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Abstract: Product temperature deviation is an important concern in the cold chain management and 11 

monitoring of food. Existing “rule-based” monitoring solutions are limited to the direct use of air 12 

temperature data of the vehicle used for transport, which can differ significantly from the real temperature 13 

of the food being assessed. Thus, this study focuses on developing a new artificial neural network model 14 

to precisely estimate the temperature of food products that are stored in multi-temperature refrigerated 15 

transport vehicles with minimum sensors. In addition to identifying the temperature in the car, the model 16 

also receives input from a multi-source dataset that includes various information such as the outside 17 

temperature, initial food temperature, door status, loading and unloading times, etc. The result of the 18 

study suggests that the proposed model could substantially enhance estimation accuracy and reliability 19 

with fewer temperature sensors in the transport vehicle. It was found that the root mean square error of 20 

food temperature estimation based on this model could be decreased by 77% and 79% for chilled and 21 

frozen zones, respectively. Moreover, long short-term memory and deep neural networks could avoid 22 

overfitting and reduce their estimation errors by about 55% and 48%, when compared to a back 23 

propagation neural network. Based on sensitivity analysis, food temperature estimation is significantly 24 

influenced by the product’s initial temperature and the cumulative time that a door is open. The proposed 25 
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model could precisely track the real-time food temperature even with sudden ambient changes, thus 26 

enabling precautions to take place when required.  27 

Keywords: Cold chain monitoring; Temperature estimation; Urban delivery; Machine learning; Multi-28 

source data  29 
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Nomenclature 

 

SL0 Initial shelf life (day) Symbols 

SL Remaining shelf life (day) IoT Internet of things 

Q10 The ratio of the reaction rate WSN Wireless sensor network 

Tref The reference temperature ANN Artificial neural network  

∆T The temperature deviation value RMSE Root mean square rror  

t At a certain time BP Back propagation  

k (Tref) The quality change rate at the reference 

temperature 

LSTM Long short-term memory 

RSL The error rate of food shelf-life estimation    

 30 

1. Introduction 31 

Around one-third of all human-produced food worldwide is lost or wasted in the supply chain, 32 

with poor temperature management being one of the main contributors (Blakeney, 2019; Mercier et al., 33 

2017). Temperature-controlled delivery is an integral segment of the cold chain for perishable foods. 34 

Globally, over 4 million refrigerated vehicles are currently in operation with an annual growth rate of 35 

2.5% (Artuso et al., 2019). In China, the annual growth rate of refrigerated vehicles reached 19.1%, 36 

with over 340,000 units in 2021; which is likely due to the increasing demand for perishable food cold 37 

chains (Cold Chain Logistics Committee of CFLP, 2021). 38 

The Internet of Things (IoT) technology has been explored as a potential solution to achieve real-39 

time temperature monitoring throughout food cold chains (Aghbashlo et al., 2015; Tang et al., 2021). 40 

As part of Industry 4.0, the IoT is an Internet-based global architecture that can analyze the digital 41 

identity connection between goods and services through the use of data networks (Birkel and Hartmann, 42 

2020; E.S.A. et al., 2022; Hosseinpour et al., 2014, 2013). Cold chain logistic companies could collect 43 

a series of data by deploying global positioning system-based tracking technology and the wireless 44 

sensor network (WSN), which could gather important information on the geographical locations, 45 

velocities, temperatures, and relative humidities of the food transport vehicles. However, it is neither 46 
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economical nor desirable to install a temperature sensor for each food item (Han et al., 2021). Badia-47 

Melis et al. (2016) showed that the accuracy of equivalent temperatures using fewer sensors was 48 

assured by data mining techniques for cold chain transportation. Evidence of IoT’s effectiveness in 49 

optimizing perishable food product quality has been explored by Salinas Segura and Thiesse (2017) 50 

and is based on a supply chain model of manufacturers, distribution centers, and retailers. The studies 51 

mentioned show that IoT-based delivery significantly reduces food spoilage. Furthermore, data mining 52 

could enable early alert and proactive temperature control systems by extracting rules from large-scale 53 

operational datasets (Li et al., 2010; Wang and Yue, 2017). Overall, it can be concluded that data mining 54 

technology can effectively be used to optimize cold chain processes by investigating the information 55 

underlying the sampling data to maintain the quality of food products (Ruiz-Garcia et al., 2009; Ting 56 

et al., 2014). 57 

Product temperature deviation is a concern in food cold chain monitoring that is based on IoT 58 

technology. A study conducted by Ruiz-Garcia et al. (2010) recorded a maximum temperature of 8.52°C 59 

and a minimum of -3.0°C in a refrigerated vehicle that had a temperature setpoint of 0 oC. Around 98% 60 

of the time, the vehicle’s temperature exceeded the industry’s recommended range (setpoint ± 0.5°C). 61 

Konovalenko and Ludwig (2021) experimented with several scenarios for a large cold chain logistics 62 

company by analyzing a dataset consisting of 19,146 recorded temperature values at multiple 63 

subcontractor stages. They found that only 16.55% of the values were correct because the temperatures 64 

were observed by sensors and evaluated by event-driven, rules-based monitoring across the multimodal 65 

supply chain (including ocean and air transport, warehousing, and distribution).  66 

As summarized in Table 1, previous studies mainly applied information technology to analyze 67 

sensor data for food temperature estimation (e.g., the mean value method, kriging algorithm, capacitor 68 
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algorithm, and artificial neural network (ANN)) (Badia-Melis et al., 2016; Jedermann et al., 2009; 69 

