observing that the Voting algorithm requires no adaptation as it works from a sample of uniformly generated
random strings. As such, it is potentially useful in the context of one-shot optimisation [23], and it is remarkable that noisy
OneMax and Jump can be solved in this context. Similarly, the algorithm can be easily parallelised, since all the evaluations
are done independently. The parallel black box complexity of problem classes has recently been examined in [24], although
restricted to unary unbiased algorithms [25]. The Voting algorithm we present is unbiased, but not unary (as the voting step
requires all tournament winners as input). Consequently, the restrictions of [24] do not apply, and our results show that the
unrestricted parallel black box complexity of noisy OneMax and Jump is, in fact, a single generation, requiring a population
size of O (n log n) to ensure finding the solution with high probability.

2. The Voting algorithm

In this section, we introduce the Voting algorithm from [17] and restate the basic results concerning the runtime of
this algorithm on OneMax when there is no noise. We prove a generalisation of this result in the situation where strings
are generated with a bias towards the correct value. This situation may arise, for example, when strings are the result of
running a few steps of a local search algorithm, rather than simply being generated randomly. However, it is important
to note that in our analysis, it is essential that the values of the bits are independent, and this would not generally be
2

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
the case following the application of local search. These results must therefore be seen as some preliminary steps towards
understanding this situation.

In the Voting Algorithm, we generate two uniform random strings, choose the best of the two, and add it to the popu-
lation. When there are enough strings in the population, we take a bit-wise vote, breaking ties randomly (see Algorithm 1).
Please note that, the indicator function is denoted by [·] in the algorithm and, without loss of generality, that the target
string is 1n .

Algorithm 1: The Voting algorithm.

Let p = (0, . . . , 0);
repeat μ times

Let x ∈ {0, 1}n be a uniform random string;
Let y ∈ {0, 1}n be a uniform random string;
if f (x) > f (y) then

p = p + x;
else

p = p + y;
end

end
for 1 ≤ i ≤ n do

if pi = μ/2 then
zi = 0 or 1 chosen uniformly at random;

else
zi = [pi > μ/2];

end
end
Return z;

The runtime analysis of the Voting algorithm on OneMax without noise hinges on the following lemma (see [17] for the
proof).

Lemma 1. Let x, y ∈ {0, 1}n be uniform random strings and let the tournament winner, z, be decided according to the OneMax func-
tion. For any k ∈ {1, . . .n},

Pr(zk = 1) ≥ 1

2
+ 1

8
√

n
.

The runtime then follows:

Theorem 1. If μ ≥ 32(c + 1)n ln n, then the Voting algorithm correctly solves OneMax with probability greater than 1 − 1/nc .

Proof. For any one bit position, k, the probability that the vote is incorrect is

Pr(pk ≤ μ/2) ≤ exp(−2μ/64n) ≤ 1

nc+1

by Hoeffding’s inequality. So by the union bound, the probability that at least one bit gets the incorrect vote is at most
1/nc . �

One can see, from the use of Hoeffding’s inequality and the union bound, that we have, in general, the following which
we will make use of several times:

Lemma 2. Let x, y ∈ {0, 1}n be any two strings and let the tournament winner, z, be decided according to the OneMax function.
Suppose that, for all k ∈ {1, . . .n},

Pr(zk = 1) ≥ 1

2
+ δ

for some δ > 0 (which may be a function of various parameters, including n). Then if μ ≥ ((c + 1) ln n)/(2δ2) the Voting algorithm
correctly solves OneMax with probability greater than 1 − 1/nc .
3

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
In each of the following sections, we make use of bounds on the probability

Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠

under different conditions. This also appears in, for example, [26,5,27]. In our analysis of this quantity, we make use of the
following result (see Lemma 1 of [28], and also [29]):

Lemma 3. For n ∈N and 0 ≤ x ≤ 1 we have:

n∑
k=0

(
n

k

)2

x2k(1 − x)2(n−k) ≥ 1

4n

(
2n

n

)

The analysis and experiments with EAs usually involve starting with search strings chosen uniformly at random, where
the probability of having one in each bit is set to 1

2 . If non-uniform random initialisation of strings is considered, such
that each bit of the random strings would have a one with probability r and a zero otherwise and each of the bits are
independent, then it enables the analysis of different scenarios where the initial strings are better than random, i.e., r > 1

2 .
The consideration of the probability r instead of choosing the strings uniformly at random is an initial step towards

understanding the impact of biasing the initial population, theoretically, which is needed in certain application domains.
When the Voting mechanism is hybridised with an initial phase of local search, such as the (1 + 1)EA that iteratively
updates the current solution string with mutation, the strings in the population tend to be closer to the optimum than
randomly chosen strings. This should mean that a smaller population would be needed to reach the optimum. However,
initialising strings with local search would bring in dependencies within the bits.

