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Clinical prediction models provide individualized outcome predictions to
inform patient counseling and clinical decision making. External validation is
the process of examining a prediction model’s performance in data indepen-
dent to that used for model development. Current external validation studies
often suffer from small sample sizes, and subsequently imprecise estimates of
a model’s predictive performance. To address this, we propose how to deter-
mine the minimum sample size needed for external validation of a clinical
prediction model with a continuous outcome. Four criteria are proposed, that
target precise estimates of (i) R2 (the proportion of variance explained), (ii)
calibration-in-the-large (agreement between predicted and observed outcome
values on average), (iii) calibration slope (agreement between predicted and
observed values across the range of predicted values), and (iv) the variance of
observed outcome values. Closed-form sample size solutions are derived for each
criterion, which require the user to specify anticipated values of the model’s
performance (in particular R2) and the outcome variance in the external val-
idation dataset. A sensible starting point is to base values on those for the
model development study, as obtained from the publication or study authors.
The largest sample size required to meet all four criteria is the recommended
minimum sample size needed in the external validation dataset. The calcu-
lations can also be applied to estimate expected precision when an existing
dataset with a fixed sample size is available, to help gauge if it is adequate.
We illustrate the proposed methods on a case-study predicting fat-free mass in
children.
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134 ARCHER et al.

1 INTRODUCTION

Clinical prediction models provide individualized outcome predictions to inform patient counseling and clinical deci-
sion making, such as treatment and monitoring strategies.1-3 Depending on the context, they may also be referred to as
clinical prediction tools, diagnostic or prognostic models, risk scores, and prognostic indices, among other names. They
are typically developed using a regression framework, which provides an equation to predict the outcome conditional on
the values of multiple predictors (variables, covariates). In this article, we focus on prediction of continuous outcomes
(such as birth weight, depression score, blood pressure or fat mass), for which the model equation is typically a linear
regression. Such models can be used to predict an individual’s expected outcome value, conditional on the individual’s
predictor values. The outcome may relate to something current (eg, fat mass level at present) or in the future (eg, pain
score at 1 month after a back injury).

Recently we proposed how to calculate the minimum sample size needed to develop a prediction model with a con-
tinuous outcome.4,5 Once a model has been developed, it is important to evaluate its predictive performance in new
data, independent to that used to develop the model. This process is known as external validation, and is usually crucial
regardless of how a model was developed. In particular, external validation indicates how the model performs in new
data that is representative of the target population to which the model will be used in practice.6-13 However, despite being
widely encouraged and having its importance clearly demonstrated,13-19 external validation of published prediction mod-
els is rare in practice, with researchers predominately focusing on the development of new models.19 Even when external
validation is performed, the sample size is often too small to provide reliable conclusions about a model’s predictive per-
formance and key measures are often neglected; in particular, calibration of predicted and observed outcome values is
rarely examined.16

In this article, we propose criteria to determine the minimum sample size needed for external validation of a clin-
ical prediction model with a continuous outcome. We suggest the minimum sample size needs to be large enough to
precisely estimate three key measures of predictive performance: calibration slope (agreement between predicted and
observed values across the range of predicted values), calibration-in-the-large (CITL, agreement between predicted and
observed outcome values on average), and R2 (the proportion of variance explained). Section 2 introduces these per-
formance measures, while in Section 3, we derive three closed-form solutions for the sample size required to estimate
each of them precisely. As these solutions depend on the variance of observed outcome values, we also present a fourth
criterion that aims to ensure this variance is estimated precisely. Hence, our sample size calculation comprises check-
ing four criteria, and we suggest the largest sample size calculated from the four approaches is used as the minimum
required for the external validation. Section 4 applies our proposal to an applied example, and Section 5 concludes with
discussion.

2 KEY MEASURES OF PREDICTIVE PERFORMANCE FOR A CLINICAL
PREDICTION MODEL WITH A CONTINUOUS OUTCOME

Assume that we wish to externally validate an existing prediction model for a continuous outcome, and have obtained
a suitable external validation dataset containing a sample of individuals from the target population of interest. We now
describe how to quantify the prediction model’s performance in this dataset.

