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a b s t r a c t 

Magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has been hailed as the fu- 

ture of electrophysiological recordings from the human brain. In this work, we investigate how the dimensions of 

the sensing volume (the vapour cell) affect the performance of both a single OPM-MEG sensor and a multi-sensor 

OPM-MEG system. We consider a realistic noise model that accounts for background brain activity and residual 

noise. By using source reconstruction metrics such as localization accuracy and time-course reconstruction accu- 

racy, we demonstrate that the best overall sensitivity and reconstruction accuracy are achieved with cells that are 

significantly longer and wider that those of the majority of current commercial OPM sensors. Our work provides 

useful tools to optimise the cell dimensions of OPM sensors in a wide range of environments. 
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. Introduction 

Magnetoencephalography (MEG) provides a powerful non-invasive

ool for neuroimaging. Conventional MEG systems consist of arrays of

undreds of pick-up coils coupled to superconducting quantum interfer-

nce devices (SQUIDs) and enable the reconstruction of neural activity

ith millisecond temporal precision ( Hämäläinen et al., 1993 ) and mil-

imeter resolution ( Barratt et al., 2018 ). The requirement of cryogenics

nd thermal insulation, as well as lack of flexibility, are the main limit-

ng factors for SQUIDs in biomagnetic measurements. 

Optically pumped magnetometers (OPMs) ( Budker and Roma-

is, 2007 ) are an alternative type of sensitive magnetometers with the

otential to surpass the performance of superconducting sensors in brain

maging. Successful demonstrations of detection of human brain activ-

ty using various types of OPMs have been reported over the past years

 Boto et al., 2018; Colombo et al., 2016; Johnson et al., 2010; Kamada

t al., 2015; Kowalczyk et al., 2021; Osborne et al., 2018; Sander et al.,

012; Sheng et al., 2017; Xia et al., 2007 ). A number of works demon-

trated that OPMs enable the study of previously difficult to detect bio-

agnetic signals in human and animal neurophysiology ( Boto et al.,

018; Broser et al., 2018; Holmes et al., 2021; Jensen et al., 2016; Sey-

our et al., 2021; Tierney et al., 2021; Westner et al., 2021 ). 

In OPMs the thermal insulation gap is in the mm range and, as a

onsequence, the sensors can be brought closer to the scalp and the brain
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han SQUIDs. Based on simulations, the neuromagnetic signal measured

y an on-scalp OPM sensor is expected to be on average 5 times stronger

han the one measured by a SQUID sensor. This can potentially lead to

ore accurate source reconstruction ( Boto et al., 2016; Iivanainen et al.,

017; 2019 ). Despite this potential, so far the experimental results have

nly demonstrated OPM-MEG performance comparable to conventional

QUID-MEG systems ( Borna et al., 2020; Hill et al., 2020; Iivanainen

t al., 2020 ). 

Recent works have studied various aspects of the performance of

PM-MEG systems, trying to unlock their full potential. Investigations

ocused on quantifying the dependence of neuronal source localisation

ccuracy on the number of sensors, their layouts ( Beltrachini et al.,

021; Duque-Muñoz et al., 2019; Pratt et al., 2021; Riaz et al., 2017 ),

mprovement of information content acquired with multi-axial sensor

rrays, ( Brookes et al., 2021; Iivanainen et al., 2017 ) or accuracy of

ensor positioning needed for precise source reconstruction ( Hill et al.,

020; Zetter et al., 2018 ). Most of these works assumed fixed single-

ensor response and noise models that are based on either idealized

oint-like sensors ( Boto et al., 2016; Brookes et al., 2021; Clancy et al.,

021; Iivanainen et al., 2021 ) or sensors with arbitrary noise levels

 Iivanainen et al., 2017 ). 

It is of capital importance to consider that neuromagnetic fields

ecay with the square of the distance and an OPM sensor registers

he signal averaged over its sensitive volume. Therefore, a smaller
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ensing volume results in higher recorded signal amplitude but also

igher recorded brain noise. Furthermore, the size of the sensitive vol-

me affects the intrinsic sensitivity of the sensor. Existing OPMs have

ell sizes ranging from 1 × 2 × 3 mm 

3 in chip-scale sensors ( Knappe et al.,

016 ) to bench-top sensors with 30 mm spherical cells ( Acosta et al.,

006 ). So far, however, no exhaustive analysis has been carried out to

etermine the optimal sensing element dimensions for an OPM-MEG

ystem. 

In this work, we study how the dimensions of the OPM sensing el-

ment, namely its vapour cell, can be optimised depending on residual

oise sources. We first concentrate on the optimisation of the perfor-

ance of a stand-alone sensor, which can be useful for the development

f prototype sensors. In this case, we determine the optimal dimensions

y maximising the signal-to-noise ratio. We then consider arrays of sen-

ors, determining their optimal sensing volume by optimising the ability

f the array to localise a source and extract its time course. 

. Theory 

This section is divided into two parts. The first part collects the equa-

ions that we use to study and optimise the dimensions of the vapour cell

f a single OPM sensor; the second part describes the equations required

o expand the analysis to an array of sensors. 

.1. Stand-alone OPM sensor 

The core component of an OPM sensor is the vapour cell that con-

ains the atomic gas, typically an alkali metal vapour. An OPM measures

agnetic fields by measuring changes in the properties of light interact-

ng with the atomic medium contained in its sensing volume, once this

s exposed to such fields ( Bell and Bloom, 1957 ). The performance of

ny magnetometer can be assessed by its signal-to-noise ratio, 

𝑁𝑅 = 

𝑆 

𝛿
∼
𝐵 

, (1) 

here 𝑆 is the signal amplitude detected by the sensor and 𝛿�̃� is the total

mplitude of the recorded noise. In a perfectly shielded environment

he value of 𝛿�̃� determines the sensitivity 𝛿𝐵 of the sensor in a given

easurement bandwidth 𝑓 BW 

, 𝛿𝐵 = 𝛿�̃� ∕ 
√

𝑓 BW 

1 . In real conditions it is

mpossible to separate the external magnetic field fluctuations from the

ntrinsic noise of the sensor. Therefore, 𝛿�̃� can be expressed as: 

�̃� = 

√ 

( 𝛿�̃� 𝑖 ) 2 + �̃� 

2 (2)

ith 𝛿�̃� 𝑖 the intrinsic noise of the sensor and �̃� the external magnetic

eld noise amplitude. There are two fundamental noise sources that

etermine the intrinsic sensitivity of an OPM: 

𝐵 𝑖 = 

√ (
𝛿𝐵 at 

)2 + 

(
𝛿𝐵 ph 

)2 
, (3) 

here 𝛿𝐵 at is the atomic-shot noise and 𝛿𝐵 ph is the the photon-shot

oise. The expressions for these two terms are derived in Appendix A

or both nonlinear magneto-optical rotation (NMOR) and spin-exchange

elaxation-free (SERF) OPM sensors. In this work, we assume 𝑓 BW 

= 25
z as that is sufficient to record oscillatory brain activity in the alpha

nd beta band. 

