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Migration of stem-like CD8 T cells between tissue 
microenvironments underpins successful anti-tumour 
immune responses
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Summary 
The clinical success of immune checkpoint blockade in some patients has transformed treatment approaches in cancer and offers the hope of 
durable curative responses. Building from studies of chronic infection, the composition of tumour infiltrating lymphocytes and in particular, the 
spectrum of exhausted CD8 T cells has now been characterized in detail, profiling the phenotype, function, transcriptional regulation and even 
the epigenetic changes. However, what remains less clear is how intratumoural immune cells interface with populations in the periphery, both in 
terms of sustaining the response in cancer, but also in establishing systemic memory responses that can provide long-term protection. Here we 
will succinctly review the current understanding of the anti-tumour response, consider the tissue microenvironments that support key cellular 
subsets and the extent to which cellular migration between these sites impacts the response.
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Introduction
T cell infiltration within tumours has long been linked with 
improved prognosis [1]. Specifically, an increased cytotoxic 
CD8+ lymphocyte population is linked with better clinical 
outcomes across a broad range of cancer types [2–5]. The ad-
vent of immune checkpoint blockade (ICB) has been trans-
formative in the treatment of certain cancers [6, 7]. While there 
remains both the need and scope to significantly refine these 
treatments, it has revolutionized the therapeutic paradigm for 
cancer patients and brought the immune response to the fore. 
Given that current ICB strategies work through enhancing 
pre-existing anti-tumour immune responses, it is unsur-
prising that one predictive biomarker of a response to ICB 
is a higher number of TILs (tumour infiltrating lymphocytes) 
[5, 8, 9]. While the majority of research on the anti-tumour 
response has focused on TILs, there is clear evidence that suc-
cessful reinvigoration requires a systemic response [10, 11]. 
Current understanding of exactly how intratumoural T cells 
interface with populations in the periphery to sustain the re-
sponse, but also for the development of long-term systemic 
protection, remains limited. Here we will succinctly review 
the current state of play regarding anti-tumour T cells and 
highlight what we understand of cellular migration between 
key microenvironments orchestrating this response.

A spectrum of exhausted T cell states becomes 
established in tumours
Initial priming of naïve T cells requires the uptake and car-
riage of antigens by dendritic cells (DCs) to draining lymph 
nodes (dLNs). It is here that rare naïve T cells with the cog-
nate T cell receptors are concentrated and exposed to antigen 
[12]; subsequent expansion of an antigen-specific T cell popu-
lation underlies a successful adaptive immune response. In the 
context of cancer, naïve T cells must first encounter tumour 
antigens in the same way [13], with the cDC1 subset particu-
larly efficient at cross-presenting antigen on MHCI to initiate 
CD8 T cell responses [14, 15]. As well as adequate exposure 
to tumour antigen, the quantity of antigen matters, with im-
munogenic tumours with a higher mutational burden being 
more responsive to immunotherapy [16]. Activated CD8 
T cells then traffic to the tumour to mediate killing of the 
cancer cells. Unlike acute responses to infection or vaccina-
tion, where the immunological insult is cleared over a matter 
of days, growing tumours have by definition escaped immune 
control and drive sustained exposure to tumour antigens and 
a chronic response. This raises the possibility of further cross-
priming within the tumour microenvironment (TME) should 
naïve T cells accumulate here, and although there is evidence 
to support this mechanism, its importance remains unclear 
[17]. The initial activation of the CD8 T cell response requires 
the interplay of multiple innate immune populations as well 
as CD4 T cell help. This has been excellently reviewed in a 
recent publication [18] and is beyond the focus of this review.

The key feature of the anti-tumour response is the ac-
cumulation of exhausted T cells within the tumour [19], a 
cellular state best characterized in the response to chronic 
viral infection [20]. The canonical features of T cell exhaus-
tion include increased expression of co-inhibitory receptors 
(e.g. PD-1, TIM-3, LAG-3, and TIGIT), decreased effector 
functions (e.g. reduced IFNγ and TNFα production) and im-
paired proliferative capacity [21]. Importantly, exhaustion is 
a spectrum of states (illustrated in Fig. 1A), orchestrated by 

the transcription factor thymocyte selection-associated HMG 
BOX (TOX), and epigenetic commitment, defined by irrevers-
ible changes to the chromatin landscape [22, 23]. Considering 
the linear differentiation of T cells along this fate and the evi-
dence that memory cells do not form during chronic infection 
[24], this raised the basic question of how such exhausted 
populations are sustained long term. Building on the evidence 
that antigen-specific CD8 T cells formed in chronic infection 
expand upon transfer into naïve hosts [25], the conundrum 
was resolved with the identification of a subset of exhausted 
cells that expressed the memory-associated transcription 
factor T cell factor 1 (TCF-1, encoded by Tcf7) [26, 27].