First, the researcher needs to calculate the existing model’s predicted (expected) outcome value (YPREDi) for each
individual (i). As the outcome is continuous, the existing prediction model equation will usually be in the form of
a linear regression and so contain an intercept (𝛼), and predictor effects (𝛽1, 𝛽2, 𝛽3, etc) corresponding to predic-
tor variables (X1i, X2i, X3i, etc). For example, with three predictors a simple example of an existing prediction model
equation is:

YPREDi = 𝛼 + 𝛽1X1i + 𝛽2X2i + 𝛽3X3i. (1)

However, in practice the right hand side of the model equation (also known as the model’s linear predictor) may be far
more complex, for instance with more than three predictors and potential interactions and non-linear terms (eg, defined
by splines or polynomials). A real example is given in Box 1.
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ARCHER et al. 135

BOX 1 Hudda et al prediction model for the natural logarithm of ln(fat-free mass) in children20

Ln(fat-free mass) = 2.8055+ (0.3073×height2) − (10.0155×weight−1) + (0.004571×weight)+ (0.01408×BA)
−(0.06509× SA)− (0.02624×AO)− (0.01745× other) − (0.9180× ln(age))+ (0.6488× age0.5) + (0.04723×male)

• Predictor variables of black (BA), south Asian (SA), other Asian (AO), or other (other) ethnic origins are all
binary, with value of 1 if individual has the particular origin and 0 otherwise

• Height is measured in meters, weight in kilograms, age in years, and fat-free mass in kilograms

Clearly, the external validation dataset must contain values for all the predictors (X1i, X2i, X3i, … ) included in the
prediction model equation, so that YPREDi can be calculated by applying the model’s equation to each individual. The
dataset must also contain the observed outcome value (Y i) for each individual, so that the prediction model’s predictive
performance can then be quantified by comparing the YPREDi values to the Y i values.

We now introduce three key statistics to quantify a model’s predictive performance upon external validation, which
focus on overall model fit and calibration.

2.1 R-squared

R2 is a well-known measure of overall model fit and quantifies the proportion of outcome variation explained.
Let var(Y i) denote the variance of Y i values in the external validation population, and var(Y i −YPREDi) denote the

variance of (Y i −YPREDi) values (ie, the prediction errors in the external validation population). Then the true proportion
of outcome variation explained by the predicted values from the prediction model, R2

val, is:

R2
val = 1 −

(
var(Yi − YPREDi)

var(Yi)

)
. (2)

Values of R2
val closer to 1 indicate better fit of the YPREDi from the prediction model.

2.2 Calibration slope and calibration-in-the-large

Calibration measures the agreement between predicted (YPREDi) and observed (Y i) outcome values in the external val-
idation dataset.21 It is best shown graphically on a calibration plot, with YPREDi on the horizontal axis plotted against
Y i on the vertical axis, with every individual providing a single data point. A LOESS smoothed calibration curve
should also be fitted through the points and presented on the plot.2,11,22 Ideally, the predicted outcome values are not
systematically under- or over-estimated across the entire range of predicted values. That is, the points are scattered ran-
domly around the 45◦ line of perfect agreement (corresponding to a slope of 1), with little variation around the line
(ie, R̂2

val is large), and with close agreement between predicted and observed values across the entire horizontal axis
range.

To formally quantify calibration performance in an external validation dataset, a calibration model can be fitted of the
form,

Yi = 𝛼cal + 𝜆cal(YPREDi) + ecali

ecali ∼ N(0, 𝜎2
cal), (3)

where “cal” is used to emphasize that parameters are from the calibration model. This model can be fitted using standard
estimation methods for a linear regression, such as using restricted maximum likelihood estimation. The parameter 𝜆cal
represents the calibration slope, which measures agreement between predicted and observed outcomes across the whole
range of predicted values.2,3 As mentioned, the ideal 𝜆cal value is 1. A 𝜆cal < 1 indicates that some predictions are too
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136 ARCHER et al.

extreme (eg, predictions above the mean are too high, and/or predictions below the mean are too low) and a slope> 1
indicates that the range of predictions is too narrow. A calibration slope< 1 is often observed in external validation studies,
as clinical prediction models are often developed in small datasets without adjustment for overfitting, which leads to
extreme predictions (miscalibration) in new individuals external to those used for model development.23-26 The term 𝜎2

cal
measures the residual variance in the calibration model.