Lemma 4. Let x, y ∈ {0, 1}n be two strings chosen at random, such that the probability of having a one in each bit is at least r ≥ 1/2,
and the bits are chosen independently. The winner of the binary tournament selection, z, decided on the basis of the OneMax function,
will have a one in position k with probability

Pr(zk = 1) ≥ r + r(1 − r)
1

2
√

n

Proof. The probability that the winner of the tournament has a one in position k is given by

Pr(zk = 1) = Pr(xk = 1 | x wins)Pr(x wins) + Pr(yk = 1 | y wins)Pr(y wins)

Since Pr(x wins) = Pr(y wins) holds by symmetry, we can obtain,

Pr(zk = 1) = Pr(xk = 1 | x wins)

By Bayes’ Theorem

Pr(xk = 1 | x wins) = Pr(xk = 1)

Pr(x wins)
Pr(x wins | xk = 1)

≥ 2r × Pr(x wins | xk = 1)

Using the law of total probability, we can say that,

Pr(x wins | xk = 1) = Pr(x wins | xk = 1, yk = 1)Pr(yk = 1)

+ Pr(x wins | xk = 1, yk = 0)Pr(yk = 0)

(since when xk = yk = 1 then x and y are equally likely to win the tournament)

≥ 1

2
r + Pr

⎛
⎝∑

i �=k

xi + 1 >
∑
i �=k

yi

⎞
⎠ (1 − r)

= 1

2
r + Pr

⎛
⎝∑

i �=k

(yi − xi) < 1

⎞
⎠ (1 − r)

= 1

2
r + (1 − r)

⎡
⎣Pr

⎛
⎝∑

i �=k

(yi − xi) < 0

⎞
⎠ + Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠

⎤
⎦

4

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
By symmetry, we have

Pr

⎛
⎝∑

i �=k

(yi − xi) < 0

⎞
⎠ = 1

2

⎛
⎝1 − Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠

⎞
⎠

Now, we can obtain,

Pr

⎛
⎝∑

i �=k

(yi − xi) < 1

⎞
⎠

= 1

2
+ 1

2
Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠

= 1

2
+ 1

2

⎛
⎝n−1∑

j=0

Pr

⎛
⎝∑

i �=k

yi = j

⎞
⎠Pr

⎛
⎝∑

i �=k

xi = j

⎞
⎠

⎞
⎠

= 1

2
+ 1

2

n−1∑
j=0

(
n − 1

j

)2

r2 j(1 − r)2n−2−2 j

≥ 1

2
+ 1

22n−1

(
2n − 2

n − 1

)

≥ 1

2
+ 1

4
√

n

where we make use of Lemma 3, and then bounds on central binomial coefficients [30]. Then the required probability of
having a one in the bit position k of the tournament winner z is derived as follows,

Pr(zk = 1) ≥ r2 + 2r(1 − r)

(
1

2
+ 1

4
√

n

)

= r + r(1 − r)
1

2
√

n
�

We consider two cases: r = 1/2 + �(1) and r = 1/2 + o(1).

Theorem 2. Suppose r = 1/2 + γ , where γ is a constant. If μ ≥ (c+1)

2γ 2 ln n, then the Voting algorithm correctly solves OneMax with
probability greater than 1 − 1/nc .

Proof. When r = 1
2 + γ ,

Pr(zk = 1) ≥ r + r(1 − r)
1

2
√

n
≥ r = 1/2 + γ

The result then follows from Lemma 2. �
Theorem 3. Suppose r = 1

2 +εn, where εn → 0+ as n → ∞. If μ ≥ 32(c+1)n ln n, then the Voting algorithm correctly solves OneMax
with a probability greater than 1 − 1/nc .

Proof. The probability that the tournament winner has a one in bit position k,

Pr(zk = 1) ≥
(

1

2
+ εn

)
+

(
1

2
+ εn

)(
1

2
− εn

)
1

2
√

n

= 1

2
+ εn + 1

8
√

n
− εn

2

2
√

n

≥ 1

2
+ 1

8
√

n
, for sufficiently large n. �

This interesting idea of considering a non-uniform random string initialisation could be considered for the following
analyses when noise is included. However, we have avoided this, for simplicity of presentation.
5

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
Table 1
Noisy OneMax with additive Gaussian noise. The parameters
 and K represent the mutation rate of (1+1)EA and
the population size of cGA respectively.

Algorithm Parameters Runtime bounds

(1+1)EA
 = 1/n,
σ 2 ≤ 1/4 ln(n)

O (n lnn) and super polynomial for larger σ 2 [13]

 = 1/n, σ 2 ≥ 1 e�(n) [35]
(1+1)EA with Sampling
 = 1/n O (σ 2n(lnn)2) [3]

Mutation-Population Algorithm O
(
σ 7n lnn ln(lnn)

)
[36]

Paired Crossover EA (PCEA) σ 2 = n O (n(lnn)2) [6]

Compact GA (cGA) K =
ω(σ 2√

n lnn)

O (Kσ 2√
n ln Kn) [5]

Voting Algorithm σ 2 ≤ 3n/8 O (n lnn)

σ 2 > 3n/8 O (σ 2 lnn)

3. Voting algorithm on noisy ONEMAX problems

3.1. Posterior noise

For the OneMax problem with posterior noise, the fitness, at each evaluation, receives an addition of a random value
drawn from some probability distribution η with variance σ 2.

f noisy(x) = f (x) + η(σ 2)

In [17], we proved that the Voting algorithm has superior runtime than other existing algorithms (refer to Table 1) on
OneMax with posterior noise. The result holds for arbitrary posterior noise distributions with finite mean and variance
and, in the case where σ 2 = �(n) with the restriction that the noise is unimodal. We restate the main result here for
completeness.