Palafox-Albarran et al., 2015). These studies suggest that adopting suitable algorithms could reduce 70 

the number of temperature sensors while increasing temperature estimation accuracy. For example, the 71 

mean value method, cross-attribute kriging, and ANN were used for food temperature estimation in a 72 

reefer, which required 16, 8, and 8 sensors, respectively, and the corresponding Root Mean Square 73 

Errors (RMSE) were 3.97°C, 1.0°C, and 0.1°C (Badia-Melis et al., 2016; Palafox-Albarran et al., 2015). 74 

The same algorithms used in the previous studies could reduce estimation errors when investigating 75 

the reefer’s temperature database once additional attribute data is added. For example, it was found that 76 

adding humidity data as input variables to the Kriging algorithm reduces estimation errors (Jedermann 77 

et al., 2009; Palafox-Albarran et al., 2015). Proper temperature monitoring and alert are vital in ensuring 78 

the effectiveness of the cold chain in order to avoid food quality and safety issues (Tang et al., 2021). 79 

However, it is challenging to implement a traditional “rule-based” temperature estimation model along 80 

food cold chains because the temperature in a transport vehicle is often unevenly distributed and can 81 

experience significant fluctuations (Badia-Melis et al., 2018; Konovalenko et al., 2021). The rule-based 82 

methodology consists of assigning key thresholds (relying on the available data sources) that are 83 

verified versus the received measurement values; the system yields a notification before corrective 84 

action is taken in the event of deviating values. 85 

Significant gaps remain in the literature as existing studies mainly focus on food temperature 86 

estimation for the refrigerated transport segment and not the other segments of the cold chain like urban 87 

delivery. Many food cold chain studies assume that only single loading and unloading operations occur 88 

during the entire transit. This would suggest that the carriage temperature is relatively constant 89 

throughout the transit. Additionally, the temperature of fresh food delivered by trucks could be affected 90 
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by the following: 1) food characteristics, including heat transfer properties and initial temperatures; 2) 91 

technical variables, including the thermal leakage rate of the vehicle envelope, internal partitions, and 92 

door seals; 3) operational factors, including frequency and accumulation time of loading and unloading, 93 

pre-cooling, and packaging. The models built by data mining that use the internal temperature of the 94 

carriage to estimate the food temperature could have large errors because they disregard the varying 95 

nature of multi-temperature vehicles. Thus, there is a significant challenge in accurately estimating the 96 

temperature of delivered food. 97 

After reviewing the existing literature, it was found that only a few studies have been conducted 98 

to estimate food products’ real temperatures in multi-temperature vehicles during urban delivery. To 99 

tackle the challenge and fill the gaps in the literature as identified above, this study develops a new 100 

ANN model by using multi-source datasets to precisely estimate temperatures with minimum 101 

requirements for the sensors and the transmission bandwidth. Specifically, the contributions of this 102 

study are threefold: 103 

• A novel and innovative ANN model is developed to estimate real-time temperatures of food 104 

products in delivery vehicles. To estimate real-time load temperature in lightly refrigerated 105 

transport vehicles using wireless temperature sensors, effective temperature control management 106 

by machine learning using ANN is critical. This may enable cold chain logistic organizers to 107 

implement strategies (such as reducing energy consumption and ensuring food quality) based on 108 

the proposed ANN model when reliable temperature data is available. 109 

• A comprehensive multi-source dataset following Fishbone Diagram Analysis Framework is 110 

selected to overcome the inadequacies of existing rule-based studies. The proposed ANN model 111 

takes into account key parameters that affect the food products’ temperatures. such as outside 112 
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temperature, initial food temperature, door status and loading/unloading time. 113 

• Lastly, the validity of the proposed ANN model is verified by conducting sensitivity and 114 

uncertainty analyses.   115 

2. Methodology 116 

This study develops and proposes an ANN monitoring model based on a multi-source dataset to 117 

effectively estimate the temperatures of delivered food using a reduced number of sensors. First, multi-118 

source data streams were selected based on the Fishbone Diagram Analysis Framework to identify the 119 

main factors that could affect temperature estimation (see Supplementary Material: Annex 2). Then the 120 

multiple-temperature monitoring system was established to simulate the food delivery process for 121 

collecting on-site experimental training data. Lastly, an improved ANN model was developed and 122 

verified by the multi-source data to precisely estimate the food products’ temperatures in the urban 123 

multi-temperature delivery truck.   124 

2.1 Experimental Development 125 

2.1.1. Truck Parameters 126 

A multi-temperature refrigerated truck experiment was designed in this study to simulate cargo 127 

loading deliveries for obtaining training data. Figure 1 shows the structure of the multi-temperature 128 

refrigerated truck, with a load of 2 tons and dimensional parameters of 5.0×2.0×2.0 m3. The truck was 129 

divided into chilled and frozen zones, with an air outlet speed of 6m/s and an onboard mechanical 130 

refrigeration system. The different sections in the same carriage were separated by a thermal insulation 131 

partition. Heat exchange between the zones is achieved by dust within the air at the top of the carriage. 132 