Note that the true calibration slope in the external validation population can also be expressed as,27

𝜆cal =

√
R2

calvar(Yi)
var(YPREDi)

, (4)

where R2
cal is the proportion of variance of Y i values explained when the calibration model (3) is fitted to the external

validation population.
Systematic over- or under-prediction is still possible even when the calibration slope is 1, and thus it should always

be considered alongside calibration plots and CITL. The latter measures the agreement between mean predicted (Y PRED)
and mean observed (Y ) outcome values, which can be estimated in the external validation dataset using:

ĈITLval = Y − Y PRED. (5)

Estimating CITLval by applying Equation (5) in an external validation dataset is equivalent to estimating 𝛼cal by fitting
model (3) with the constraint that 𝜆cal equals 1 (see Section 3.2).

3 SAMPLE SIZE REQUIRED TO TARGET PRECISE ESTIMATES OF
PREDICTIVE PERFORMANCE

In this section, we propose four criteria for researchers to use as a basis for determining the minimum sample size required
for an external validation study. The first three criteria aim to ensure the sample size is large enough to estimate R2

val,
CITLval, and 𝜆cal precisely (ie, with a small margin of error). Closed-form solutions are derived for this purpose. As these
expressions depend on the estimates of (residual) variances, a fourth criterion aims to precisely estimate these also.

3.1 Criterion (i): Precise estimate of R2
val

Our first criterion targets a precise estimate for R2
val from the external validation dataset, such that the confidence interval

for R2
val will be narrow. There are many suggestions for deriving confidence intervals for R2.28 Here, we focus on the

approach suggested by Wishart,29 which uses the following approximate standard error (SE) of R̂2
val:

SER̂2
val
=

√
4R2

val(1 − R2
val)2

n
. (6)

Tan suggests this approximation works well when the sample size (n) is reasonably large (say >50),28 which is likely
to be the situation when externally validating a clinical prediction model (see criterion (iv)). Rearranging Equation (6)
gives a closed-form sample size calculation of:

n =
4R2

val(1 − R2
val)

2

SE2
R̂2

val

. (7)

Equation (7) can now be used to calculate the sample size (n) required to meet criterion (i), by specifying a desired
value for SER̂2

val
and by setting R2

val at the anticipated true value for the external validation population.
For example, consider an existing prediction model with an adjusted R2 of 0.5 in the development dataset, with this

adjusted (rather than apparent) R2 giving an unbiased estimate of expected performance in new data. Then, if we assume
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ARCHER et al. 137

F I G U R E 1 Sample size (number of participants,
n) needed in an external validation dataset to target a
confidence interval for R2

val of a particular width (either
0.05, 0.1, or 0.2) for different assumed R2

val values
between 0.1 and 0.9. Sample size calculated using
Equation (7) [Colour figure can be viewed at
wileyonlinelibrary.com]

the validation sample is from a similar target population to the development sample, a simple starting point is to anticipate
R2

val upon external validation is similar to the adjusted R̂2 reported in the model development study. To target a 95%
confidence interval for R2

val that has a narrow width of about 0.1, we need a small SER̂2
val

of 0.0255. This stems from assuming
a 95% confidence interval for R2

val can be derived approximately by R̂2
val ± (1.96 × SER̂2

val
). We can now apply Equation (7)

to give,

n =
4R2

val(1 − R2
val)

2

SE2
R̂

2
val

= 4 × 0.5 × (1 − 0.5)2

0.02552 = 768.9

and so 769 participants are required to meet criterion (i). To achieve the same margin of error, 905 participants are required
when assuming R2

val is 0.3, and 197 participants are required when assuming R2
val is 0.8. These values are reasonably close

to those using more exact (but not closed-form) approaches to confidence interval derivation, such as that based on the
scaled non-central F approximation proposed by Lee.30 The ss.aipe.R2 function within Kelley’s MBESS package for the R
software identifies the sample size required to ensure Lee’s confidence interval for R2

val is sufficiently narrow,31-33 and so
is an alternative to using Equation (7).

Figure 1 shows how the required sample size changes from R2
val values between 0.1 and 0.9 based on Equation (7) and

assuming SER̂2
val

is 0.0255 to target a confidence interval width of 0.1. The required sample size will be lower when allow-
ing for wider target confidence intervals, and higher when aiming for narrower target confidence intervals (Figure 1).
However, we suggest SER̂2

val
≤ 0.0255 is a sensible compromise, as it targets a precise estimate (margin of error of 0.05 or

less compared to the true value) and still gives a required sample size that will be realistic to obtain in practice.
Note that upon external validation the true R2

val may be lower or higher than the adjusted R̂2 reported for model devel-
opment. Therefore, although the adjusted R̂2 from the development study is a useful starting point, we also recommend
calculating the sample size required when assuming slightly different values for the true R2

val. For example, researchers
might apply Equation (7) assuming R2

val values ± 0.1 of the adjusted R̂2 reported from the development study, and note
the largest sample size across this range.