For empirical results regarding the performances of the considered algorithms in Table 1, please refer to [31,32,17,33,34].
The observations from the experiments in the cited work illustrate better performance of recombination operations in
comparison to mutation operations in solving noisy combinatorial optimisation problems. The work in [17,31] illustrates the
speed up due to voting operator in traditional EAs.

Theorem 4. The Voting algorithm correctly solves noisy OneMax with high probability, when the noise distribution has finite mean and
variance σ 2 ≤ 3n/8, in O (n ln n) function evaluations. If, in addition, the noise distribution is unimodal, then in the case σ 2 ≥ 3n/8,
the algorithm requires at most O (σ 2 ln n) function evaluations.

3.2. Prior noise

The prior noise model flips a single bit or multiple bits in the search string before the fitness evaluation is performed.
Here, we have considered the generalised multiple bit-flipping noise, that is defined as follows,

f noisy(x) =
{

f (x) with probability (1 − p)

f (x′) with probability p

where, x′ is generated by independently flipping each bit of x with probability q. Thus, a bit gets flipped with probability
pq. In this work, we present a better bound than the existing results (refer to Table 2) for this problem.

Theorem 5. The Voting algorithm correctly solves noisy OneMax in the presence of the generalised multiple bit-flipping prior noise,
with high probability, when q ≤ 1/3 and p < 1, in O (n lnn) function evaluations.

Proof. When a tournament is held between two uniform random strings x and y, to select a winner, z, there are four
different cases, which we will consider separately:

Case A Neither x nor y are mutated, prior to evaluation.
Case B x is mutated, but y is not mutated, prior to evaluation.
Case C x is not mutated, but y is mutated, prior to evaluation.
Case D Both x and y are mutated, prior to evaluation.

It is important to notice that under the conditions of each case, the bit values of each string before and after mutation
(should that happen) are independent, and are equally likely to be 0 or 1.
6

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
Table 2
Noisy OneMax with multiple bit-flipping prior noise. The parameters
, λ and c represent
mutation rate, population size and a positive constant respectively.

Algorithm Parameters Runtime

(1+1)-EA
 = 1/n,
q = O (1/n2),
p = 1

�(n lnn) [13]

 = 1/n,
q = O (lnn/n2),
p = 1

polynomial [13]

 = 1/n,
q = ω(lnn/n2),
p = 1

2ω(lnn) [13]

(1+1)EA with Sampling
 = 1/n,
Sampling size

= O (n3+2c),
q ≤ 1

2 − 1
nc ,

c = O (1), p = 1

polynomial [37]

Non-elitist EA with
tournament selection

 = O (1/n3/2),
λ = � (n lnn),
q ∈ (0, 1/2),
p = 1

O (n3(lnn)2) [16]

Voting Algorithm q ≤ 1/3, p < 1 O (n lnn) [Theorem 5]

We focus on a particular bit position k. In each case, the analysis is the same as for the noiseless situation, up to the
point:

Pr(zk = 1) = 1

4
+ 1

2
Pr(x wins | xk = 1, yk = 0)

When there is no noise, we have [17]

Pr(x wins | xk = 1, yk = 0) ≥ 1

2
+ 1

4
√

n

Case A. Here neither strings are mutated, and so the analysis is the same as if there were no prior noise:

Pr(zk = 1 |Case A) ≥ 1

2
+ 1

8
√

n

Case B. Assuming xk = 1 and yk = 0, we consider two sub-cases: when the bit xk is flipped, and when it is not. When xk

is flipped from 1 to 0, then the strings are equally likely to win. Wen xk is not flipped, the chance of x winning is the same
as in the noiseless case. Hence:

Pr(zk = 1 |Case B) ≥ 1

4
+ 1

2

(
q

2
+ (1 − q)

(
1

2
+ 1

4
√

n

))
which gives:

Pr(zk = 1 |Case B) ≥ 1

2
+ 1 − q

8
√

n

Case C. Assuming xk = 1 and yk = 0, we consider two sub-cases: when the bit yk is flipped, and when it is not. When it
is flipped from 0 to 1, the strings are equally likely to win. Otherwise, if yk is not flipped and remains at zero, we have the
same as the noiseless case:

Pr(zk = 1 |Case C) ≥ 1

4
+ 1

2

(
q

2
+ (1 − q)

(
1

2
+ 1

4
√

n

))
which gives:

Pr(zk = 1 |Case C) ≥ 1

2
+ 1 − q

8
√

n

Case D. Assuming xk = 1 and yk = 0, there are four sub-cases to consider. If neither bits are flipped, then we have, as
before

Pr(zk = 1 |Case D, x′
k = 1, y′

k = 0) ≥ 1 + 1√

2 4 n

7

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
When xk is flipped from 1 to 0, but yk remains at 0, then the chances of x winning are just 1/2. Similarly for the case
when xk does not flip, but yk does.