This stem-like CD8 population, also referred to as the 
‘precursors of exhausted’ T cells (T

pex), shared many features 
of memory cells (CD62L, CCR7, and CD127), lacked ex-
pression of effector genes such as Granzyme B, but also 
demonstrated hallmarks of exhaustion including PD-1 and 
LAG-3 expression [26]. Crucially, the TCF-1+PD-1+ subset of 
CD8 T cells in lymphocytic choriomeningitis virus (LCMV)-
infected mice was responsible for sustaining the response 
and the proliferative burst resulting from targeting of the 
PD-1:PD-L1 pathway [26, 28], thus driving replenishment 
of the exhausted CD8 T cell compartment. Evidence for a 
similar cellular compartment underpinning the response to 
ICB in cancer patients emerged through transcriptomic pro-
filing of clinical melanoma samples, where Tcf7 expression 
within infiltrates was indicative of a positive outcome in those 
treated with ICB [29]. Critical further studies identified a role 
for TCF-1+PD-1+ CD8 T cells in driving the proliferative re-
sponse in tumours following ICB therapy and the essential 
role of TCF-1 in this process [30].

Thus, maintenance of the exhausted T cell compartment 
within tumours requires a subset of exhausted cells with 
memory-like characteristics and crucially, these cells also 
proliferate in response to ICB to drive the re-expansion of 
exhausted, but not terminally exhausted effector cells that en-
hance tumour control.

Stem-like CD8 T cell location and behaviour
While there is now consensus that the stem-like CD8 T cell 
subset sustains intratumoural exhausted T cells, where these 
cells reside and the exact microenvironments in which ICB 
impacts these cells, remains under debate. As we try to en-
hance the effect of ICB through combinatorial therapies, the 
basic biology of this T cell subset becomes pertinent in con-
sidering optimal strategies, as well as in the potential strat-
ification of patients for such treatments. Multiple studies 
have clearly indicated the presence of stem-like cells within 
tumours themselves [28, 30]. A specific antigen-presenting 
cell (APC) niche within tumours that supports the stem-like 
compartment has been proposed, with TCF-1+ CD8+ T cells 
clustering in areas enriched for DCs and high for MHCII ex-
pression within the tumour; these areas were further asso-
ciated with blood and lymphatic vascularization [31]. The 
presence of stem-like populations and these APC niches was 
associated with the prevalence of exhausted CD8 T cells as 
well as enhanced control of tumour growth [31]. Recent 
studies have highlighted the role of cDC1 in forming a niche 
that supports the maintenance of stem-like CD8 T cells in 
chronically infected lymphoid tissue, indicating that these cel-
lular associations are a key feature for sustaining exhausted 
T cell responses [32]. In vivo imaging of the tumour to assess 
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Figure 1: Summary of the current understanding of stem-like CD8 T cell biology in cancer. (A) Parallel development of anti-tumour exhausted and memory CD8 
T cells, their location within different tissue compartments and their roles in the response to ICB. Naïve T cells encounter tumour antigen presented by DCs 
within the draining lymph node, initiating the anti-tumour immune response. Stem-like CD8 T cells (also called Tpex), have been identified both within supportive 
niches enriched for DCs in the tumour, but also the tumour-draining lymph node; this population gives rise to the exhausted spectrum seen within tumours, 
allowing for prolonged responses to immunotherapy. Crucially, ICB drives the expansion of the stem-like compartment to replenish the exhausted cells. 
Memory cells, likely generated alongside the effector T cells within the dLN, seed the periphery but with the failure to clear cancer cells, become involved in 
the response, a process further enhanced by ICB. (B) Tissue niches currently identified in the maintenance of stem-like CD8 T cells. A DC niche comprised of 
cDC1 has been identified within secondary lymphoid tissue and within tumours. In tumours, this may reflect the presence of lymphoid aggregates within the 
spectrum of tertiary lymphoid structures. (C) Stem-like CD8 T cell trafficking between tumour and lymphoid tissues. Created using Biorender.com.
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the impact of targeting PD-1, revealed initial DC:CD8 T cell 
crosstalk as a crucial initial step, suggesting that interactions 
within APC niches may both sustain the stem-like compart-
ment but also drive the response to ICB [33]. In addition, Hua 
et al. recently identified a further potential niche for stem-
like CD8 T cells in the proximity of tumoural high endothe-
lial venules (HEVs), formed in response to antiangiogenic 
immunotherapies [34]. Exactly where and how stem-like 
CD8 T cell populations are sustained remains a key area of 
research given their role in driving the response to immuno-
therapy. The impact of therapeutic interventions on this cel-
lular compartment and the effect of remodelling the tumour 
environment on the mechanisms that support these cells need 
to be resolved. Tertiary lymphoid structures (TLS), known 
to correlate with enhanced anti-tumour immunity, facilitate 
the accumulation of DCs and are associated with HEVs [35, 
36], suggesting a potential link with sustaining stem-like CD8 
T cells. However, tumor lysis syndrome in cancer is a spec-
trum of immune cell aggregates rather than a single defined 
state [35, 36]. Whether this reflects a linear evolution as these 
structures ‘mature’ or distinct cellular accumulations that 
support different aspects of the immune response requires 
further investigation. The described niches for stem-like CD8 
T cells are illustrated in Fig. 1B.