2.1.2. Layout of Temperature Sensors 133 

Figure 2a shows the layout of ambient temperature sensors inside the carriage. The temperature-134 
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controlled carriage was divided into six sections. Five temperature sensors (10cm away from the inside 135 

carriage body) were arranged in each section. Figure 2b depicts the sensors’ layout to monitor food 136 

temperature. Twenty sensors were positioned in each of the chilled and frozen zones. Temperature sensors 137 

were placed externally on both the left (sun side) and right (shade side) sides of the different sections. 138 

Before testing was done, all the temperature sensors were calibrated, and time lag was tested. The data 139 

acquisition interval of the sensor was set as 10s. The sensors were RC-5 temperature and humidity 140 

sensors (manufactured by Shenzhen Jingchuang Company, with a temperature measurement range of -141 

40°C to 70°C and an accuracy of ±0.2°C). 142 

2.1.3. Cargo Loading and Assumptions 143 

Figure 3 shows the layout of the simulated carriage at its rated full load. The chilled zone was loaded 144 

with four pallets, each with six boxes and four layers of fruits (citrus and bananas) which were packed in 145 

corrugated cartons and stacked in tight piles. Meanwhile, the frozen zone was loaded with four standard 146 

pallets, each stacked with six boxes and four layers of frozen goods (corn, carrots, and cucumbers). The 147 

middle of pallets was reserved for ventilation gaps. The specific setup, process and assumptions are as 148 

follows: 149 

(1) The trial was conducted in both the summer and winter seasons. Inside the carriage, the air 150 

temperatures of the chilled and frozen zones were set at 0℃ and -18℃ for a period of 5 days 151 

during the winter. During the summer, the temperatures of the chilled and frozen zones were set 152 

to 12℃ and -18℃ for a period of 8 days. 153 

(2) It was assumed that the carriage had 10 delivery points each day. According to a survey 154 

conducted by the Guangzhou Transportation Group's cold chain delivery center, the intervals 155 

between cargo loading and unloading were generated by random numbers between 35–60mins. 156 
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The truck door was open at each delivery point for a duration of 2-6 minutes.  157 

(3) The food products had both pre-cooled and non-precooled thermal states. Three days of non-158 

precooling were assumed for the delivery of citrus, whilst two days of non-precooling were 159 

assumed for bananas. The product’s initial temperature varied depending on the food category 160 

and thermal state. 161 

(4) Figure 4 illustrates a delivery scheme to prevent overfitting and ensure full data coverage of the 162 

space. The detailed loading/unloading scheme is shown in Supplementary Material: Annex 1. 163 

The test procedure is designed as follows: the refrigeration system had a fault state of 15h. The 164 

fan failure was 5h. The return air tank was partially blocked for 5h and the air supply tank was 165 

partially blocked for 5h. Finally, the study tested different load/unload times when the door 166 

would remain open (12min, 16min, and 20min) in non-standard operating conditions to validate 167 

the effectiveness of the proposed model. A total of 22,750 valid records were collected for the 168 

two experiments, each containing data from 72 temperature sensors and 2 door status sensors. 169 

A detailed analysis of the temperature data can be found in Supplementary Material: Annex 3.  170 

2.1.4.   Shelf-life Estimation Model  171 

As shown in Eq. 1, this study used a simple calculation method for the edible food threshold based 172 

on a residual shelf life estimation model proposed by Jedermann et al. (2013) and Zou et al. (2022).  173 

𝑆𝐿 = 𝑆𝐿0 − [1 + (𝑄10 − 1) ∙
∆𝑇

10
] × 𝑘(𝑇𝑟𝑒𝑓) × 𝑡                                                   (1) 174 

where t is time, Tref is the reference temperature, k (Tref) is the mass change rate at the reference 175 

temperature, ∆T is the temperature deviation value, and SL0 and SL represent the initial shelf life and the 176 

remaining shelf life after t, respectively. Q10 is the ratio of the reaction rate at the temperature Tref +10 177 

and that at temperature Tref , ranging from 2 to 4 at a temperature of 0-10℃. Given the complexity and 178 



10 

 

variance of the relation between shelf life and temperature, Q10 is set to be 3 in this study. 179 

Equation 2 shows how the reduced shelf life in time t was calculated. 180 

𝑆𝐿(𝑇𝑟𝑒𝑓 + ∆𝑇) = 𝑆𝐿0 − 𝑆𝐿 = [1 + (𝑄10 − 1) ∙
∆𝑇

10
] × 𝑘(𝑇𝑟𝑒𝑓) × 𝑡                                    (2) 181 

Equation 3 shows how to calculate the error rate of food shelf-life estimation 𝑅𝑆𝐿 versus the 182 

temperature deviation value.  183 

𝑅𝑆𝐿 =
𝑆𝐿(𝑇𝑟𝑒𝑓+∆𝑇)−𝑆𝐿(𝑇𝑟𝑒𝑓)

𝑆𝐿(𝑇𝑟𝑒𝑓)
= (𝑄10 − 1)

∆𝑇

10
                                               (3) 184 

The general temperature error was between 0.5°C and 1.0℃, which corresponds to 10% and 20% 185 

shelf-life estimation errors, respectively. Assuming that the temperature error reaches 1.5℃ and 2.0℃, 186 

the relative shelf-life estimation errors would be 30% and 40%. For this study, the error of shelf-life 187 

estimation is considered to be within 10%, while temperature estimation error shall not exceed 0.5°C.  188 