The fourth case to consider is when xk flips to 0, and yk flips to 1. Now

Pr(x wins |Case D, x′
k = 0, y′

k = 1) = Pr

⎛
⎝∑

i �=k

x′
i >

∑
i �=k

y′
i + 1

⎞
⎠

By symmetry, we have

Pr

⎛
⎝∑

i �=k

x′
i >

∑
i �=k

y′
i + 1

⎞
⎠ = 1

2
− 1

2
Pr

⎛
⎝∑

i �=k

y′
i − x′

i = 0

⎞
⎠ − Pr

⎛
⎝∑

i �=k

y′
i − x′

i = −1

⎞
⎠

from which we get the bound

Pr

⎛
⎝∑

i �=k

x′
i >

∑
i �=k

y′
i + 1

⎞
⎠ ≥ 1

2
− 3

2
Pr

⎛
⎝∑

i �=k

y′
i − x′

i = 0

⎞
⎠

We then use the following result from [17]

Pr

⎛
⎝∑

i �=k

y′
i − x′

i = 0

⎞
⎠ = 4

22n

(
2n − 2

n − 1

)
.

Using well-known bounds on central binomial coefficients [30], we approximate(
2n − 2

n − 1

)
≤ 22n

6
√

n

to get

Pr(zk = 1 |Case D, x′
k = 0, y′

k = 1) ≥ 1

2
− 1√

n

and hence

Pr(zk = 1 |Case D, xk = 1, yk = 0) ≥ (1 − q)2
(

1

2
+ 1

4
√

n

)
+ q(1 − q)

+ q2
(

1

2
− 1√

n

)

= 1

2
+ 1 − 2q − 3q2

4
√

n
.

It follows that:

Pr(zk = 1 |Case D) ≥ 1

2
+ 1 − 2q − 3q2

8
√

n
.

If q ≤ 1/3, then we have

Pr(zk = 1 |Case D) ≥ 1

2
.

Putting cases A, B, C and D together, and assuming q ≤ 1/3, we conclude

Pr(zk = 1) ≥ (1 − p)2
(

1

2
+ 1

8
√

n

)
+ 2p(1 − p)

(
1

2
+ 1 − q

8
√

n

)
+ p2

2

= 1

2
+ 1

8
√

n
(1 − p2 − 2pq + 2p2q)

= 1

2
+ 1

8
√

n
(1 − p)(1 + p − 2pq)

≥ 1

2
+ 1 − p

8
√

n

and the result follows, by applying Lemma 2. �

8

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
3.3. Partial evaluation via random bits

In noisy data mining and learning problems, incomplete or unavailable data attributes are often encountered. Here, we
have considered a similar noise model where, the fitness evaluation is performed only on randomly chosen bits (attributes)
of the search point which leads to a partial evaluation of the fitness function. This noise model has been studied for a
non-elitist binary selection algorithm and (1 + 1)EA [36].

When solving the OneMax(x) function, where the noisy evaluation takes into consideration bits with a probability d, the
noisy fitness function can be written as follows,

f noisy(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (x) with probability d f (x)(1 − d)0

f (x) − 1 with probability d(f (x)−1)(1 − d)1

f (x) − 2 with probability d(f (x)−2)(1 − d)2

. . .

0 with probability d0(1 − d) f (x)

Here, we show that the Voting algorithm solves the OneMax problem with this noise model in O ((n ln n)/d2) function
evaluations. The non-elitist algorithm presented in [36] requires a larger bound:⎧⎨

⎩
O

(
n ln n

d7

)
if d ≤ 1/n

O
(

n9/2 ln n
d7/2

)
if d > 1/n

Theorem 6. Let x, y ∈ {0, 1}n be two strings chosen uniformly at random. If z is the winner of the binary tournament selection using
the OneMax function, with partial evaluation of the fitness function with probability d, then the probability that z will have a one in
position k is given by

Pr(zk = 1) ≥ 1

2
+ d

8
√

n

If μ ≥ 32
d2 (c + 1)n ln n, then the Voting algorithm correctly solves OneMax with probability greater than 1 − 1/nc .

Proof. Following as before and using the law of total probability,

Pr(zk = 1) = Pr(xk = 1 | x wins)

= Pr(x wins | xk = 1)

= Pr(x wins | xk = 1, yk = 1)Pr(yk = 1)

+Pr(x wins | xk = 1, yk = 0)Pr(yk = 0)

= 1

4
+ 1

2
Pr(x wins | xk = 1, yk = 0)

Here, for each i, let ai and bi be random numbers such that they are equal to one with probability d, when bit position i is
being considered in the fitness evaluation, and zero otherwise.

Then we can say,

Pr(x wins | xk = 1, yk = 0) ≥ Pr

⎛
⎝∑

i �=k

ai xi + ak >
∑
i �=k

bi yi

⎞
⎠

Now, there may be two cases arising from the value of ak ,

Pr(x wins | xk = 1, yk = 0)

= Pr(x wins | xk = 1, yk = 0,ak = 0)Pr(ak = 0)

+ Pr(x wins | xk = 1, yk = 0,ak = 1)Pr(ak = 1)