Despite the presence of stem-like CD8 T cells within 
tumours and their assumed ability to then sustain the re-
sponse from this environment, there is evidence supporting 
the reinvigoration of the tumour response driven by differ-
entiation within the dLN. Dammeijier et al. explored the 
impact of targeting the tumour dLN specifically in a mu-
rine peritoneal tumour model [37]. Limited dosing of anti-
PD-L1 antibodies that specifically targeted the dLN led to 
increased numbers of Tpex within this site, and despite therapy 
not being directed at the tumour itself, tumour regression 
was still observed. The authors proposed that Tpex generated 
through blocking the PD-1/PD-L1 axis were then able to seed 
the tumour and give rise to the anti-tumour effects observed, 
providing cellular links between the intratumoural and sys-
temic compartments in the ICB response [37]. Furthermore, 
Dammeijier and colleagues found that it was PD-1/PD-L1 
within dLNs of melanoma patients that predicted a response 
to ICB rather than PD-1/PD-L1 within the tumour itself [37]. 
Recent elegant studies utilising a mouse model of human 
lung adenocarcinoma indicated that a reservoir of stem-like 
CD8 T cells was retained in the dLN and tumour regression 
required cellular egress from this site [38]. These data indi-
cate that despite the self-renewing capacity of the stem-like 
compartment, the intratumoural population of these cells 
is maintained by cellular traffic from draining lymphoid 
tissue. To directly assess the movement of cells into and out 
of tumours, we pioneered the use of the photoconvertable 
transgenic Kaede mouse [39], to temporally label the entire 
tumour immune compartment [40]. Crucially, these data re-
vealed that while CD8 T cells retained in the tumour over a 
few days develop an exhausted phenotype, specific TCF-1+ 
populations including the stem-like subset, egressed to the 
dLN via the afferent lymphatics [40]. Furthermore, in studies 
just published, a two-step maturation of the anti-tumour re-
sponse is proposed, with stem-like cells acquiring an effector 
state only after trafficking to the tumour, rather than full acti-
vation within the dLN [41]. Again, considering our own data 
generated within the Kaede mice, this two-step maturation 

within the tumour is consistent with the prevalence of TCF-
1+ CD8 T cells amongst those newly arriving into the tumour 
and the subsequent emergence of an exhausted effector state 
[40]. Through tracking the fate of intratumoural CD8 T cells 
and also screening the cells that egress, our data indicate that 
other than the stem-like subset, the exhausted CD8 T cells 
remain anchored within the TME. While further studies are 
needed to confirm these observations, at present we see very 
little evidence of exhausted effector cells trafficking between 
the tumour and lymphoid tissue compartments.

Combined, these data clearly indicate that in murine pre-
clinical models, the stem-like niche within tumours is dynamic 
with the continuous traffic of Tpex between sites. Given the 
identification of the supportive niche for the stem-like CD8 
T cells within lymphoid tissue [32], this cellular traffic may be 
important for specific signals that support the long-term main-
tenance of this compartment. In chronic LCMV infection, par-
abiotic mice have indicated that the stem-like compartment 
remains resident within lymphoid tissue [42]. However, the 
systemic nature of LCMV infection makes the comparison 
with the cellular dynamics of a local tumour response chal-
lenging. Whether all stem-like CD8 T cells are equal in their 
migratory capacity remains to be determined and may explain 
the apparent differences in the tissue residency of these cells 
when LCMV infection and tumour models are compared. 
Building on the initial characterization of this key CD8 subset, 
functional heterogeneity, particularly regarding trafficking 
should be investigated. Noteworthy recent studies in LCMV-
infected mice have also indicated that discrete regions of the 
lymph node (LN) favour the differentiation of short-lived 
effectors versus stem-like CD8 T cells [43]. Better resolution 
of how and where stem-like populations are initially formed 
within the tumour-draining LN is needed. Finally, it remains 
to be determined whether stem-like CD8 T cells are altered 
by time within the TME. Should this be the case, then further 
heterogeneity within the dLN stem-like progenitor pool may 
also develop during the anti-tumour response as migratory 
tumour-experienced stem-like CD8 T cells arrive in this tissue. 
Our current understanding of stem-like CD8 T cell trafficking 
and heterogeneity is summarized in Fig. 1C.