The external magnetic field noise amplitude recorded by the sensor

n MEG experiments can be expressed as: 

∼
 

= 

√ ( ∼
𝑁 𝑏 

)2 
+ 

( ∼
𝑁 𝑟 

)2 
, (4) 
1 Mind the notation: the sensitivity and the amplitude spectral density have 

nits of fT ∕ 
√

Hz and is marked as 𝛿𝐵 𝑥 . The noise amplitude, i.e. the standard 

eviation of the noise, in a given measurement bandwidth has units of fT and is 

arked with 𝛿�̃� 𝑥 = 𝛿𝐵 𝑥 ⋅
√

𝑓 BW 

. The same notation applies to 𝑁 𝑥 and �̃� 𝑥 

𝑁  

w  

b  

2 
here �̃� 𝑏 is the detected “brain noise ”, resulting from the background

rain activity and �̃� 𝑟 is the residual magnetic field noise that accounts

or the components of the environmental noise and sensor’s technical

oise that cannot be compensated for. The brain noise decreases with

he distance from the head, therefore �̃� 𝑏 depends on the volume of the

ell. The environmental noise originates from stray magnetic fields, ther-

al currents induced in the magnetically shielded room and vibrations

f its walls, nearby electrical equipment, mechanical movement of mag-

etic or conductive components (e.g. elevators, urban traffic), and elec-

rically active tissues. Such noise, generated by distant sources outside

f the head, can be considered as spatially homogeneous ( Tierney et al.,

021 ). The spatially and temporally correlated components of the envi-

onmental noise can be usually removed in data pre-processing by using

arious filtering methods such as signal space separation (SSS) ( Seymour

t al., 2021; Taulu and Kajola, 2005 ) or with magnetic field compensa-

ion systems (both require additional reference sensors). Advanced coils,

uch as those described in ( Holmes et al., 2019 ), can attenuate the dom-

nant components of the static background field as well as their first

rder spatial gradients. Additionally, if used with feedback controllers,

ery low frequency magnetic field drifts can be significantly suppressed.

owever, such compensation can introduce magnetic noise in other fre-

uency bands. In addition, every OPM sensor is subject to technical noise

rising from fluctuations in the laser light intensity, frequency and polar-

zation fluctuations, atomic cell temperature fluctuations, current noise,

nd other various electronic noises that can affect the magnetometer

eadout ( Krzyzewski et al., 2019 ). In our simulations, �̃� 𝑟 accounts for

very technical and residual noise that cannot be actively or passively

ompensated. We additionally consider �̃� 𝑟 as white noise in the spectral

nterval 4–100 Hz ( Vrba and Robinson, 2002 ). In line with state-of-the-

rt methods like those developed in ( Handy, 2005; Marhl et al., 2022a;

eymour et al., 2021 ), we assume that the noise below 4 Hz is filtered

ut, therefore our measurement bandwidth is 5-30 Hz. In this work, �̃� 𝑟 

s used as a free parameter with the standard deviation ranging from 0

o 100 fT, similarly to ( Iivanainen et al., 2019 ). 

.1.1. Forward model for an OPM sensor 

Our signal of interest, 𝑆, and brain noise, �̃� 𝑏 , are due to the magnetic

eld arising from the neural activity in the brain. This neural activity

ives rise to a primary current distribution and we approximate it with

 set of equivalent current dipoles (ECDs) inside the brain. We obtain

he associated magnetic field from a spherical volume conductor model

f the head, identical to the one in ( Hämäläinen et al., 1993 ). We ap-

roximate the signal 𝑆 with one tangential source ECD and the brain

oise with a set of independent, tangential and randomly oriented ECDs

 Iivanainen et al., 2017; Kemppainen and Ilmoniemi, 1989; Marhl et al.,

022b; Vrba and Robinson, 2002 ). 

As mentioned, an OPM produces a signal that is proportional to the

ean magnetic field measured within the sensing volume ( Budker and

omalis, 2007 ). For NMOR sensors, that typically use paraffin coated

ells, this volume is determined by the glass cell volume, while for SERF

ensors, that employ buffer gas cells, sensing volume is the intersection

etween the cell volume and the probe laser beam. Therefore the signal

f interest is 

 = 

1 
𝑉 ∫𝑉 

→
𝐵 sECD 

(→
𝑟 
)
⋅
→
𝑛 dV , (5) 

here 𝑉 = 𝐿 × 𝐷 

2 is the volume of the vapour cell with length 𝐿 and

he cross-section 𝐷 

2 , �⃗� 𝑠𝐸𝐶𝐷 

is the magnetic field produced by the source

CD, and 𝑛 is the measurement axis of the OPM. Similarly, the brain

oise is the net signal generated by a set of randomly oriented dipoles: 

̃
 𝑏 = RMS 100 

[ ∑
𝑗 

1 
𝑉 ∫𝑉 

�⃗� 𝐸𝐶𝐷,𝑗 ( ⃗𝑟 ) ⋅ 𝑛 𝑑𝑉 

] 

, (6)

here the index 𝑗 runs over the dipoles. The noise amplitude is obtained

y generating 100 of such sets and calculating the root mean square of
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2 We are using the dipole fitting function ft-dipolefitting in FieldTrip, that 

assumes a spherical head model( Oostenveld et al., 2011 ) 
he computed sums. The modeled system is shown in Fig. 1. The head

s approximated with a conductive sphere with radius 𝑅 head = 91 mm

nd the brain with a concentric sphere with radius 𝑅 brain = 80 mm . The

ignal 𝑆 arises from a single tangential 10 nAm dipole, and �̃� 𝑏 from

000 randomly oriented dipoles (0.2 nAm each). For such model, the

orward problem has a closed-form solution ( Sarvas, 1987 ) and we ob-

ain realistic values for the signal of interest and brain noise. 