3.2 Criterion (ii): Precise estimate of CITL

Our second criterion targets a precise estimate of CITLval from the external validation dataset. We estimate CITLval
by using Y − Y PRED (from Equation (5)), which is equivalent to estimating the intercept when fitting (in the external
validation dataset) model (3) with the predicted values as an offset term:

Yi = CITLval + 1(YPREDi) + eCITLi

eCITLi ∼ N(0, 𝜎2
CITL). (8)
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138 ARCHER et al.

Therefore the SE of ĈITL is:

SE2
ĈITL

= var(Y − Y PRED) = var

(∑n
i=1(Yi − YPREDi)

n

)
=

𝜎2
CITL

n
=

var(Yi)(1 − R2
CITL)

n
. (9)

We can rearrange Equation (9) to obtain an expression for the required sample size:

n =
var(Yi)(1 − R2

CITL)

SE2
ĈITL

. (10)

Hence, the sample size required to meet criterion (ii) can be derived using Equation (10), for which the researcher
must pre-specify R2

CITL (the anticipated proportion of variance explained by the predictions in the external validation
population), along with var(Y i) (the anticipated variance of Y i in the target population), and the desired SEĈITL.

A sensible starting point is to assume CITL is zero, as then R2
CITL = R2

val (the anticipated proportion of variance
explained by the predictions upon validation), and so

n =
var(Yi)(1 − R2

val)

SE2
ĈITL

, (11)

with R2
val assumed to be the same as the adjusted R̂2 reported from the development study.

If CITL is not zero then R2
CITL will not equal R2

val. Hence, it is also sensible to consider a range of values for R2
CITL when

applying Equation (10), such as ± 0.1 of the adjusted R̂2 reported from the development study, and to note the largest
sample size across this range.

The value that defines a precise SEĈITL is context specific, as it depends on the scale of the outcome values. For example,
for systolic blood pressure an SE of about 2.5 mmHg may suffice, but for BMI a smaller SE may be required as the scale is
much narrower.

For instance, consider external validation of a prediction model for systolic blood pressure with a reported adjusted
R2 of 0.5 in the development study, and that the variance of the observed Y i values is anticipated to be 400 in the target
population for the validation study. Let us target an SEĈITL of 2.55, as this gives a 95% confidence interval for CITLval
with a narrow width of about 10 mmHg, assuming a 95% confidence interval for CITLval can be derived approximately by
ĈITL ± (1.96 × SER̂2

val
). Assuming R2

CITL = R2
val = 0.5, then applying Equation (10) gives,

n =
var(Yi)(1 − R2

val)

SE2
ĈITL

= 400 × (1 − 0.5)
2.552 = 30.76

and thus at least 31 participants are required to achieve criterion (ii).
More cautiously assuming that R2

CITL = 0.4, the required sample size is

n =
var(Yi)(1 − R2

CITL)

SE2
ĈITL

= 400 × (1 − 0.4)
2.552 = 36.91

and thus 37 participants are required.
It is likely that the sample size to precisely estimate CITL is smaller than that required to precisely estimate the

measures outlined in criteria (i), (iii), and (iv).

3.3 Criterion (iii): Precise estimate of calibration slope

The third criterion targets a precise estimate of𝜆cal, which represents the calibration slope obtained from fitting calibration
model (3) in the external validation dataset. As 𝜆cal is the slope from a simple linear regression model, the SE of 𝜆cal can
be estimated by,34

 10970258, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.8766 by U
niversity O

f B
irm

ingham
 E

resources A
nd Serials T

eam
, W

iley O
nline L

ibrary on [22/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ARCHER et al. 139

SE2
𝜆cal

=
𝜎2

cal∑n
i=1 (YPREDi − Y PRED)2

,

where 𝜎2
cal is the residual variance from model (3).