Memory responses to tumours
The ultimate goal of ICB therapy is to achieve durable tumour 
regression. As in vaccination, long-term protection against 
cancers should require memory cells. Two questions feel most 
pertinent with regard to memory cells and the anti-tumour 
response. Firstly, are exhausted CD8 T cells able to contribute 
to immunological memory? Secondly, despite the focus on ex-
hausted CD8 T cell populations, do bona fide memory T cells 
contribute to the anti-tumour response and if so, how do these 
roles overlap and complement the exhausted T cell response?

The long-term fate of exhausted CD8 T cells has been re-
cently investigated in elegant studies by Abdel-Hakeem et al., 
who exploited LCMV models to investigate what happened to 
exhausted CD8 T cells when chronic antigen stimulation was 
removed. Through comparing exhausted CD8s with memory 
CD8s recognizing the same LCMV epitope, but generated 
through acute LCMV infection, the authors discovered that even 
after long-term isolation from cognate antigen, the exhausted 
cells remained functionally impaired in their ability to mount re-
call responses [23]. Underpinning this, was the failure to recon-
figure the epigenetic landscape from that established through 
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exhaustion, a mechanism the authors termed ‘epigenetic-
scarring’. The wider implication of this is that the exhausted T 
cell compartment within tumours may be poorly equipped to 
provide future protection against disease recurrence at the same 
site post-treatment or at a distant metastatic site. However, the 
TCF-1+ subset of exhausted CD8 T cells appeared to be the 
least ‘scarred’ in terms of persisting post-transfer, raising the po-
tential for this subset to provide memory-like functions after 
tumour resolution [23]. Returning to our observation that the 
stem-like subset of CD8 T cells egressed to the dLN [40], it is 
tempting to speculate that tumour-experienced stem-like cells 
may become circulatory and thus potentially contribute to sys-
temic surveillance. The initial characterization of Tpex identified 
their expression of the pathways required to circulate through 
secondary lymphoid tissue [25]. Recent studies highlighted the 
presence of a CD62L+ subset of stem-like CD8s within the 
tumour that showed the greatest proliferative capacity in re-
sponse to PD-1 blockade [44]. Thus, functional heterogeneity 
appears evident within the different stem-like fractions and this 
may extend to distinct migratory capacities.

There is increasing evidence that alongside the exhausted 
CD8 T cell compartment in tumours, both memory CD8 and 
CD4 T cells contribute to the enhanced anti-tumour response 
induced by ICB [10, 45, 46]. Since the response fails to clear 
the tumour, rather than only seeding the periphery to protect 
against subsequent re-encounter, memory cells may become 
recruited into the response. Given current evidence that ex-
hausted T cells are impaired in their ability to form memory 
cells [23], it seems most likely that memory CD8 cells are 
formed in parallel (Fig. 1A). Investigations of the systemic 
response to ICB further indicate the importance of memory 
cells within peripheral lymphoid tissues [10]. Single-cell 
RNA sequencing across four different types of human cancer, 
linked an expanded peripheral T cell pool to T cell infiltrate 
in tumours and the subsequent response to immunotherapy 
[11]. These studies hinted that non-exhausted T cell clones 
in the blood may provide a key to understanding the varying 
patient responses to ICB and support patient stratification.

Concluding comments
TILs are essential in successful anti-cancer immune responses. 
ICB enhances the anti-tumour T cell response through driving 
the proliferation and differentiation of stem-like CD8 T cells 
(also called Tpex) to restore the exhausted T cell compartment 
from one dominated by terminally exhausted cells. Memory cells 
formed in parallel with the exhausted T cell compartment further 
augment this response. It seems that the movement of both early 
exhausted and memory T cell populations between the tumour, 
dLN and systemic lymphoid tissue ensures that robust anti-
tumour responses are maintained. A more precise understanding 
of exactly which populations migrate and what this means for 
sustaining the response within the tumour is key. Clinically, a 
better understanding of the dynamics of the anti-tumour T cell 
response could assist in formulating more informed therapeutic 
combinations or improving prognostic markers.
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