We define 𝐿 𝑜𝑝𝑡 and 𝐷 𝑜𝑝𝑡 as optimal length and width that yield the

ighest value of SNR at given 𝑁 𝑟 . Our procedure to find 𝐿 𝑜𝑝𝑡 and 𝐷 𝑜𝑝𝑡 

or a single OPM sensor is the following: (i) we generate a randomly

riented tangential source dipole at a given depth ( Δ = 20–45 mm) and

djust the angle between the OPM sensing axis and the dipole 𝜙 (see

ig. 1) to maximise 𝑆. (ii) we generate 1000 randomly uniformly ori-

nted and positioned ECDs inside the brain. (iii) we add white residual

oise 𝑁 𝑟 and intrinsic noise 𝛿�̃� 𝑖 . (iv) we search for the highest SNR scan-

ing the sensor dimensions 𝐿 and 𝐷. This procedure is repeated for 100

rials. For each set of dimensions we calculate 𝛿�̃� 𝑖 using the parameters

isted in Appendix A. All computations are performed using the FieldTrip

oolbox ( Oostenveld et al., 2011 ) and custom MATLAB scripts (R2019b,

athworks, USA). We have verified that our model reproduces typical

alues. For an ideal noise-free point-like SQUID sensor placed 40 mm

bove the scalp, 𝑁 𝑟 = 5 𝑓𝑇 ∕ 
√

Hz , and Δ = 2.1 cm, we obtain SNR ≈ 1 . 9 ,
hich is within the range of typical MEG data ( Jaiswal et al., 2020 ). 

.2. An array of OPM sensors 

We estimate the performance of an OPM-MEG system, consisting

f an array of sensors, using its source localisation accuracy and time

ourse reconstruction accuracy. A quasi-uniform array of sensors over

ne of the hemispheres of a spherically symmetric head model reaches

est localisation accuracy with a finite number of sensors, depending

n the amplitudes of both the brain noise �̃� 𝑏 and the signal of inter-

st 𝑆 ( Vrba and Robinson, 2002 ). In this work, we define the optimum

umber of sensors as the minimum number of sensors that enables best

ocalisation accuracy. Assuming that each sensor in the array has an

dentical sensing volume, we perform an exhaustive search over 𝐿 and

to maximise the source reconstruction accuracy. For these calcula-

ions, �̃� 𝑟 is set to 25 fT, corresponding to 𝑁 𝑟 = 5 fT ∕ 
√

Hz . As long as

he dimensions of the sensitive volume of each sensor are much smaller

han the spacing between adjacent sensors, the spatial sampling of an

rray of sensors ( Ahonen et al., 1993 ) is limited by the sensor spacing

nd not by dimensions of the sensitive volume. This greatly simplifies

he problem because it is sufficient to optimise the sensitive volume to

ccurately reconstruct a single ECD, rather than modeling the general

ase of two or more partially correlated sources. 

.2.1. Localisation accuracy 

We define the localisation accuracy for a single dipolar source as the

olumetric error 

𝑉 = 

√ 

( 𝜎𝑥 ) 2 + ( 𝜎𝑦 ) 2 + ( 𝜎𝑧 ) 2 , (7)

here 𝜎𝑖 is the root mean square (RMS) error of the reconstructed dipole

osition in the direction 𝑖 ( Vrba and Robinson, 2002 ). To avoid over-

tting due to exactly ideal forward model, we introduce trial-by-trial

naccuracy to sensor positions and orientations. When measuring the

eld and the brain noise, each sensor has a uniform random offset (RMS

 mm) and a uniform random tilt (RMS 9 ◦) from the normal to the head

rientation, corresponding to the suggested co-registration accuracy of

n OPM-MEG system by ( Zetter et al., 2018 ). Our procedure in this case

s the following: (i) we generate a random tangential ECD in a random

osition ( Δ = 21–26 mm) and 1000 randomly oriented ECDs inside the

rain. (ii) we compute the signal and brain noise recorded by the inac-

urately positioned sensor array (100 sets). (iii) we add white residual
3 
nd intrinsic noise. (iv) assuming the ideal sensor locations, we recon-

truct a single dipole using a dipole fitting algorithm 

2 . For each array of

ensors, the localisation procedure was performed for 9 ECD dipole po-

itions, repeated 100 times for different sensor location errors and noise
̃
 . We do maintain the correct spatial relationship between the sources

nd the generated brain noise. 

.2.2. Time course reconstruction accuracy 

The ability to localise a dipolar source does not reveal the full pic-

ure of the performance of an array of sensors, as such reconstruction

as very low sensitivity to uncorrelated noise. Thus, to better assess

he performance, we also compute the time course prediction error

 𝑡𝑜𝑡 , a metric that estimates the ability of the array to reconstruct the

emporal waveform of a dipolar source using a beamformer analysis

 Brookes et al., 2008 ). 

As our MEG model includes spatially correlated brain noise, we can-

ot use the closed-form solution of 𝐸 𝑡𝑜𝑡 derived by ( Brookes et al., 2021 ).

nstead we estimate 𝐸 𝑡𝑜𝑡 as 

 tot = 

1 
𝑀 

√ √ √ √ 

𝑀 ∑
𝑖 =1 

(
𝑞 𝑖 − 𝑞 𝑖 

)2 
, (8) 

here 𝑀 = 10 , 000 is the number of time points, 𝑞 𝑖 is the estimated

ource magnitude, and 𝑞 𝑖 is the true source magnitude at time 𝑖 . Here, 

̂ 𝑖 = 𝝎 

⊤
𝒃 𝑖 , (9) 

here 𝝎 is the filter to extract 𝑞 𝑖 from the measurement 𝒃 𝑖 . Given that 

 = argmin 
𝝎 

𝐸 

(
𝑞 2 𝑖 

)
while 𝝎 

⊤
𝒍 = 1 , (10) 

here 𝐸( ⋅) is the expected value and 𝒍 is the lead field of the source. A

losed-form solution is ( Van Veen et al., 1997 ): 

 = 

𝒍 
⊤𝐂 

−1 

𝒍 
⊤𝐂 

−1 𝒍 
, (11) 

here C is the data covariance matrix.We use the exact C as the sum

f contributions from the source, all of the 1000 noise dipoles, 𝑁 𝑟 and

𝐵 𝑖 . For each dipole C 

∗ = ( 𝑞 ∗ 
RMS 

) 2 ⋅ 𝑙 ∗ 𝑙 ∗ ⊤, where 𝑞 ∗ 
RMS 

is the root mean

quare of the amplitude of the relevant dipole (marked with ∗ ) over

ime. While the contribution from all the other noise sources is given

y C 

∗ = s ⋅ I , where s is a standard deviation of the relevant noise term

nd I is the identity matrix. To reduce random variability, we show the

oot-mean-square value of 9 𝐸 𝑡𝑜𝑡 estimates for random source dipoles

ocated 21–26 mm from the head surface. For each source, similarly to

 Brookes et al., 2021 ), we assume that the exact 𝒍 is known. 