2.2 Artificial Neural Network (ANN) Model  189 

2.2.1. Data Selection 190 

This study used multi-source data to manage the temperature in the cold chain delivery of food. The 191 

multi-source data stream included ambient temperature sensors inside the carriage and information 192 

collected on logistics operation, food characteristics, environment, and equipment. The analysis 193 

framework of the fishbone diagram was applied, including "human, machine, material, law, and 194 

environment" elements to identify the main factors that could affect food temperature estimation. This 195 

study did not consider the influence of human factors on temperature estimation because they would be 196 

difficult to predict and control. The specific method used for determining the multi-source data stream is 197 

shown in Supplementary Material: Annex 2. Based on the assumptions, availability and applicability of 198 

the data, the multi-source data stream was selected and included the ambient temperature inside the 199 

carriage, precooling or not, car door status, outside temperatures, initial food temperatures, and the 200 
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cumulative loading and unloading times. 201 

2.2.2. ANN Model Structure 202 

The ANN model has been widely recognized to effectively estimate the temperature patterns of 203 

heat-generating fresh fruits and vegetables (Nunes, et al., 2014). As shown in Figure 5, this ANN model 204 

consisted of an input layer, a hidden layer, and an output layer. The number of nodes in the input and 205 

output layers was relatively fixed in the specific example presented. Given that this estimation used all 206 

structured temperature state data, the number of hidden layers should be adjusted based on the target 207 

performance requirements. Therefore, the ANN model can estimate the real food temperature by relying 208 

on multisource data streams (Figure 5). Twenty food temperature sensors are located in each chilled and 209 

frozen zone, resulting in 20 neurons in the ANN output layer. The input layer neuron of the chilled zone 210 

consists of three types of data sources: 1) door status, including one sensor that detects the open/close 211 

door status and a counter that calculates the accumulative time that the door is open 2) food parameters, 212 

including initial temperature and heat status (two of these parameters were acquired when leaving the 213 

warehouse, so there was no need to increase the sensing equipment in the carriage); 3) temperature 214 

information, including one outside temperature sensor, one frozen zone ambient temperature sensor, and 215 

one to six chilled compartment ambient temperature sensors. The overall ANN structure of the frozen 216 

zone was the same as the chilled zone. A temperature sensor in the carriage was added as needed: (1) one 217 

neuron was used to observe the estimation error between the estimated temperature and the real 218 

temperature; and (2) the number of temperature sensors in the carriage was increased to two until the 219 

estimation accuracy was achieved (RMSE≤0.5°C). 220 

2.2.3. Machine Learning Algorithms and Training Methods 221 

The Back Propagation (BP) neural network is a multi-layer feedforward neural network that could 222 
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learn and store a wide range of input-output pattern mapping relationships (Shih and Wang, 2016). BP 223 

neural networks use the fastest descent method to continuously adjust weights and thresholds, which 224 

ultimately minimizes the network's squared errors (Leng et al., 2019). Typical learning algorithms are 225 

the Levenberg Marquardt (LM) algorithm, the bayesian regularization algorithm, and the conjugate 226 

gradient algorithm (Chen et al., 2013). Based on the performance comparison of algorithms, this study 227 

selected the LM algorithm (see Supplementary Material: Annex 4 for an explanation). Samples were 228 

divided into three parts: training sets (70%), validation sets (15%), and test sets (15%) based on 229 

preliminary analysis (Tang et al., 2021; Xu et al., 2013).  230 

3. Results and Discussion 231 

Developing an improved ANN model using multi-source data to achieve precise food temperature 232 

estimation during urban delivery requires balancing the performance and information technologies (i.e., 233 

sensor configuration, bandwidth demand, and computational resource consumption). The effects this 234 

has on food temperature estimation results are analyzed and discussed in the following sections. 235 

3.1. Food Temperature Estimations 236 

Table 2 shows that the estimation error decreases with an increase in the number of sensors. The 237 

test set error is 2.35°C with only one ambient temperature sensor deployed in the chilled zone. The test 238 

set error is then reduced to 1.32°C once six sensors are installed. Overall, the estimation error between 239 

one and six sensors was decreased by 43.0%. This indicates that there is a significant increase in 240 

estimation accuracy when more temperature monitoring sensors are used. Badia-Melis et al. (2016) 241 

implemented the ANN model to achieve a temperature estimation error of 1.49°C, using only one sensor 242 

in a single-temperature reefer (the results are compared Table 1). However, for this study, six sensors 243 

were required to reach an acceptable level of accuracy which indicates that temperature estimation is 244 
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considerably more demanding for multi-temperature reefer than for a single-temperature one. 245 

Additionally, the shelf-life estimation error could reach around 30% according to Eq. (3) when using 2 × 246 

6 sensors to monitor food temperature. Therefore, improving the temperature estimation accuracy by 247 

merely increasing the number of onboard temperature sensors is economically unfeasible. 248 

3.2. The Effect of Food Temperature Estimation Based on Multi-Source Data   249 

Table 3 presents the performance results of an ANN estimation of RMSE based on multi-source 250 

data after 100 epochs. The results show that the RMSE of training and validation sets is 0.54°C, while 251 

the RMSE of the test set data is 0.53°C. This error value is reduced by around 77% when compared to 252 

only using ambient temperature sensor data. The results from the frozen zone show a temperature 253 

estimation error of 0.61°C for the test set. This error value is reduced by around 79% when compared to 254 

only using ambient temperature sensor data. As shown in Tables 2 and 3, the error in the ANN model 255 

based on multi-source data is reduced by about 60% when compared to the conventional rule-based 256 

methods (6 sensors used). 257 

Error distribution plots were created to verify the results. As shown in Figure 6, the multi-source 258 

data temperature estimation errors are well-distributed. Temperature estimation errors are predominantly 259 

distributed between -0.5°C and 0.3°C in the chilled zone and between -0.35°C to 0.60°C in the frozen 260 

zone. The percentage of absolute temperature estimation errors beyond 1.0℃ is very rare. Thus, this 261 