≥ 1

2
(1 − d) + Pr

⎛
⎝∑

i �=k

ai xi + 1 >
∑
i �=k

bi yi

⎞
⎠d

Now,
9

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
Pr

⎛
⎝∑

i �=k

aixi + 1 >
∑
i �=k

bi yi

⎞
⎠

= Pr

⎛
⎝∑

i �=k

(bi yi − ai xi) < 1

⎞
⎠

= Pr

⎛
⎝∑

i �=k

(bi yi − ai xi) = 0

⎞
⎠ + Pr

⎛
⎝∑

i �=k

(bi yi − aixi) < 0

⎞
⎠

= Pr

⎛
⎝∑

i �=k

(bi yi − ai xi) = 0

⎞
⎠ + 1

2
− 1

2
Pr

⎛
⎝∑

i �=k

(bi yi − ai xi) = 0

⎞
⎠

= 1

2
+ 1

2
Pr

⎛
⎝∑

i �=k

(bi yi − ai xi) = 0

⎞
⎠

=
⎛
⎝1

2
+ 1

2

n−1∑
j=0

(
n − 1

j

)2 (
1

2
d

)2 j (
1 − 1

2
d

)2n−2−2 j
⎞
⎠

≥ 1

2
+ 1

22n−1

(
2n − 2

n − 1

)

≥ 1

2
+ 1

4
√

n

where we make use of Lemma 3, and then bounds on central binomial coefficients [30]. We can now obtain the required
probability of having a one in the bit position k, as follows,

Pr(zk = 1) ≥ 1

4
+ 1

2

(
1

2
(1 − d) + d

(
1

2
+ 1

4
√

n

))

= 1

2
+ d

8
√

n

The rest of the proof follows as before. �
3.4. Partial evaluation based on a random subset of bits

An alternative method of partial evaluation, is where a fixed size subset of bits is chosen randomly. Let S be a set of
randomly chosen bit positions of size |S| = s. Then, the noisy OneMax fitness evaluation is defined as,

f noisy(x) =
∑
k∈S

xk

This models the situation where a machine learning algorithm is trained on a small randomly chosen sample of instances,
but is expected to generalise across all instances. Suppose there are n possible instances. A trained classifier, corresponding
to certain learned parameters, will either correctly or incorrectly classify each instance. Thus, each trained model has a
corresponding bit string in {0, 1}n . It is typically impractical to train and test models on all n instances, however, so when
comparing two models, we look at a small random subset of instances, and prefer the model that performs best on those.
Our model is artificial, of course, because we will assume that correct bit values in different positions are independent, and
this will typically not be the case in a real machine learning situation.

For our analysis, then, when we compare two strings, we compare them on the same, randomly chosen, subset of bits
of size s. A new subset is chosen randomly for each comparison.

Theorem 7. If μ ≥ 32(c + 1)n2

s ln n, then the Voting algorithm correctly solves OneMax with probability greater than 1 − 1/nc, where
the tournament selection is performed with respect to s randomly sampled bits.

Proof. When comparing two uniform random strings x and y, to choose a winner z, let S be the set of the s bits that are
sampled. Then, the probability that the tournament winner has a one in position k is
10

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
Pr(zk = 1) = Pr(zk = 1 |k ∈ S)Pr(k ∈ S)

+ Pr(zk = 1 |k /∈ S)Pr(k /∈ S)

≥
(

1

2
+ 1

8
√

s

)
s

n
+ 1

2

(
1 − s

n

)

= 1

2
+

√
s

8n

The rest of the proof follows as before, following the same arguments with the help of the union bound and Hoeffding’s
inequality (Lemma 2). �

It is to be noted that when all the bits are known during the tournament selection, i.e. s = n, the Voting algorithm
requires O (n ln n) function evaluations as before.

3.5. The deceptive oracle

An oracle may perform comparisons of strings, and say which is better (according to the hidden target string and cor-
responding objective function). We consider now the case where this comparison is noisy — not because the underlying
objective function has noise, but because there is a fixed probability that the worse string is identified as the better one.
This kind of uncertainty has been considered in the context of comparison-based optimization methods for sorting [38] and
clustering [39]. We suppose that the probability that the oracle returns the incorrect result is l.

Theorem 8. Let x, y ∈ {0, 1}n be uniformly at random chosen strings. Let the binary tournament winner z be decided according to the
OneMax function, subject to the oracle returning the incorrect answer with probability l < 1/7. That is, if |x|1 > |y|1 then

z =
{

x with probability 1 − l

y with probability l

Then the probability that there will be a one at position k of the binary tournament winner is at least,

1

2
+ 1

8
√

n
(1 − 7l)

and the Voting algorithm solves the OneMax problem in the presence of a noisy comparison oracle with high probability in
O

(
1

(1−7l)2 n ln n
)

function evaluations.

Proof. As in the previous analyses, with the use of theorem of total probability and Bayes’ theorem, the probability that the
tournament winner has a one in position k is given by,

Pr(zk = 1) = Pr(xk = 1 | x wins)

= Pr(xk = 1 | x wins,oracle correct)(1 − l)

+ Pr(xk = 1 | x wins,oracle incorrect)l

= Pr(x wins |oracle correct, xk = 1)(1 − l)

+ Pr(x wins |oracle incorrect, xk = 1)l

Now,

Pr(x wins |oracle correct, xk = 1)

= Pr(x wins |oracle correct, xk = 1, yk = 1)Pr(yk = 1)

+ Pr(x wins |oracle correct, xk = 1, yk = 0)Pr(yk = 0)

≥ 1

4
+ 1

2
Pr

⎛
⎝∑

i �=k

xi + 1 >
∑
i �=k

yi

⎞
⎠

= 1

4
+ 1

2

(
1

2
+ 1

4
√

n

)