. Results 

.1. Optimal sensing volume for a stand-alone OPM sensor 

For both NMOR and SERF sensors, 𝐿 is the length of the cell along

he sensitive direction. For NMOR, 𝐷 

2 is the cross-section of the cell,

hereas, for SERF, 𝐷 

2 is the cross-section of the laser beam. We impose

.2 cm ⩽ 𝐿 𝑜𝑝𝑡 ⩽ 5 cm and 0.2 cm ⩽ 𝐷 𝑜𝑝𝑡 ⩽ 2 cm, to be compatible with

he majority of cell production processes. 

In general, both the recorded signal 𝑆 and the brain noise degrade

ith 𝐿 because the sensor is averaging over regions increasingly far from

he scalp. The intrinsic sensitivity 𝛿𝐵 𝑖 is instead lower for larger sensing

olumes ( Fig. A.1 ). 𝑆, 𝛿𝐵 𝑖 , �̃� 𝑏 decrease with different scaling with 𝐿 and

. Fig. 2 a– d show the optimal dimensions 𝐿 𝑜𝑝𝑡 and 𝐷 𝑜𝑝𝑡 as a function
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Fig. 1. The model. The radius of the head is 𝑅 head and the radius of the brain is 

𝑅 brain . An equivalent current dipole tangential to the head surface is positioned 

at point ⃗𝑟 0 inside the brain and has a moment 𝑑 . The distance between the head 

surface and the dipole is Δ. A sensor with a rectangular cuboid cell positioned 

at 𝑟 is measuring a signal 𝑆 from the dipole. The cuboid has length 𝐿 in the 

radial direction and 𝐷 in both tangential directions and is away from the head 

by distance 𝑎 . The angle between ⃗𝑟 0 and ⃗𝑟 is 𝜙. 
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f the residual noise 𝑁 𝑟 for few depths of the ECD Δ. For superficial

ources ( Δ < 35 mm), as 𝐿 increases the signal decreases faster than the

rain noise, and thus the optimal length varies between 0.6–1.1 cm for
4 
MOR ( Fig. 2 a) and 0.2–0.3 cm for SERF ( Fig. 2 b). Whereas for deeper

ources ( Δ > 35 mm) the brain noise averages out faster than the signal

f interest. Therefore, for the low-noise regime (up to 5 fT ∕ 
√

Hz ), the

ptimal cell length changes faster with 𝑁 𝑟 for deeper sources than for

he superficial ones. This effect is stronger for the SERF sensor ( Fig. 2 b),

hich has lower intrinsic noise level. In the limit of high residual noise

10 fT ∕ 
√

Hz ), the optimal sensor length decreases. This is because the

esidual noise is independent of the cell size. 

The magnetic field distribution at a given distance 𝑎 outside of the

ead is relatively smooth, i.e, the magnetic field around the optimal

ensor location is approximately constant (refer to topographic maps of

ypical MEG data). Thus, increasing 𝐷 improves the sensor’s sensitiv-

ty by reducing 𝛿𝐵 𝑖 . For example, an increase of 𝐷 from 0.2 cm to the

aximum allowed 2 cm reduces 𝛿𝐵 𝑖 by 50% for NMOR and by 90% for

ERF (Appendix A), while keeping 𝑆 and �̃� 𝑏 are almost constant. Over-

ll, wider sensors ( 𝐷 > 1 cm) record higher SNR and better detect deep

ources ( Fig. 2 c– d). 

In Fig. 2 e-f we show the signal-to-noise ratio SNR as a function of

esidual noise 𝑁 𝑟 for 𝐿 𝑜𝑝𝑡 and 𝐷 𝑜𝑝𝑡 for the same depths of ECD Δ. For

MOR (SERF) sensors, the best SNR is 7 (13), obtained for superficial

ources in low noise environment. This decreases to 1.5 (2) for deep

ources and high 𝑁 𝑟 . The lower intrinsic noise of SERF is a significant ad-

antage in a single sensor arrangement. Note that in our simulations, the

ap between the head surface and the sensing volume 𝑎 is the same for

oth sensors. In practice, this gap might be few mm larger for SERF since

uch sensor requires hot vapour cells and thermal insulation, which will

ave a significant effect on SNR. 
Fig. 2. Optimal sensing element dimensions for a single OPM 

sensor calculated for various depths of ECD Δ, 𝑓 BW 

= 25 Hz. 

Optimal length 𝐿 𝑜𝑝𝑡 for corresponding 𝐷 𝑜𝑝𝑡 as a function of 

residual noise 𝑁 𝑟 for NMOR sensor (a) and for SERF sensor 

(b); optimal diameter 𝐷 𝑜𝑝𝑡 for corresponding 𝐿 𝑜𝑝𝑡 as a function 

of 𝑁 𝑟 for NMOR sensor (c) and for SERF sensor (d); SNR for 

corresponding 𝐿 𝑜𝑝𝑡 and 𝐷 𝑜𝑝𝑡 for NMOR sensor (e) and for SERF 

sensor (f). 
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Fig. 3. Source reconstruction accuracy of a multi-sensor array in the presence 

of �̃� 𝑏 and 𝑁 𝑟 = 5 fT ∕ 
√

Hz . (a–b) Localisation accuracy 𝜎𝑉 as a function of the 

number of sensors for three exemplar arrays: Blue colour is for an NMOR OPM 

array with sensor dimensions set to 𝐿 = 0 . 7 cm and 𝐷 = 1 . 7 cm , orange colour 

is for SERF OPM array with sensor dimensions set to 𝐿 = 0 . 2 cm and 𝐷 = 1 cm. 