ANN model using multi-source data could lead to significantly improved food temperature estimation 262 

performance. 263 

3.3. Experimental Verification 264 

Figure 7a compares temperature changes with time (i.e., ambient temperature, real food temperature, 265 

and estimated temperature) inside the multi-temperature carriage. The estimated temperature roughly 266 
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coincides with the real temperature, which suggests that the ANN model using multi-source data 267 

performs well in the case of sudden changes in food temperature. To further demonstrate this finding, an 268 

indirect precooling test was designed, i.e., bananas were not pre-cooled before day 8, but were pre-cooled 269 

to 11°C before loading for distribution on day 9. It can be found from the results shown in Figure 7b that 270 

although the difference between the ambient temperature values for those two days is minor, the real 271 

food temperature varies dramatically, especially at the jump-change point (circled in red). When the food 272 

temperature suddenly drops by 8°C or more, such changes are well-tracked with a multi-source data 273 

approach based on this improved ANN model. However, the difference between the ambient and real 274 

temperature values is significant, with a maximum error of over 10°C. 275 

Figure 8 shows a significant difference between the ambient temperature and the real temperature 276 

of the food in the frozen zone. This is because the sensor was incapable of quickly detecting the real food 277 

temperature, while the temperature difference exceeds 15°C between the initial food temperature (around 278 

-15°C) and the ambient temperature of the carriage（>0℃）during the daily loading. The food temperature 279 

estimation largely agrees with the precise temperature curve (Figure 8). This indicates that the food 280 

temperature in the frozen zone could also be accurately predicted based on the improved ANN model. 281 

3.4. Sensitivity Analysis 282 

3.4.1 Effect of Multi-Source Data Variability in Two Temperature Zones 283 

Table 4 shows the RMSE of the test set as the variation in multi-source data of the chilled zone 284 

compared to the original results. The factors influencing the estimation performance in descending order 285 

are initial food temperature, cumulative time that the door is open, frozen zone temperature, precooling, 286 

door status, and outside temperature. The initial food temperature has the most significant impact on the 287 

estimation outcome. However, previous studies did not include initial food temperature data in the ANN 288 
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model, potentially causing significant estimation error (Mercier et al., 2017). Secondly, the pre-cooling 289 

stage and process is crucial in maintaining the quality of perishable foods (Do Nascimento Nunes et al., 290 

2014). It is noted that the initial food temperature data included the pre-cooling data of food products in 291 

this study. Next, the cumulative time that the door is open considerably contributes to food temperature 292 

estimation. Without considering this factor, the error is increased by 0.21°C. Food temperature rises 293 

rapidly during distribution due to door-opening operations, which is consistent with the findings of Abad 294 

et al. (2009), Koutsoumanis et al. (2010), and McKellar et al. (2014). For example, Abad et al. (2009) 295 

monitored a temperature increase of 2°C during the loading and unloading fresh fish. The temperature 296 

could increase by 10°C in summer during the loading and unloading of lettuce (McKellar et al., 2014). 297 

However, Abad et al. (2009) and Tsang et al. (2018) only focused on temperature changes in single 298 

loading and unloading operations rather than the cumulative time that the door is open. Lastly, the 299 

temperature difference between zones influences the food temperature estimation error (about 0.1°C) in 300 

the chilled zone because the partitions are not thoroughly heat-insulated (Liu et al., 2019; Tsang et al., 301 

2018). When considering the non-linear interaction of the temperatures between frozen and chilled zones 302 

in the same carriage (Konovalenko et al., 2021), integrated analysis of the temperature sensor data 303 

synthesis is imperative. 304 

Table 5 demonstrates the effects of multi-source data variability on food temperature estimation in 305 

the frozen zone. The magnitude of the influence of the RMSE on food temperature estimation is in the 306 

same order as the results for the chilled zone. The estimation error is increased from 0.61℃ to 1.01℃ 307 

(the initial temperature of food is excluded). Similarly, the error goes up by 0.73°C when not taking into 308 

account the cumulative time that the door is open. Other factors, such as door status and outside 309 

temperature data, hardly influence the estimation results. Based on benchmark results, the location of the 310 
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temperature sensor also has little impact on temperature estimation. However, this is not the case when 311 

using Kriging-based algorithms (Badia-Melis et al., 2016; Jedermann et al., 2009; Palafox-Albarran et 312 

al., 2015). 313 

3.4.2 Effect of the Data Acquisition Interval on the Estimation Performance 314 

In addition to potentially using fewer sensors, temperature monitoring systems aim to transmit a 315 

smaller volume of data to the cloud, which requires maintaining a relatively longer data acquisition 316 

interval while ensuring temperature estimation accuracy (Tang et al., 2021). As such, this study analyzed 317 

the influence that different data acquisition intervals had on the temperature estimation errors by focusing 318 

on the chilled zone. As seen in Table 6, the overall impact that the data acquisition interval had on the 319 

temperature estimation errors is relatively low. It grows slightly as the data acquisition interval increases, 320 

for example, the average values at 10s, 1min, and 2min are 0.50℃, 0.50℃, and 0.52℃, respectively. 321 