= 1

2
+ 1

8
√

n

11

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
Again,

Pr(x wins |oracle incorrect, xk = 1)

= Pr(x wins |oracle incorrect, xk = 1, yk = 1)Pr(yk = 1)

+ Pr(x wins |oracle incorrect, xk = 1, yk = 0)Pr(yk = 0)

≥ 1

4
+ 1

2
Pr

⎛
⎝∑

i �=k

(yi − xi) > 1

⎞
⎠

= 1

4
+ 1

2

⎡
⎣Pr

⎛
⎝∑

i �=k

(yi − xi) ≥ 0

⎞
⎠ − Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠ − Pr

⎛
⎝∑

i �=k

(yi − xi) = 1

⎞
⎠

⎤
⎦

≥ 1

4
+ 1

2

⎡
⎣1

2
+ 1

2
Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠ − 2 Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠

⎤
⎦

= 1

4
+ 1

2

⎡
⎣1

2
− 3

2
Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠

⎤
⎦

= 1

4
+ 1

2

(
1

2
− 3

2
√

n

)

= 1

2
− 3

4
√

n

where we have used

Pr

⎛
⎝∑

i �=k

(yi − xi) = 0

⎞
⎠ =

n−1∑
j=0

Pr

⎛
⎝∑

i �=k

yk = j

⎞
⎠Pr

⎛
⎝∑

i �=k

xk = j

⎞
⎠

= 1

22n−2

n−1∑
j=0

(
n − 1

j

)2

= 1

22n−2

(
2n − 2

n − 1

)

≤ 1√
π

√
n − 1

≤ 1√
n

Then Pr(zk = 1) becomes,

Pr(zk = 1) = Pr(xk = 1 | x wins)

=
(

1

2
+ 1

8
√

n

)
(1 − l) +

(
1

2
− 3

4
√

n

)
l

= 1

2
+ 1

8
√

n
(1 − 7l)

The final result follows from Lemma 2. �
4. Conclusions

We have studied the use of Voting as a heuristic method. It is particularly effective for the noisy OneMax problem with
different variants of noise. We prove that the upper bounds on the runtime of OneMax with posterior and prior noise
are better than any other algorithm we are aware of. In case of partial evaluation of fitness functions, as well, the Voting
algorithm would require significantly fewer function evaluations than previously published results. We also analyse the
runtime on OneMax with two other variants of noise relevant in learning and optimisation problems and show that Voting
can be an efficient method in simple noisy combinatorial optimisation.
12

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] S. Droste, T. Jansen, I. Wegener, A new framework for the valuation of algorithms for black-box-optimization, in: Foundations of Genetic Algorithms
Conference, vol. 3, 2002, pp. 253–270.

[2] G. Anil, R.P. Wiegand, Black-box search by elimination of fitness functions, in: Proceedings of the 10th ACM/SIGEVO Workshop on Foundations of
Genetic Algorithms, 2009, pp. 67–78.

[3] Y. Akimoto, S. Astete-Morales, O. Teytaud, Analysis of runtime of optimization algorithms for noisy functions over discrete codomains, Theor. Comput.
Sci. 605 (2015) 42–50.

[4] B. Doerr, A.M. Sutton, When resampling to cope with noise, use median, not mean, in: Proceedings of the Genetic and Evolutionary Computation
Conference, 2019, pp. 242–248.

[5] T. Friedrich, T. Kötzing, M.S. Krejca, A.M. Sutton, The compact genetic algorithm is efficient under extreme Gaussian noise, IEEE Trans. Evol. Comput.
21 (2017) 477–490.

[6] A. Prugel-Bennett, J. Rowe, J. Shapiro, Run-time analysis of population-based evolutionary algorithm in noisy environments, in: Proceedings of the 2015
ACM Conference on Foundations of Genetic Algorithms XIII, 2015, pp. 69–75.

[7] S. Droste, Analysis of the (1 + 1)EA for a noisy OneMax, in: Genetic and Evolutionary Computation Conference, Springer, 2004, pp. 1088–1099.
[8] C. Qian, Y. Yu, K. Tang, Y. Jin, X. Yao, Z.-H. Zhou, On the effectiveness of sampling for evolutionary optimization in noisy environments, Evol. Comput.

26 (2018) 237–267.
[9] C. Bian, C. Qian, Y. Yu, K. Tang, On the robustness of median sampling in noisy evolutionary optimization, Sci. China Inf. Sci. 64 (2021) 1–13.

[10] D. Sudholt, Analysing the robustness of evolutionary algorithms to noise: refined runtime bounds and an example where noise is beneficial, Algorith-
mica 83 (2021) 976–1011.