Green colour is for SQUID-MEG system with point-like magnetometers 40 mm 

from the head. (a) Single time-point data 𝑎𝑣 = 1, (b) averaged 20 epochs data 

𝑎𝑣 = 20. (c) Minimum time course reconstruction accuracy 𝐸 𝑡𝑜𝑡 as a function of 

the number of sensors in NMOR OPM array (purple), SERF OPM array (yellow) 

and SQUIDs array (green). (d–e) Respectively: corresponding 𝐿 and 𝐷 as a func- 

tion of the number of sensors. The shaded area (grey - NMOR, red - SERF) marks 

the range of dimensions over which 𝐸 is within 5% of its minimum. 
Fig. 2 serves as a guideline for choosing the optimal sensing volume

imensions depending on the experimental conditions if the number of

ensors is very limited. Also, it illustrates that 𝐿 and 𝐷 have a clear

ptimal value corresponding to the balance point between how well

ach sensor is measuring the ECD and how well it is averaging the noise

ut. 

.2. Optimal number of OPM sensors 

To evaluate the optimal number of sensors in an array, we carried

ut two sets of simulations. The first set, marked as 𝑎𝑣 = 1 in Fig. 3 a

nd Fig. 4 rows 1 and 2, is a real-time measurement where simulated

ata corresponds to a single epoch. The second, marked as 𝑎𝑣 = 20 in

ig. 3 b and Fig. 4 rows 3 and 4, simulates data averaged over 20 epochs.

he epochs are generated for each of the 100 noise and sensors loca-

ion error sets (see Section 2.2.1). As we show later, averaging over 20

pochs reduces the noise to the level, delivering almost perfect source

ocalisation with 𝜎𝑉 ⩽ 4 mm. In Fig. 3 a– b, we show the localisation ac-

uracy of a dipole placed at Δ= 2.1 cm in the presence of residual noise

 𝑟 = 5 fT/ 
√

Hz calculated for 𝐿 𝑜𝑝𝑡 = 0.7 cm, 𝐷 𝑜𝑝𝑡 = 1.7 cm for NMOR

ensors, and 𝐿 𝑜𝑝𝑡 = 0.2 cm, 𝐷 𝑜𝑝𝑡 = 1 cm for SERF sensors. For com-

arison, we are also showing the localisation accuracy obtained for ar-

ays of SQUID magnetometers. Calculations are performed for both sets,

𝑣 = 1 ( Fig. 3 a) and 𝑎𝑣 = 20 ( Fig. 3 b), using the procedure described in

ection 2.2.1 . In this case, the point-like sensors are placed 4 cm from

he head surface ( Boto et al., 2016; Vrba and Robinson, 2002 ). 

To evaluate the optimal number of sensors for a time-course recon-

truction, we find the minimum 𝐸 𝑡𝑜𝑡 over all the possible sensors di-

ensions for a given number of sensors, as shown in Fig. 3 c. In Fig. 3 d

nd e, we report the corresponding 𝐿 and 𝐷. The shaded coloured areas

n Fig. 3 d– e mark the range of dimensions where 𝐸 𝑡𝑜𝑡 is within 5% of

his minimum. For NMOR the corresponding 𝐷 overlaps with the largest

ossible width for the considered number of sensors in an array. From

ur results it emerges that for an on-scalp OPM-MEG system with opti-

ized sensor dimensions, the optimal number of sensors in an array is

bout 70. This is because this is the minimum number to reach a plateau

n both 𝜎𝑉 and 𝐸 𝑡𝑜𝑡 , indicating that no significant gain in localisation is

chieved by adding more sensors. This number is slightly lower than

he 100 sensors required to meet the same criteria for a conventional

ff-scalp MEG. ( Vrba and Robinson, 2002 ). 

.2.1. Optimal vapour cell dimensions in an array 

In Fig. 4 we show how the source reconstruction accuracy depends

n the sensing volume dimensions in the presence of brain noise for

arious powers of the residual noise. We perform the calculations for

n array of 69 sensors. We choose this number because it is the closest

o 70 (the optimal number derived in Section 3.2 ) that allows the algo-

ithm we use to equidistantly space the sensors and cover the whole up-

er hemisphere ( Deserno, 2004 ). In Fig 4, column A represents a noise-

ree sensor in perfect environment �̃� 𝑟 = 0 fT. Column B shows low-noise

egime �̃� 𝑟 = 25 fT, which represents e.g. 𝑁 𝑟 = 5 fT ∕ 
√

Hz at measurement

andwidth of 𝑓 BW 

= 25 Hz, conditions we chosen to investigate optimal

umber of sensors discussed in the previous section. Columns C and D

ith �̃� 𝑟 = 50 fT and �̃� 𝑟 = 100 fT respectively represent high residual noise

egime. 

Fig. 4 rows 1 and 2 show how 𝜎𝑉 depends on the sensing volume di-

ensions in the case of real-time experiments, 𝑎𝑣 = 1. In the low residual

oise regime (column B), the optimal dimensions are 0.2 cm ⩽ 𝐿 𝑜𝑝𝑡 ⩽
2 cm, 0.7 cm ⩽ 𝐷 𝑜𝑝𝑡 ⩽ 1.6 cm for NMOR and 0.2 cm ⩽ 𝐿 𝑜𝑝𝑡 ⩽ 4 cm,

.5 cm ⩽ 𝐷 𝑜𝑝𝑡 ⩽ 1.6 cm for SERF. With increasing amplitude of the

esidual noise (columns C and D), the optimal length decreases while

he optimal diameter of the sensor increases. The optimal dimensions

n this regime are 0.3 cm ⩽ 𝐿 𝑜𝑝𝑡 ⩽ 1 cm, 𝐷 𝑜𝑝𝑡 ⩾ 1.2 cm for NMOR and

𝑡𝑜𝑡 

5 
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Fig. 4. Source reconstruction accuracy as a function of 𝐿 and 𝐷 in the presence of brain noise �̃� 𝑏 with residual noise standard deviation set to �̃� 𝑟 = 0 fT (column 

A), �̃� 𝑟 = 25 fT (column B), �̃� 𝑟 = 50 fT (column C) and �̃� 𝑟 = 100 fT (column D). Localisation accuracy 𝜎𝑉 in real-time experiment ( 𝑎𝑣 = 1) for NMOR (row 1) and SERF 