By utilizing Equation (4), and also recognizing that 𝜎2
cal = var(Yi)(1 − R2

cal) and that
n∑

i=1
(YPREDi − Y PRED)2 =

(n − 1) var(YPREDi), we can write SE2
𝜆cal

in terms of 𝜆2
cal and R2

cal values,27 as follows:

SE2
𝜆cal

=
𝜎2

cal
n∑

i=1
(YPREDi − Y PRED)2

=
var(Yi)(1 − R2

cal)
(n − 1) var(YPREDi)

= var(Yi)
(n − 1) var(YPREDi)

−
var(Yi)R2

cal

(n − 1) var(YPREDi)

= var(Yi)
(n − 1) var(YPREDi)

−
𝜆2

cal

(n − 1)

=
𝜆2

cal

(n − 1) R2
cal

−
𝜆2

calR
2
cal

(n − 1)R2
cal

=
𝜆2

cal(1 − R2
cal)

(n − 1)R2
cal

. (12)

Rearranging gives:

n =
𝜆2

cal(1 − R2
cal)

SE2
𝜆cal

R2
cal

+ 1. (13)

Equation (13) allows calculation of the required sample size for a desired SE𝜆cal
, conditional on specifying 𝜆cal (the

anticipated (mis)calibration across the range of predicted values) and R2
cal (the anticipated proportion of variance in

observed Y i values explained by the calibration model).
In terms of choosing SE2

𝜆cal
, a value ≤0.051 is recommended, to target a 95% confidence interval for 𝜆cal that has a

narrow width ≤ 0.2 (eg, if the calibration slope was 1, the confidence interval would be 0.9 to 1.1 assuming confidence
intervals derived by 𝜆cal ± 1.96SE𝜆cal

; note that replacing 1.96 by critical values of the t-distribution is unnecessary, as the
sample size will not be small).

In terms of choosing 𝜆cal, a simple starting point is to assume good calibration, such that 𝜆cal = 1 and 𝛼cal = 0 in model
(3). Then, R2

cal = R2
val from criterion (i), and so R2

cal might be assumed to be the same as the adjusted R2 estimated in the
model development study. For example, for external validation of a prediction model that had an estimated adjusted R2 of
0.5 in the development dataset, a simple starting point is to anticipate the same value for R2

val. Then, assuming the model’s
predictions will be well calibrated in the external validation dataset (ie, on average, fitting model (3) would give 𝛼cal of 0
and a 𝜆cal of 1), using Equation (13) gives,

n =
𝜆2

cal(1 − R2
cal)

SE2
𝜆cal

R2
cal

+ 1 = 1 × (1 − 0.5)
0.051 × 0.051 × 0.5

+ 1 = 385.47

and thus 386 participants are required to target a confidence interval width of 0.1 for the calibration slope, under the
assumptions of good calibration.

The sample size should also be large enough to precisely estimate some miscalibration. Often when a prediction
model is externally validated the calibration slope is less than 1, due to overfitting during model development that was
unaccounted for in the final prediction model equation (ie, penalization or shrinkage estimation methods were not used).
In such situations R2

cal can still be assumed to be the same as the adjusted R2 presented for model development, as this
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140 ARCHER et al.

value specifically adjusts for optimism due to overfitting. When applying Equation (13) for fixed R2
cal and SE2

𝜆cal
values,

lowering the assumed 𝜆cal below 1 will produce lower sample sizes than when assuming the prediction model is well
calibrated. Hence, assuming 𝜆cal is 1 is more conservative for the sample size calculation.

Further sensitivity analyses could be undertaken if desired. For example, we could change both 𝜆cal and R2
cal values.

However this is complex, as Equation (4) reveals that the value of 𝜆cal depends on R2
cal (and also var(Y i) and var(YPREDi)).

Therefore, changing the assumed value of 𝜆cal has implications for what the assumed value of R2
cal should be. This may

be too intricate for the sample size calculation. Similarly, although situations of under-prediction (where 𝜆cal is >1) may
lead to larger required sample sizes, this may not be practical to consider as over-prediction situations are more common.
Thus, we generally suggest to apply Equation (13) assuming good calibration (𝜆cal =1) and set R2

cal equal to the adjusted
R2 estimated for model development.

3.4 Criterion (iv): Precise estimates of residual variances

Our final criterion targets precise estimates of 𝜎2
CITL and 𝜎2

cal. This is essential because, although these residual variances
are not direct measures of predictive performance themselves, their estimated values are used toward parameter estimates
and, crucially, SEĈITLval

and SE𝜆cal
.