[11] D.E. Goldberg, K. Deb, J.H. Clark, Genetic algorithms, noise, and the sizing of populations, Complex Syst. 6 (1991) 333–362.
[12] M. Rattray, J. Shapiro, Noisy fitness evaluation in genetic algorithms and the dynamics of learning, in: Foundations of Genetic Algorithms, Morgan

Kaufmann, 1997, pp. 117–139.
[13] C. Gießen, T. Kötzing, Robustness of populations in stochastic environments, Algorithmica 75 (2016) 462–489.
[14] R. Dang-Nhu, T. Dardinier, B. Doerr, G. Izacard, D. Nogneng, A new analysis method for evolutionary optimization of dynamic and noisy objective

functions, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2018, pp. 1467–1474.
[15] D.-C. Dang, P.K. Lehre, Efficient optimisation of noisy fitness functions with population-based evolutionary algorithms, in: Proceedings of the 2015 ACM

Conference on Foundations of Genetic Algorithms XIII, ACM, 2015, pp. 62–68.
[16] P.K. Lehre, X. Qin, More precise runtime analyses of non-elitist EAs in uncertain environments, in: Proceedings of the Genetic and Evolutionary Com-

putation Conference, 2021, pp. 1160–1168.
[17] J.E. Rowe, Aishwaryaprajna, The benefits and limitations of voting mechanisms in evolutionary optimisation, in: Proceedings of the 15th ACM/SIGEVO

Conference on Foundations of Genetic Algorithms, 2019, pp. 34–42.
[18] D. Whitley, S. Varadarajan, R. Hirsch, A. Mukhopadhyay, Exploration and exploitation without mutation: solving the jump function in θ(n) time, in:

International Conference on Parallel Problem Solving from Nature, Springer, 2018, pp. 55–66.
[19] T. Friedrich, T. Kötzing, M.S. Krejca, S. Nallaperuma, F. Neumann, M. Schirneck, Fast building block assembly by majority vote crossover, in: Proceedings

of the ACM Genetic and Evolutionary Computation Conference, ACM Press, 2016, pp. 661–668.
[20] B. Aboutaib, A.M. Sutton, The influence of noise on multi-parent crossover for an island model GA, in: Proceedings of the Genetic and Evolutionary

Computation Conference, 2022, pp. 666–674.
[21] H. Mühlenbein, G. Paass, From recombination of genes to the estimation of distributions I. Binary parameters, in: International Conference on Parallel

Problem Solving from Nature, Springer, 1996, pp. 178–187.
[22] G.R. Harik, F.G. Lobo, D.E. Goldberg, The compact genetic algorithm, IEEE Trans. Evol. Comput. 3 (1999) 287–297.
[23] J. Bossek, C. Doerr, P. Kerschke, A. Neumann, F. Neumann, Evolving sampling strategies for one-shot optimization tasks, in: Parallel Problem Solving

from Nature–XVI: 16th International Conference, Proceedings, Part I 16, Leiden, the Netherlands, September 5–9, 2020, Springer, 2020, pp. 111–124.
[24] P.K. Lehre, D. Sudholt, Parallel black-box complexity with tail bounds, IEEE Trans. Evol. Comput. 24 (2020) 1010–1024.
[25] P.K. Lehre, C. Witt, Black-box search by unbiased variation, Algorithmica 64 (2012) 623–642.
[26] F. Neumann, D. Sudholt, C. Witt, A few ants are enough: ACO with iteration-best update, in: Proceedings of the 12th Annual Conference on Genetic

and Evolutionary Computation, 2010, pp. 63–70.
[27] D. Sudholt, C. Witt, On the choice of the update strength in estimation-of-distribution algorithms and ant colony optimization, Algorithmica 81 (2019)

1450–1489.
[28] H. Gonska, I. Rasa, M.-D. Rusu, Chebyshev-Grüss-type inequalities via discrete oscillations, Bul. Acad. Ştiinţe Repub. Mold. Mat. (2014) 63–89, arXiv:

1401.7908.
[29] I. Gavrea, M. Ivan, On a conjecture concerning the sum of the squared Bernstein polynomials, Appl. Math. Comput. 241 (2014) 70–74.
[30] P. Stanica, Good lower and upper bounds on binomial coefficients, JIPAM. J. Inequal. Pure Appl. Math. 2 (2001) 30.
[31] Aishwaryaprajna, Noisy Combinatorial Optimisation with Evolutionary Algorithms, Ph.D. thesis, School of Computer Science, University of Birmingham,

2022.
[32] Aishwaryaprajna, J.E. Rowe, Noisy combinatorial optimisation by evolutionary algorithms, in: Proceedings of the Genetic and Evolutionary Computation

Conference Companion, 2019, pp. 139–140.
[33] Aishwaryaprajna, J.E. Rowe, Evolutionary algorithms for solving unconstrained, constrained and multi-objective noisy combinatorial optimisation prob-

lems, arXiv preprint, arXiv:2110 .02288, 2021.
[34] Aishwaryaprajna, J.E. Rowe, Evolutionary and estimation of distribution algorithms for unconstrained, constrained and multi-objective noisy combina-

torial optimisation problems, Evol. Comput. (2023) 1–27.
[35] C. Qian, Y. Yu, Z.-H. Zhou, Analyzing evolutionary optimization in noisy environments, Evol. Comput. 26 (2018) 1–41.
[36] D.-C. Dang, P.K. Lehre, Runtime analysis of non-elitist populations: from classical optimisation to partial information, Algorithmica 75 (2016) 428–461.
13