(row 2) sensor array. 𝜎𝑉 in averaged experiment ( 𝑎𝑣 = 20) for NMOR (row 3) and SERF (row 4) sensor array. Time course reconstruction accuracy 𝐸 𝑡𝑜𝑡 for NMOR 

(row 5) and for SERF sensors array (row 6). White areas in rows 1 and 2 correspond to a failed source localization. Simulations are performed for an array formed 

by 69 sensors. 
6 
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3 We have computed the lead field matrix from 1000 independent dipoles for 

an array of 69 sensors. For each sensor diameter we have computed a singular 

value decomposition of the lead field matrix and looked how the total spatial 

variability of a lead field is explained by such an array. The difference in the 

curves calculated for different sensor diameters were negligible in the consid- 

ered range (2mm to 16 mm). 
.2 cm ⩽ 𝐿 𝑜𝑝𝑡 ⩽ 0.6 cm, 𝐷 𝑜𝑝𝑡 ⩾ 0.5 cm for SERF. The white area indi-

ates regions where the source reconstruction algorithm could not con-

erge and the ECD could not be localised. This happens when SNR ⩽1. 

In the 𝑎𝑣 = 20 set ( Fig. 4 rows 3 and 4), 𝐷 has almost no effect on

𝑉 in the residual noise limit of 50 fT (columns A–C) for both types of

ensors. NMOR arrays with 𝐷 > 0.8 cm and 𝐿 < 4 cm, as well as all inves-

igated SERF arrays, reach the best localisation accuracy ( 𝜎𝑉 ⩽ 4 mm).

he lower limit on the volumetric error is defined by the uncertainty

n the sensors location. The geometrical errors are not affected by the

imensions of the sensor. In the high residual noise regime (column D),

his limit is achieved only by SERF sensors with 𝐿 ⩽ 1 cm and a nar-

ow range of NMOR sensors ( 𝐷 > 1 cm and 𝐿 < 0.5 cm). In all cases,

𝑉 is better for SERF since it has lower intrinsic noise level. Consid-

ring however sensors with optimal dimensions, the difference in 𝜎𝑉 

etween SERF and NMOR is significantly reduced. In Fig. 4 rows 5 and

 we show how 𝐸 𝑡𝑜𝑡 depends on the sensing volume dimensions. In low

oise limit For NMOR arrays we observe a minimum for sensors with

 ≈ 1 cm and 𝐷 ⩾ 0.6 cm. For SERF arrays, the minimum is obtained

or 𝐿 ⩽ 1 . 3 cm and 𝐷 ⩾ 0 . 4 cm. For higher residual noise with a stan-

ard deviation of 50 fT, 𝐸 𝑡𝑜𝑡 is stronger for 𝐷 > 1.2 cm and 0.5 cm

 < 1 cm in the case of NMOR and for 𝐷 > 0.5 cm and 𝐿 < 0.5 cm in

ase of SERF. When the residual noise becomes higher than the intrinsic

oise level of the sensor, the dependency of 𝜎𝑉 and 𝐸 𝑡𝑜𝑡 on the sensor

iameter is lifted and the best performance is obtained with the shortest

ells. 

Our results show that OPM sensors achieve the best performance

hen the width of their sensing volume is the maximum allowed by

he constraint of filling the whole head surface. For both sensor types,

he smallest sensors have better localisation accuracy, but relatively

eak time-course reconstruction. In summary, NMOR and SERF arrays

erform best when their sensing elements have 𝐿 𝑜𝑝𝑡 ≈ 0 . 2 –1 cm and

 𝑜𝑝𝑡 ⩾ 1 cm for NMOR 𝐷 𝑜𝑝𝑡 ⩾ 0.6 cm for SERF. This stands for real-time

nd averaged data. 

. Discussion 

In this work, we presented a model to optimise the dimensions of the

ensing volume of an OPM sensor for MEG. This optimisation yields the

ensing volume that delivers the best performance in a realistic scenario

here both residual noise and background brain activity are present.

ur model can be used as a toolkit for optimizing the design of op-

ically pumped magnetometers in given experimental conditions. Our

esults show that the dimensions of the sensing element are a signif-

cant parameter to take into account while designing single OPMs or

hole-head OPM-MEG systems. 

Our simulations demonstrate that the optimal size of a single sensor

s similar to the optimal size of a sensor in an array. This can be un-

erstood considering that the magnetic field pattern produced by a ECD

utside the head features two extrema, whose magnitude and spatial

istribution depend on the ECD position and orientation. Usually, only

 few sensors in the array are covering the area of these maxima. Thus,

he sensors required to form an optimal array have dimensions roughly

imilar to those of a stand-alone sensor. However, even if arrays with

ery few sensors can record the signal of interest with good SNR, they

ill not perform well in source reconstruction experiments (as one can

xtrapolate from Fig 3 a–b). To effectively sample the brain signal and

void aliasing of noise coming from non-compensated sources, larger

rrays are needed. Our simulations show that the optimal number of

ensors in an array is around 70. Such an array reaches the best re-

onstruction accuracy and can directly quantify the topography of the

agnetic fields produced in the brain as well as perform analysis of the

ecorded signals at the sensor level. 

It is worth noticing that most of commercial OPM sensors have cu-

ic cells with a side of 0.2-0.3 cm and operate in SERF regime. The
7 
ntrinsic noise level of commercial sensors is calculated to be around a

ew fT/ 
√

Hz . The actual sensitivities ( ≈10 fT/ 
√

Hz ) are usually not lim-

ted by fundamental noise sources, but rather by technical noise sources

 Krzyzewski et al., 2019 ). Columns C and D are the closest to repre-

ent such conditions in the measurement bandwidth of 𝑓 BW 

= 25 Hz or

 BW 

= 100 Hz respectively. According to our model, such sensors work

ell for reconstructing the location of the ECD in an offline experiment,

here there is a number of trials to average out the noise, but can im-

rove the performance for the time-course of the ECD or in real-time

xperiments. In the low noise limit, the change from 0.2 cm to 1.6 cm

n the width of the cell results in a 2-fold increase in the ability to ex-

ract the time course and the same increase in localization accuracy

or single-trial experiments. Our simulations show that the dimensions

f the sensor’s sensitive element are an important parameter to con-

ider. Such optimisation has the potential to further improve the gain

PM-MEG systems have over the conventional SQUID-MEG. Increas-

ng the width of the cell in the range of diameters investigated in this

anuscript has no significant effect on spatial frequency sampling or

patial resolution. 3 Therefore, the main downside of large sensor ar-

ays can be bulkier and heavier helmets are less ideal for wearable MEG

ystems. 