For 𝜎2
CITL, we can equivalently consider the sample size needed to precisely estimate a residual variance in a linear

regression model with only an intercept (see model (8)). In such situations, Harrell suggests calculating the sample size
to ensure the lower and upper bounds of a 95% confidence interval for the residual variance has a small multiplicative
margin of error (MMOE) around the true value,2 using

MMOE =

√√√√√max
⎛⎜⎜⎝
𝜒2

1− 𝛼

2
,n−1

n − 1
,

n − 1
𝜒2

𝛼

2
,n−1

⎞⎟⎟⎠, (14)

where 𝜒2
1− 𝛼

2
,n−1 and 𝜒2

𝛼

2
,n−1 are the critical values of a 𝜒2 distribution with n− 1 degrees of freedom for which there is,

respectively, a probability of 1 − 𝛼

2
and 𝛼

2
of being less than the critical value. The second term within the bracket of

Equation (14) will typically give the largest MMOE.
We recommend a margin of error of within 10% of the true value (1.0 ≤ MMOE ≤ 1.1), for which Equation (14) reveals

that a sample size of at least 234 participants is needed to ensure an MMOE ≤1.1 for 𝜎2
CITL.

For precise estimation of 𝜎2
cal, we need to adjust the sample size required for a slope parameter being estimated (see

model (3)). As outlined by Riley et al,4 the solution is simply 234+ 1, and thus 235 participants are required to ensure an
MMOE of ≤1.1 for 𝜎2

cal. Hence, in summary, at least 235 participants are needed to meet criterion (iv), and thus 235 is the
minimum sample size required for any external validation of a prediction model for a continuous outcome, regardless of
context and before consideration of criteria (i), (ii), or (iii).

3.5 Summary of the criteria

Our sample size criteria aim to ensure the external validation dataset will precisely estimate R2
val, CITL, calibration slope,

and residual variances. The approach requires a separate sample size calculation for each criterion, and the largest sample
size calculated provides the minimum needed for the external validation study. A step-by-step guide to our proposal is
provided in Figure 2.

4 APPLIED EXAMPLE

We now illustrate our sample size proposal using an applied example. Hudda et al developed a prediction model for
the natural logarithm of fat-free mass in children and adolescents aged 4 to 15 years, including 10 predictor parameters
based on height, weight, age, sex, and ethnicity (see Box 1 for model equation).20 The model is required to provide an
estimate of an individual’s current fat mass (weight - predicted fat-free mass). The apparent calibration of the model in
the development dataset is shown in Figure 3A. In the development dataset, the estimated adjusted R2 was 0.95. An initial
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ARCHER et al. 141

F I G U R E 2 Summary of the steps involved in our sample size calculation for external validation of a clinical prediction model for a
continuous outcome

external validation was undertaken in 176 children aged 11-12 years from the UK Avon Longitudinal Study of Parents
and Children (ALSPAC) study,35,36 where the model had an estimated R2

val of 0.90 Figure 3B. However, as acknowledged
by Hudda et al, further external validation is warranted in a broader age range, for which a sample size calculation can
be undertaken using our proposal. We assume that the validation population is similar to the development population,
and work through the calculations for criteria (i) to (iv).

STEP 1: Calculate the sample size needed to precisely estimate R2
val (criterion (i))

This requires us to apply Equation (7). Based on assuming an R2
val = 0.90, as in the published external validation of

the model, and a SER̂2
val

of 0.0255 to target a confidence interval width of 0.1, a sample size of 56 children is required, as:
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142 ARCHER et al.

F I G U R E 3 Calibration performance: A, in the development dataset; and, B, on external validation of the prediction model for
ln(fat-free mass) in children, as proposed by Hudda et al.20 The 45◦ line shows perfect calibration on both plots. * in B, individual level data
points cannot be shown for confidentiality reasons. Data points shown are mean predicted against mean observed ln(fat-free mass) within
tenths of predicted ln(fat-free mass), with a local regression smoother through the individual level data points shown in gray [Colour figure
can be viewed at wileyonlinelibrary.com]

n =
4R2

val(1 − R2
val)

2

SE2
R̂2

val

= 4 × 0.90 × (1 − 0.90)2

0.02552

= 55.4.

It is sensible to also consider that the model may perform worse upon external validation, say with a 0.1 reduction in
R2

val to 0.80. Then, the required sample size to meet criterion (i) is 197 children. These sample size values are also identified
within Figure 1.

STEP 2: Calculate the sample size needed to precisely estimate calibration-in-the-large (criterion (ii))
This requires us to apply Equation (10), which itself requires us to specify var(Y i), the anticipated variance of outcome

values in the target population for external validation. Let us illustrate how to derive this from published information.
In their paper, Hudda et al reported the lower quartile (LQ) as 20.8 and the upper quartile (UQ) as 30.6 kg of fat-free
mass in their development dataset. By transforming this to the ln(kg) scale, and assuming ln(fat-free mass) values are
approximately normally distributed, we can derive an estimate of the SD of the ln(fat-free mass) in the development
population using37:

ln UQ − ln LQ
1.35

= ln 30.6 − ln 20.8
1.35

= 0.286.