http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB37E36E6EA4F8E4BB8D2B6D94D2C9406s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB37E36E6EA4F8E4BB8D2B6D94D2C9406s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibA1B9BFDDE085D9F6035D49820606903Cs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibA1B9BFDDE085D9F6035D49820606903Cs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB1F47034D27901C9D798A7D38124EB59s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB1F47034D27901C9D798A7D38124EB59s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibDC3C97C3EA2BF04BA216CAA2CD56184Es1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibDC3C97C3EA2BF04BA216CAA2CD56184Es1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib94EF59899E6770DC214DFA6B56AAEE4Fs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib94EF59899E6770DC214DFA6B56AAEE4Fs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibD45D21A0D246C3CFD5B71DB7B898784As1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibD45D21A0D246C3CFD5B71DB7B898784As1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibFB8376A9AD187076C6C5183F9FC9A1A5s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibAA9F5142101FCFB0DB82D0CD599D55D8s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibAA9F5142101FCFB0DB82D0CD599D55D8s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibD0885F80123AEC35C2DD23DC91B38D21s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibCEEDE10F154F604447AC2A2162430288s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibCEEDE10F154F604447AC2A2162430288s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibFA55DC7EB98D0E995AC8D2A369CBD24Ds1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibC89F4F707CAFEBBE8493CE214D268148s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibC89F4F707CAFEBBE8493CE214D268148s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib3DCC224915633C4BC66BEC56773EEDE7s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib3D642FF795F7E1569123BBBEA3AAEA40s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib3D642FF795F7E1569123BBBEA3AAEA40s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB14CF2BF52C4C4379241E031630A5EFDs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB14CF2BF52C4C4379241E031630A5EFDs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB577983ED18449B6FCDB2FD69B013AFDs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB577983ED18449B6FCDB2FD69B013AFDs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibD1FB95AAAFB820190BB1FB4CC50B22C0s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibD1FB95AAAFB820190BB1FB4CC50B22C0s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib97222E15BC906BD6A31470715A1D4EE8s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib97222E15BC906BD6A31470715A1D4EE8s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib2DB330182D2600F04E86AE7FCAC64EF9s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib2DB330182D2600F04E86AE7FCAC64EF9s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibCF33B9E98406E1D15617349A96F33C38s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibCF33B9E98406E1D15617349A96F33C38s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib262A9445D04005D10DC1F71D4AADAC6Es1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib262A9445D04005D10DC1F71D4AADAC6Es1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib762BCEFDC77A57CA1462E117E82C8636s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib824C74816A708EB8F948E289D0BA379Ds1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib824C74816A708EB8F948E289D0BA379Ds1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib022700FB7ECC1EE215F1EA6D7997769Cs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib614C9A91154F8E33B02C6612495902CBs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibD8F6CCF84E9186868CFF7AC0EA8215EEs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibD8F6CCF84E9186868CFF7AC0EA8215EEs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibFB4CE6748C5E919AC12596ECD5FC32A0s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibFB4CE6748C5E919AC12596ECD5FC32A0s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibC8DABADB1AD79E4B51D4C2BCFF3B85BDs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bibB7D53DA35086AEA8BF76A68AAEBC5964s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib876DFE2CA0A48C2F313EBE0D8D7481DEs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib876DFE2CA0A48C2F313EBE0D8D7481DEs1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib191F138F528D383362652789D6FDFBA0s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib191F138F528D383362652789D6FDFBA0s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib5B4AC770C8BE1DDCF354B7C0ED3662C7s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib5B4AC770C8BE1DDCF354B7C0ED3662C7s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib358EA30ACE1849EE1B4D1D1616A01F1Ds1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib358EA30ACE1849EE1B4D1D1616A01F1Ds1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib96E093529788FFCFBBFF9E50C6A08894s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib8B88830866DFD529CD66F3390CD6D4C8s1

Aishwaryaprajna and J.E. Rowe Theoretical Computer Science 957 (2023) 113844
[37] C. Qian, C. Bian, W. Jiang, K. Tang, Running time analysis of the (1+1) EA for OneMax and LeadingOnes under bit-wise noise, Algorithmica 81 (2019)
749–795.

[38] T. Gavenčiak, B. Geissmann, J. Lengler, Sorting by swaps with noisy comparisons, in: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, 2017, pp. 1375–1382.

[39] R. Addanki, S. Galhotra, B. Saha, How to design robust algorithms using noisy comparison oracle, arXiv:2105 .05782, 2021.
14

http://refhub.elsevier.com/S0304-3975(23)00157-3/bib8C330C8BCD67686875AAF3DDEB1938E2s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib8C330C8BCD67686875AAF3DDEB1938E2s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib23BBD6AE20F1EAF64DC704638A6865A9s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib23BBD6AE20F1EAF64DC704638A6865A9s1
http://refhub.elsevier.com/S0304-3975(23)00157-3/bib099EA5EB8F18D48236D93D1EA740F56Cs1

	The Voting algorithm is robust to various noise models
	1 Introduction
	2 The Voting algorithm
	3 Voting algorithm on noisy ONEMAX problems
	3.1 Posterior noise
	3.2 Prior noise
	3.3 Partial evaluation via random bits
	3.4 Partial evaluation based on a random subset of bits
	3.5 The deceptive oracle

	4 Conclusions
	Declaration of competing interest
	Data availability
	References