Overall, SERF sensors deliver better performance because they have

ower intrinsic noise level than NMOR sensors in similar conditions.

owever, NMOR sensors can operate in higher magnetic field environ-

ent, have higher dynamic range and are more resilient to external

eld fluctuations. Furthermore, the vapour cell of SERF sensor needs to

e heated to > 120 ◦, while NMOR sensors work at room-temperature so

he cell can be brought even closer to the scalp. 

Note, that residual noise �̃� 𝑟 ⩾ 50 fT eliminates both the advantage

f SERF over NMOR and the advantage of large sensing volumes over

mall sensing volume in terms of the intrinsic noise level of the sensor.

his effect is illustrated in Fig. 4 columns C and D. Furthermore, due

o averaging the noises out both cell dimensions and the type of OPMs

ave little influence on localization accuracy (rows 3 and 4). 

Our results highlight the role of brain noise, which dominates the

esidual noise present in a typical magnetically shielded room. Further-

ore, we observed that a minimum of about 70 sensors are needed to

each the best localisation accuracy independent of the sensor’s cell size

nd sensor type. This result is in line with the earlier hypothesis claiming

hat the sensor spacing should be comparable to noise correlation dis-

ance ( Vrba and Robinson, 2002 ). Note that without the correlated brain

oise included in the model the localisation accuracy is constantly im-

roving with an increasing number of sensors ( Beltrachini et al., 2021;

lancy et al., 2021; Vrba and Robinson, 2002 ). 

Our model could be expanded to optimise any other parameter that

as fixed in our numerical simulations, such as the intensity of the laser

eam, the atomic density or the gap between the sensor and the head.

n future work, it is also desirable to refine the signal and brain noise

odels. For example, one could replace the spherical head model with a

ore realistic brain-shaped model derived from an MRI scan. It would be

lso interesting to investigate arrays of tri-axial sensors that offer better

ntrinsic cancellation of the external noise sources ( Brookes et al., 2021 ).

owever, in this case, a more sophisticated model for external noise is

equired. Ultimately, an actual recorded noise could be used to refine

he optimal sensing volume dimensions. 
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Table A.1 

Constants and parameters used in the model (1) ( Zhao et al., 2015 ), (2) 

( Pustelny, 2007 ), (3) ( Shah et al., 2007 ), (4) ( Budker and Romalis, 2007 ), and 

(5) ( Seltzer, 2008 ). 

Common 

𝑘 𝜈 1 . 12 ⋅ 10 −23 m 

2 (1) 

𝜈𝑙𝑎𝑠𝑒𝑟 377 THz 

𝑃 𝑙𝑎𝑠𝑒𝑟 7 ⋅ 10 −6 W 

𝑓 BW 25 Hz 

Δ𝐵 1 nT/m 

NMOR OPM ( 87 Rb) SERF OPM ( 87 Rb) 

𝛾 43 ⋅ 10 9 Hz/T 𝛾𝑒 1 . 7 ⋅ 10 11 Hz/T (5) 

𝑛 8 . 5 ⋅ 10 15 m 

−3 𝑛 1 ⋅ 10 20 m 

−3 

𝐼 3/2 𝐼 3/2 

𝑇 295 K 𝑇 450 K 

𝐴 NMOR 0 . 6 ⋅ 10 −3 rad 𝜎𝑆𝐸𝑅𝐹 
𝑆𝐷 

1 . 6 ⋅ 10 −21 m 

−2 (5) 

𝜎𝑠𝑒 2 ⋅ 10 −18 m 

2 (3) 𝜎Ne 
𝑠𝑑 

1 ⋅ 10 −28 m 

−2 (5) 

𝐶 𝑤 10 −4 (4) 𝜎
N 2 
𝑠𝑑 

1 ⋅ 10 −26 m 

−2 (5) 

𝐷 0 0 . 2 ⋅ 10 −4 m 

2 /s (5) 

𝑝 Ne 600 Torr 

𝑝 N 2 20 Torr 
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ppendix A 

.1. NMOR OPM sensor 

We optimize the sensing volume dimensions of an NMOR sensor sim-

lar to ( Kowalczyk et al., 2021 ), with an anti-relaxation coated vapour

ell containing 87 Rb atoms. Without a buffer gas, the atoms can travel

reely in the cell and the sensing volume is 𝑉 = 𝐿 × 𝐷 

2 where 𝐿 is the

ell length, 𝐷 

2 is the cross-section of the cell (Fig. 1). For such a sensor,

he atomic shot-noise limit originates from fluctuations of the number of

toms that contribute to the signal and it depends on the finite lifetime

f the light-induced atomic polarization ( Pustelny et al., 2008 ), 

𝐵 at = 

1 
𝛾

√ 

Γ
nV 

, (A.1.1) 
8 
here 𝛾 is the gyromagnetic ratio, Γ the half-width at half maximum of

he NMOR resonance, and 𝑛 the atomic density. 

In NMOR magnetometers, the photon-shot noise is the leading con-

ribution to the intrinsic noise. The polarization rotation noise per unit

andwidth due to quantum fluctuations is proportional to the number

f photons in the probe beam 𝑁 ph as ( Pustelny et al., 2008 ) 

𝐵 ph = 

1 
2 𝛾

Γ
𝐴 NMOR 

√ 

1 
𝑁 ph 

, (A.1.2) 

here 𝐴 NMOR is the amplitude of NMOR resonance. 