Assuming that the acquisition interval is extended to 5 min, the average error in food temperature 322 

estimation is only 0.57°C. It increases by 14% over 10s under the corresponding control, but the amount 323 

of transmitted data is reduced to 1/30. Although the short data acquisition intervals (<1s) can be achieved 324 

by the development of 5G and IoT technologies, it implies that higher bandwidth requirements are 325 

associated with energy consumption (Li et al., 2018; Zhu et al., 2022). The recommended criterion for 326 

temperature data acquisition interval in China is 5 minutes or less (GB/T 24616, 2019). Thus, it is 327 

suggested that a data acquisition interval of 2-3 min is reasonable (the error shall be limited to about 328 

0.5℃). Additionally, future studies on data acquisition intervals shall consider fault warnings for building 329 

an efficient temperature monitoring system (Tang et al., 2021). 330 

3.4.3 Effect of Machine Training Models on the Estimation Performance  331 

This study also examines the effectiveness of BP, long short-term memory (LSTM), and deep 332 
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learning networks on temperature estimation error values. The RMSE of food temperature estimation for 333 

different ANN models is presented in Table 7. The LSTM contains one hidden layer by employing the 334 

"Adam" optimizer for the dataset training test. The temperature estimation error is 0.24°C without the 335 

dropout layer. A dropout layer with a regularization process is then added to avoid overfitting, yielding a 336 

test set RMSE output of 0.53°C for the estimation error. This outcome is essentially the same as the one 337 

from the BP network. Considering that the LSTM network generates up to thousands of parameters, the 338 

study recommends a more accessible BP network in case there is no particularly high demand for 339 

temperature estimation accuracy. 340 

A deep learning network model was built to examine the performance of adding hidden layers on 341 

the reliability of temperature estimation. A dropout layer is added after each hidden layer to prevent 342 

overfitting. The RMSE of the test set is 0.51°C when there are two hidden layers in the network, which 343 

is a similar result to the BP network. When the network has three hidden layers, the RMSE of the test set 344 

decreases to 0.33°C. As such, the deep neural network enables better temperature estimation, but it is 345 

complicated because of the significant number of parameters, memory usage, and computation time. 346 

3.5. Uncertainty Analysis 347 

An uncertainty analysis was conducted to determine how uncertainties in multi-source data affect 348 

the reliability of the temperature estimation results. The Pearson correlation coefficient (R) was utilized 349 

to measure a linear correlation between the estimated and real food temperatures. As shown in Figure 9, 350 

the overall R of the chilled and frozen zones is 0.995 and 0.990 in the same carriage. This indicates that 351 

estimated temperature highly correlates with the real temperature in a multi-temperature carriage. These 352 

results show that the model proposed in this study presents a lower level of uncertainty in food 353 

temperature estimations.   354 



18 

 

3.6. Practical Implication and Limitations 355 

To estimate real-time loading temperatures in refrigerated transport vehicles using wireless 356 

temperature sensors, precise temperature control management by machine learning using ANN is critical. 357 

The option for machine learning to only be trained by air temperature inside the vehicle is limited when 358 

using one or a few sensors in transit. As an alternative, increasing the number of sensors is essential to 359 

reduce the uncertainty related to the applied assumptions. However, the ANN is hampered by the 360 

deployment cost, which could also result in expensive human resource costs, as analysing the data 361 

patterns sampled from the multi-temperature vehicle is very complicated. Therefore, cold chain logistic 362 

organizers must consider how to improve the model’s precision using fewer temperature sensors. 363 

Furthermore, although experimental data (collected from the laboratory and field) are often incomplete 364 

(i.e., few measured food products and uncertain environmental conditions) the first-hand data generated 365 

by the experiment are more robust to construct a training dataset for the machine learning model. This 366 

may enable cold chain logistic organizers to implement strategies (such as reducing energy consumption 367 

and ensuring food quality) based on the proposed ANN model when reliable temperature data is available. 368 

Thus, the findings from this study can be used as a basis for temperature management across the food 369 

cold chain and as a reference for decision-making systems of food and pharmaceutical cold chain 370 

operations.  371 

However, it is important to note that there are several research limitations in this study. First, the 372 

representativeness of the food samples used in the study is limited due to high financial costs and long 373 

testing periods. The samples tested were oranges, bananas, and several frozen vegetable products. Future 374 

research requires the inclusion of a wider variety of raw food products to improve the generalization of 375 

the estimation model. In addition, the theoretical construction of multi-temperature refrigerated vehicles 376 
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is limited by environmental conditions and other realistic delivery factors - all of which have an influence 377 

on the temperature of the food products. The temperature profiles of the food products are also influenced 378 

in a multi-directional manner, with the external environment and the internal heat generated by the 379 

product having an effect. Further research is needed to increase the accuracy of the estimation model by 380 

considering variables representing predictive concerns, such as the number of delivery points, loading 381 

and unloading times, reefer models, and load capacities.  382 

4. Conclusions and Prospects 383 

This study proposes an improved ANN model using multi-source data to precisely estimate the 384 

temperature of delivered food products based on an experimental set-up. The main conclusions are: 385 