Therefore, based on the published information v̂ar(Yi) ≈ 0.2862 = 0.082. Interestingly, when contacting the original
study authors directly for this information, they calculated it to be a similar value of v̂ar(Yi) = 0.089. We will use this value
from the study authors going forward.

We must also specify the expected value for R2
CITL. We begin by assuming R2

CITL = R2
val and that this is 0.90, as in Hudda’s

initial external validation of the model.
The precision required to estimate CITL needs to be placed in context of the mean outcome value in the population.

Hudda et al reported a median baseline fat-free mass of 24.8 kg. If we assume that the mean value is similar, then we have:

Y ≈ ln 24.8 = 3.21.

Considering the original untransformed scale, an accuracy of approximately±1 kg around Y seems reasonably precise.
A confidence interval of about 23.8 to 25.8 on the kg scale would correspond to a 95% CI of about 3.17 to 3.25 around Y ,
implying a target SE2

ĈITL
of about 0.02.
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ARCHER et al. 143

T A B L E 1 Summary of the sample size calculation for external validation of the prediction model of Hudda et al

Criterion Target precision Assumptions Minimum sample size required

(i) Precise estimate of R2
val SER̂2

val
= 0.0255 R2

val = 0.8 197

R2
val = 0.9 56

(ii) Precise estimate of CITL SEĈITL = 0.02 R2
CITL = R2

val = 0.8, var(Y i) = 0.089 45

R2
CITL = R2

val = 0.9, var(Y i) = 0.089 23

(iii) Precise estimate of 𝝀cal SE𝜆cal
= 0.051 R2

cal = R2
val = 0.9

𝜆cal = 1
44

(iv) Precise 𝝈
2
CITL and 𝝈

2
cal 1.0≤MMOE≤ 1.1 - 235

Therefore, we can now apply Equation (10) to obtain a sample size of,

n =
var(Yi) (1 − R2

CITL)

SE2
ĈITL

= 0.089 × (1 − 0.9)
0.022 = 22.3,

and thus 23 participants are required to meet criterion (ii). To be conservative, let us assume a 0.1 lower value for R2
CITL

to 0.80. Then, the required sample size to meet criterion (ii) would increase to 45 children.
STEP 3: Calculate the sample size needed to precisely estimate calibration slope (criterion (iii))
This requires us to apply Equation (13) after choosing values for SE𝜆cal

, R2
cal, and 𝜆2

cal. Let us choose an SE𝜆cal
of 0.051 to

target a confidence interval width of 0.2. Further, we assume R2
cal = R2

val and take the value of 0.90 as reported by the initial
validation study of Hudda et al; and assume good calibration such that 𝜆2

cal is 1. We can now apply Equation (13) to give,

n =
𝜆2

cal(1 − R2
cal)

SE2
𝜆cal

R2
cal

+ 1 = 1 × (1 − 0.9)
0.0512 × 0.9

+ 1 = 43.72,

and thus 44 participants are required.
STEP 4: Calculate the sample size for precisely estimating residual variances (criterion (iv))
To ensure a 10% margin of error in residual variance estimates from the calibration models, at least 235 participants

are required (see Section 3.4).
STEP 5: Calculate the final sample size
Assuming we aim to validate the model of Hudda et al in a population similar to the development data, steps 1 to 4

have provided four sample sizes to ensure criteria (i) to (iv) are met. These are summarized in Table 1. Based on the largest
of these sample sizes, the final minimum sample size required to meet all criteria is 235 participants. This is driven by
criterion (iv), to target sufficient precision around 𝜎2

CITL and 𝜎2
cal.