Both 𝛿𝐵 at and 𝛿𝐵 ph depend on the width of the resonance Γ, which

s the inverse of the spin relaxation time ( Pustelny, 2007 ). The width of

he resonance is determined by the sum of several relaxation rates: 

= 𝑅 se + 𝑅 wall + 𝑅 light + 𝑅 noise , (A.1.3) 

here 𝑅 𝑠𝑒 is the spin-exchange collision relaxation rate, 𝑅 𝑤𝑎𝑙𝑙 is the wall

ollision relaxation rate, 𝑅 𝑙𝑖𝑔ℎ𝑡 is the light-induced relaxation rate, and

 𝑛𝑜𝑖𝑠𝑒 is the relaxation rate induced by external field fluctuation. The

elaxation rate due to collisions between alkali atoms is given by 

 se = 𝑞 ( 𝐼 ) 𝜎se 𝑣 rel 𝑛 , (A.1.4) 

here 𝑞( 𝐼) = (6 𝐼 + 1)∕( 𝜋 × (8 𝐼 + 4))) is the nuclear slow-down factor, 𝐼

he nuclear spin of alkali atom, 𝜎𝑠𝑒 is the spin-exchange collision cross-

ection and 𝑣 𝑟𝑒𝑙 = 

√
2 𝑣 𝑡ℎ is the average atomic relative velocity with
Fig. A1. OPM intrinsic sensor sensitivity 𝛿𝐵 𝑖 as a func- 

tion of 𝐿 and 𝐷 of the sensing volume for NMOR (a) 

and for SERF (b) 
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 𝑡ℎ = 

√
8 𝑘 𝐵 𝑇 ∕ 𝑚 , where 𝑘 𝐵 is the Boltzmann constant, 𝑇 the tempera-

ure of the gas and 𝑚 the atomic mass. 

The wall-collision-induced relaxation rate is given by: 

 wall = 𝐶 𝑤 
1 
𝑇 𝑐 

, (A.1.5) 

here 𝐶 𝑤 is the probability of electron spin relaxation during the colli-

ions with the coating of the walls and 𝑇 𝑐 = 4 𝑉 ∕( 𝑣 𝑡ℎ 𝑆 𝑐𝑒𝑙𝑙 ) with 𝑆 𝑐𝑒𝑙𝑙 as

he surface area of the cell. 

The light-induced relaxation rate is caused by the pump light

 Budker and Romalis, 2007 ) and is due to transitions between Zeeman

round states. This rate is proportional to the average incident light in-

ensity 𝐼 𝑚𝑒𝑎𝑛 : 

 light = 2 
𝑘 𝜈

ℏ𝜈𝑙 

𝐼 mean , (A.1.6) 

here 𝑘 𝜈 is the microscopic absorption cross-section, ℏ the reduced

lanck constant and 𝜈𝑙 the frequency of the pumping light. 

Finally, spatial field fluctuations randomly shift the resonance fre-

uency, resulting in a broadening of the magnetic resonance lines ac-

ording to 

 noise = 𝛾2 ( Δ𝐵 ) 2 𝐿 

𝑣 th 
, (A.1.7) 

here Δ𝐵 is the root mean square of the magnetic field fluctuations

ver the length of the cell 𝐿 . For a sensor similar to ( Kowalczyk et al.,

021 ), Δ𝐵 is dominated by the bias field applied over the cell and is

hus independent of the spatial fluctuations of measured signals. 

.2. SERF OPM sensor 

We model a SERF OPM with a single-beam configuration similar to

ommercial sensors ( Savukov et al., 2017 ). The vapour cell contains
7 Rb atoms, Ne as a buffer gas, and N 2 as quenching gas. For the optimal

umping rate, the atomic shot noise is given by ( Budker and Romalis,

007; Savukov et al., 2017 ) 

𝐵 at = 

4 
∼
𝛾𝑒 

√ 

Γ
nV 

, (A.2.1) 

here 𝛾𝑒 = 

𝛾𝑒 

2 𝐼+1 and 𝛾𝑒 is the gyromagnetic ratio of a bare electron. 𝑉 

s the volume corresponding to the intersection of a laser beam with the

apour cell volume 𝑉 = 𝐿 ⋅ 𝐷 

2 , where 𝐿 is the cell length, 𝐷 

2 is the laser

eam cross-section area; and the photon shot-noise is 

𝐵 ph = 

4Γ
𝛾𝑒 

√ 

1 
𝑁 ph 

. (A.2.2)

n the SERF magnetometer, spin-exchange relaxation is suppressed. The

esidual magnetic width Γ is due to spin-destruction collisions 𝑅 𝑆𝐷 

, col-

isions with the walls 𝑅 𝑤𝑎𝑙𝑙 , the interaction with the light 𝑅 𝑝𝑢𝑚𝑝 . With op-

imal pumping 𝑅 𝑝𝑢𝑚𝑝 equals the sum of 𝑅 ∗ caused by all other relaxation

echanisms. Overall the relaxation rate in SERF regime is expressed as:

= 𝑅 SD + 𝑅 wall + 𝑅 pump + 𝑅 noise , (A.2.3) 

here the 𝑅 𝑆𝐷 

is the relaxation rate due to spin destruction is given by

 𝑆𝐷 

= 𝑅 

𝑆𝐸𝑅𝐹 
𝑆𝐷 

+ 𝑅 

𝐵 
𝑆𝐷 

+ 𝑅 

𝑄 

𝑆𝐷 

. (A.2.4)

ere the first term is due to collisions with other alkali atoms, the second

erm is due to collisions with buffer gas atoms, and the third term is due

o collisions with quenching gas molecules. Each of these three terms

an be written as 

 

∗ 
SD 

= 

1 
𝑛 ∗ 𝑣 rel 𝜎

∗ 
SD 

, (A.2.5) 

2 𝐼 + 1 

9 
here denotes relevant atoms, 𝑣 𝑟𝑒𝑙 = 

√
8 𝑘 𝐵 𝑇 ∕( 𝜋𝑀) , 𝑀 = (1∕ 𝑚 +

∕ 𝑚 

′) −1 with 𝑚 alkali atom mass, 𝑚 

′ the relevant atom mass, 𝑛 ∗ is rele-

ant atomic density. 

The wall-collision-induced relaxation rate is given by 

 wall = 𝐷 0 
𝑝 0 
𝑝 

( 

2 . 4 2 

𝐷 

2 + 

𝜋2 

𝐿 

2 

) 

, (A.2.6) 

here 𝐷 0 is the diffusion constant of the alkali atom within the buffer

as, 𝑝 0 = 760 Torr, 𝑝 is the buffer gas pressure. 

The broadening due to magnetic field fluctuations are the same for

ERF and NMOR, thus 𝑅 𝑛𝑜𝑖𝑠𝑒 is obtained from Eq. A.7 . 
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