1) The proposed ANN model could substantially enhance estimation accuracy and reliability in 386 

comparison to the models trained with only the internal air temperature dataset. Compared to the 387 

traditional ANN models trained with one temperature sensor dataset, the RMSE of food temperature 388 

estimation using the improved ANN model could be decreased by 77%-79%. Most importantly, the 389 

improved ANN model can precisely track the real-time food temperature under sudden temperature 390 

changes, thus enabling precautions to take place when required. 391 

2) Different multi-source dataset categories could affect food temperature estimation to various extents. 392 

Thus, it is important to rank their influence based on a sensitivity analysis. The results suggest the 393 

following ranking in ascending order: initial food temperature, cumulative door opening time, 394 

frozen zone temperature, pre-cooled temperature, external temperature, and door status. 395 

3) The recommended data acquisition interval is 2-3 minutes. It was found that extending the data 396 

acquisition interval does not significantly reduce temperature estimation errors. 397 

4) Different ANN models like LSTM and deep learning networks can improve estimation accuracy 398 



20 

 

and prevent overfitting. Compared to the BP network, the temperature estimation error of LSTM 399 

without the dropout layer and deep learning networks with three hidden layers could be decreased 400 

by around 55% and 48%, respectively.  401 

The implementation of the proposed ANN model in urban food delivery can lead to the construction of 402 

a multi-decision system for the agrifood supply chain, including real-time food quality monitoring, 403 

temperature alerting, and refrigeration system fault detection. Given the complexity of the ANN model, 404 

the critical focus for future research should be optimizing the model database and strengthening the 405 

generalization capability. This would help cold chain operators to detect and prevent temperature chain 406 

breaks on time and ultimately reduce food loss.  407 
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 524 

Figure 1 Structure of the multi-temperature refrigerated truck 525 

    526 

                   (a)                                          (b) 527 

Figure 2 Layout of temperature sensors (a: ambient temperature sensors inside the carriage; and b: food 528 

temperature sensors) Note: The capital letters A, B, C, D, E, and F indicate the layout of the temperature 529 

sensors inside the vehicle from rear to front, where A, B, and C is in the chilled zone and D, E, and F in 530 

the frozen zone. No. 1 to 5 indicates the number of sensors in the same section. The red dots in the Figure 531 

represent sensors.   532 
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     533 

                (a) Chilled zone                         (b) Frozen zone 534 

Figure 3 Cargo stacking diagram in the carriage 535 

 536 

Figure 4 Percentage of collected data influenced by various factors (chilled zone) 537 
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 538 

Figure 5 The ANN model for food temperature estimation (chilled zone) 539 

 540 

(a) Chilled zone 541 
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 542 

(b) Frozen zone 543 

Figure 6 Error distribution in temperature estimation  544 

 545 

(a) 546 
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 547 

(b) 548 

Figure 7. Three temperature profiles in the chilled zone. (a: normal refrigerated temperature; and b: a 549 

sudden change in refrigerated temperature at a certain period of time) 550 

 551 

Figure 8. Three temperature profiles in the frozen zone 552 



31 

 

 553 

(a) Chilled zone 554 



32 

 

 555 

(b) Frozen zone 556 

Figure 9. The linear correlation (R) between estimated and real temperatures    557 

Table 1 The main methods for temperature estimation and performance analysis from the existing 558 

literature 559 

Methods Objects Logistics 
Temp.* 

sensors 

RMSE* 

（℃） 

Data 

source 
Reference 

Mean value 
Reefer 

containers 

Trans.* 
16 3.97 

Exp.* (Badia-Melis 

et al., 2016) 

Simple interpolation Pallets 

Trans. 

28 0.2 

Exp. (Jedermann 

and Lang, 

2009) 

Kriging 
Reefer 

containers 

Trans. 
16 1.32 

Exp. (Badia-Melis 

et al., 2016) 

Kriging Truck 
Trans. 

30 0.5 
Exp. (Jedermann et 

al., 2009) 
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Kriging Truck 

Trans. 

8 2.2 

Exp. (Jedermann 

and Lang, 

2009) 

Cross-attribute Kriging 
Reefer 

containers 

Trans. 

8 1.0 

Exp. (Palafox-

Albarran et 

al., 2015) 

Fuzzy multiple objective 

decision making 
Truck 

Trans. 
7 1.79 

Exp. (Liu et al., 

2014) 

Capacitor method 
Reefer 

containers 

Trans. 
1 1.28 

Exp. (Badia-Melis 

et al., 2016) 

ANN* 
Reefer 

containers 

Trans. 
8 0.11 

Exp. (Badia-Melis 

et al., 2016) 

ANN 
Reefer 

containers 

Trans. 
1 1.49 

Exp. (Badia-Melis 

et al., 2016) 

ANN 
Reefer 

containers 

Trans. 
4 0.32 

Exp. (Badia-Melis 

et al., 2016) 

ANN 
Reefer 

containers 

Trans. 
3 0.37 

Exp. (Badia-Melis 

et al., 2016) 

ANN Pallet 
Sup. * 1/each 

pallet 
<0.5 

Exp. (Mercier and 

Uysal, 2018) 

ANN  
Multi-temp. 

truck 

Deliv. * 
4 0.54 

Exp.  
The study 

LSTM 
Multi-temp. 

truck 

Deliv. 
4 0.24 

Exp. 
The study 

Deep learning 
Multi-temp. 