5 WHAT IF SAMPLE SIZE FOR EXTERNAL VALIDATION IS FIXED?

Sometimes there are no resources for prospective recruitment of participants to a new study for external validation of
a prediction model. Then, researchers might seek an existing (already collected) dataset from the target population of
interest. However, the sample size of an existing dataset is fixed, and so the researcher (and other stakeholders such
as funders and collaborators) needs to know if it is large enough for reliable external validation. In this situation, our
calculations in steps 1 to 4 can be re-expressed to calculate the expected SER̂2

val
, SEĈITL, SE𝜆cal

, and MMOE conditional on
the known sample size and assumed values of R2

val, var(Yi), R2
CITL, R2

cal, and 𝜆cal as before.
For example, in the initial external validation of Hudda et al, an existing dataset, from the ALSPAC study, of 176

children was used. Based on the calculation shown in Table 1, this sample size is likely to give very precise estimates of R2
val,

CITL, and 𝜆cal when assuming R2
val = R2

CITL = R2
cal is 0.9. However, the sample size is lower than the 235 recommended

for precise estimation of 𝜎2
CITL and 𝜎2

cal, and so the MMOE for these estimates is expected to be >10%. Nevertheless, when
applying Equation (14) assuming 176 participants, the MMOE is 1.12, and thus the error is expected to be 12%, only
just over the 10% recommendation. Hence, this existing dataset appears to have a reasonable sample size for external
validation, which would have been useful for Hudda et al to know at the time.
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144 ARCHER et al.

6 DISCUSSION

We have proposed closed-form sample size calculations for studies externally validating a prediction model for a con-
tinuous outcome. These aim to ensure the sample size is large enough to precisely estimate key measures of predictive
performance (R2, CITL, and calibration slope) and the residual variances in calibration models. This led to four criteria,
and the largest sample size required satisfying all four criteria is the recommended minimum sample size needed in the
external validation dataset. Our work builds on minimum sample size calculations for model development.4,38

As with any sample size calculation, assumptions are required to implement our proposed approach. In particular,
researchers must specify the model’s anticipated R2

val, v̂ar(Yi), and 𝜆cal in the validation dataset. As discussed, a simple
starting point is to assume these will be the same as those reported for the original model development study, especially
if the target population (for validation) is similar to that in the model development study. Then the researcher might
consider sample sizes based on slight adjustments; in particular, assuming the model may perform slightly worse than
in the development dataset. Our example illustrated this for a prediction model of fat-free mass in children, where we
assumed an R2

val of 0.8 rather than the 0.90 or 0.95 values reported in the original model development study. Lower values
may be even more important to consider in situations where the development dataset was small (such that reported per-
formance statistics were estimated with large uncertainty); the developed prediction model did not adjust for overfitting
using, for example, penalization and shrinkage techniques (such that reported performance statistics are likely to be opti-
mistic); and in situations where the intention is to validate the model in a different population or setting from that used
in the development study. Larger sample sizes may be needed if missing data are expected, and if a model’s predictive
performance in key subgroups (eg, males, females) is of interest.

Section 5 discussed how to use our calculations when an existing dataset (of a fixed sample size) is already available,
in order to gauge the expected precision of estimates conditional on the sample size available. Ideally the dataset will be
large enough to ensure precise estimates, as then more robust conclusions about predictive performance will be possible.
However, we recognize that even when datasets are small, obtaining estimates of predictive performance is still useful; in
particular, these could ultimately be combined in a meta-analysis.39 It is important that datasets for external validation
are high quality and applicable to the target population, setting, and timing of implementing the prediction model in
practice. Adequate sample size does not overcome issues in quality and applicability.39-41

We chose to focus on R2, CITL, and calibration slope as these are key performance measures; ensuring precise esti-
mation of residual variances is also important, as they are used to calculate the aforementioned predictive performance
measures and also mean-squared error. We anticipate that the largest sample size will usually be driven by criterion (i),
(iii), or (iv). Further work might consider precise estimation of calibration curves,11,22,42 and extension to non-continuous
outcomes is needed, building on work of others.11,17,43 Closed-form sample size solutions are transparent and quick to
implement, but more difficult to derive for binary and time-to-event outcomes. Jinks et al do suggest closed-form sample
size calculations for precisely estimating the D statistic for time-to-event prediction models.44 Also, we only focused on
statistical measures of predictive performance, and not on clinical utility or impact of using the model to inform healthcare
decisions (eg, initiation of treatment).

Finally, sometimes the sample size for an external validation dataset must also be large enough for model updating,
for example, when the researcher aims to recalibrate one or a few of the model parameters to the target population of
interest. Then, the required sample size needs to meet the criteria described in this article (for external validation), and
also those criteria proposed for model development (as model updating is akin to model development5). The exact sample
size needed for model updating depends on how the model is to be updated (eg, which parameters, and indeed how many
parameters, are to be revised) and whether additional predictors are to be included. Riley et al provide advice for this and
other model development situations.5
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