truck 

Deliv. 
4 0.33 

Exp. 
The study 

*Abbreviations: ANN represents Artificial Neural Network; RMSE means Root Mean Square Error; 560 

Trans., Deliv., Exp. and Sup. represent transportation, delivery, experiment, and supply chain respectively. 561 

Temp. represents temperature.  562 

Table 2 ANN estimation of RMSE using ambient temperature data with four sets of temperature sensors 563 

Sets of temperature 

sensors *  

Chilled zone (RMSE) /℃ Frozen zone (RMSE) /℃ 

Training Validation Test Training Validation Test 

One a 2.35 2.33 2.35 2.93 2.97 2.96 

Two b 2.28 2.29 2.31 2.06 2.08 2.10 

Three c 2.00 2.03 1.98 1.77 1.75 1.78 

Six d 1.34 1.35 1.32 1.57 1.59 1.58 

Note: * The number below represents all temperature sensor sets associated with the smallest estimation 564 

error. a. one sensor, i.e., only the current ambient temperature monitoring sensor (A2) is used in the 565 

chilled zone; b. two sensors, i.e., A2+B1; c. three sensors, i.e., A2+B1+C2; d. six sensors, i.e., all sensors 566 

on the top surface of the compartment are used as the source of sensors, A1+A2+B1+B2+C1+C2. The 567 

location of each sensor is shown in Figure 2. 568 
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Table 3 ANN estimation of RMSE based on multisource data 569 

Sets of temperature 

sensors  

chilled zone (RMSE) /℃ Frozen zone (RMSE) /℃ 

Training Validation Test Training Validation Test 

One  0.54 0.54 0.53 0.61 0.62 0.61 

Two  / / / 0.57 0.58 0.57 

Table 4 Effect of various data sources on temperature estimation errors in the chilled zone 570 

Ambient 

temperature sensor 

inside the carriage 

Outside 

temp./ ℃ 

Frozen 

zone 

temp./ ℃ 

Pre-

cooled/ ℃ 

Initial 

temp./ ℃ 

Door 

status/ ℃ 

Cumulative 

door opening 

time/ ℃ 

Benchmark/ ℃ 

A1 0.53 0.59 0.56 0.94 0.55 0.73 0.48 

A2 0.53 0.62 0.56 0.93 0.53 0.66 0.50 

B1 0.51 0.58 0.61 0.89 0.52 0.71 0.53 

B2 0.53 0.60 0.54 0.91 0.48 0.67 0.52 

C1 0.57 0.53 0.52 0.85 0.50 0.71 0.52 

C2 0.55 0.57 0.52 0.93 0.56 0.76 0.46 

Average 0.54 0.58 0.55 0.91 0.52 0.71 0.50 

Note: The first column is the location of the ambient temperature sensor in the chilled zone (Figure 2). 571 

The benchmark is the RMSE of temperature estimated when all multisource data is used as input. The 572 

other columns are the RMSE of temperature estimated after excluding the data. All the above data refer 573 

to the RMSE of the test set. 574 

Table 5 Effect of various diversity data on temperature estimation errors (frozen zone) 575 

Ambient 

temperature sensor 

inside the cabin 

Outside 

temp./ ℃ 

Frozen 

zone 

temp./ ℃ 

Initial 

temp./ ℃ 

Door 

status/ ℃ 

Cumulative 

door opening 

time/ ℃ 

Benchmark/ ℃ 

D1 0.74 0.81 1.06 0.64 0.74 0.62 

D2 0.70 0.66 1.09 0.59 0.69 0.58 

E1 0.69 0.66 1.03 0.65 0.71 0.64 

E2 0.65 0.62 1.09 0.63 0.82 0.62 

F1 0.69 0.68 0.96 0.66 0.69 0.63 

F2 0.64 0.72 0.84 0.62 0.73 0.58 

Average 0.68 0.69 1.01 0.63 0.73 0.61 

Note: The first column is the location of the ambient temperature sensor in the frozen zone (Figure 2). 576 

The benchmark is the RMSE of temperature estimation when multisource data is input. The other 577 

columns are the RMSE of temperature estimation after excluding this data. All the above data refer to 578 

the RMSE of the test set. 579 

Table 6 The RMSE of food temperature estimation error at different data acquisition intervals. 580 

Diversity data 10s/ ℃ 30s/ ℃ 1min/ ℃ 2min/ ℃ 3min/ ℃ 4min/ ℃ 5min/ ℃ 

A1 0.48 0.55 0.50 0.57 0.56 0.57 0.58 
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A2 0.50 0.56 0.50 0.49 0.57 0.57 0.59 

B1 0.53 0.54 0.53 0.51 0.55 0.59 0.56 

B2 0.52 0.50 0.48 0.56 0.58 0.59 0.57 

C1 0.52 0.57 0.53 0.50 0.51 0.53 0.53 

C2 0.46 0.51 0.47 0.50 0.55 0.57 0.57 

Average 0.50 0.54 0.50 0.52 0.56 0.57 0.57 

Note: The first column indicates that the input diversity data contains one temperature sensor at different 581 

locations. 582 

Table 7 The RMSE of food temperature estimation for different ANN models. 583 

Network types BP 

LSTM Deep neural network 

One hidden 

layer 

One hidden layer+ 

One dropout layer 

Two hidden layers + 

Three dropout layers 

Three hidden layers + 

Three dropout layers 

RMSE/ ℃ 0.53 0.24 0.53 0.51 0.33 

 584 


