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Abstract Groundwater contributions to stream-
flow significantly influence the structure and func-
tion of riverine ecosystems, particularly in glacier-
ized catchments where there are marked differences 
in water sources and subsurface flow paths. Here, we 
investigated spatial and temporal variation in relation-
ships between water sources, flow paths, physical and 
chemical processes, organic matter, microbial bio-
films, and macroinvertebrates across groundwater-fed 

streams in the glacierized Toklat River catchment of 
Denali National Park, Alaska. Streams fed predomi-
nantly by seepage from the valley sides were peren-
nial, whereas streams sustained by glacial meltwater 
seepage were ephemeral. Differences in environmen-
tal conditions between flow regimes appeared to influ-
ence spatial and temporal patterns of organic matter, 
linking to macroinvertebrate community dynamics. 
Macroinvertebrates in perennial streams were  sup-
ported by fine particulate organic matter from sub-
surface flow paths during summer, transitioning to a 
combination of fine particulate matter and leaf litter 
in autumn. In comparison, macroinvertebrates inhab-
iting ephemeral streams, which only flowed during 
autumn, were supported by leaf litter. Some macroin-
vertebrate taxa were unaffected by turnover in organic 
matter, indicating potential plasticity in organic mat-
ter resource use. Findings highlight the importance of 
considering spatial and temporal variation in ground-
water-fed streams,  considering that projected hydro-
logical changes under a changing climate may have 
significant implications for these systems.

Keywords Macroinvertebrates · Groundwater 
dynamics · Diversity · Taxa traits

Introduction

Groundwater contributions to streamflow in glacier-
ized catchments are vitally important and typically 
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create biodiversity hotspots (Murray et  al., 2004; 
Boulton & Hancock, 2006; Murray et  al., 2006) by 
sustaining low variability in flow and water tempera-
ture regimes, and high water clarity, when compared 
to other water sources (Füreder et  al., 2001; Malard 
et  al., 2001; Barquin & Death, 2006). Nevertheless, 
groundwater-fed streams vary in their degree of flow 
permanence ranging from ephemeral to perennial 
(Wood et al., 2005; Brown et al., 2007a). In glacier-
ized catchments, this variability in groundwater con-
tributions is a significant driver of macroinvertebrate 
community composition, yet this topic has generally 
been overlooked.

Groundwater flow pathways in glacierized catch-
ments typically lie within the most permeable depos-
its of the valley bottom, valley side, and in bedrock 
aquifers (Robinson et al., 2008). As a result, features 
such as river terraces, which are often composed of 
coarse fluvial deposits, may support groundwater 
upwellings in glacierized river catchments (Malard, 
2003). Groundwater permeating these deposits can 
be derived from multiple sources, for example, glacial 
meltwater can infiltrate the underlying alluvial aqui-
fer and then discharge to the surface further down the 
valley (Malard et  al., 1999; Crossman et  al., 2011). 
Alternatively, precipitation can percolate through 
colluvial and alluvial deposits and remerge at lower 
elevations when the water table intersects the surface 
(Crossman et  al., 2011). Furthermore, groundwaters 
can be routed through deposits via different flow 
pathways (Anderson, 1989), resulting in multiple dif-
ferent types of streams originating on river terraces. 
The combined effects of water sources and flow paths 
lead to marked heterogeneity in instream conditions 
within river terrace streams (e.g., hydrology and 
physical and chemical processes), as well as influ-
encing the riparian ecotones surrounding the stream 
channels (Stromberg & Merritt, 2016). This variation 
in streams and riparian habitats across river terraces 
is responsible for their role as hotspots of terrestrial 
and aquatic biodiversity in an otherwise fluvial land-
scape (Crossman et al., 2012).

Across streams, there may be physical and envi-
ronmental differences resulting from variation in 
the relative contributions of groundwater to total 
stream flow (Kath et  al., 2016), the interactive 
effects of distinct groundwater sources (e.g., snow-
melt, surface seepage, and glacial melt), and asso-
ciated water flow pathways (e.g., deep or shallow 

subsurface flows) (Khamis et  al., 2016). Although 
physical and chemical variables are generally more 
stable in groundwater-fed streams than in other 
stream types, there can still be considerable varia-
bility in these variables in groundwater-fed streams 
in glacierized catchments (Robinson et  al., 2008; 
Windsor et al., 2017; Durkota et al., 2019). Notably, 
habitat patches within streams can differ in their 
environmental conditions in response to their prox-
imity to groundwater discharges (Mathers et  al., 
2017; Crespo-Pereez et al., 2020). Patches close to 
areas of groundwater exhibit different organic mat-
ter and macroinvertebrate community dynamics 
depending upon the source of groundwater. These 
characteristics generate variability across spatial 
and temporal scales in both physical and chemi-
cal habitat (flow permanence and environmental 
stability) and resource availability (nutrient and 
organic matter concentrations) within and across 
stream systems (Boulton & Hancock, 2006; Sertić 
Perić et al., 2021). In turn, this variation influences 
the biotic communities inhabiting these systems, 
including microbial biofilms (Colls et al., 2019) and 
macroinvertebrates (Windsor et al., 2017).

Climatic and associated hydrological change 
threatens the ecological integrity of groundwater-
fed streams in glacierized catchments. For example, 
estimates in the Toklat catchment in Denali National 
Park (Alaska, USA) suggest that snow- and glacial 
meltwater may contribute to an increase in ground-
water flow by 2070 (Crossman et  al., 2013a). As 
such, changes in the contributions of groundwater 
from different water sources are likely to influence 
the environmental and biological conditions present. 
Here, we investigate the complex spatial and temporal 
dynamics of the relationship between macroinverte-
brate communities and their physiochemical environ-
ment. In doing so, we highlight the role of potential 
climate change-induced stresses on freshwater com-
munities within glacierized catchments. The specific 
objectives of the study were to assess:

 (i) The spatial and temporal variability in envi-
ronmental and physical variables (e.g., water 
source contributions, flow regime, water tem-
perature) in different groundwater-fed streams 
across the Toklat Catchment in Denali National 
Park, and;
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 (ii) The relationships between environmental, 
physical, and chemical variables and benthic 
macroinvertebrate communities (overall struc-
ture and individual taxa)

Our hypothesis was that we would be able to dis-
tinguish between the physical and chemical variables 
and macroinvertebrate communities associated with 
different groundwater types. We accomplished these 
objectives during an intensive summer field campaign 
sampling perennial and ephemeral streams in a gla-
cierized valley of the Toklat River in Alaska.

Methods

Site description

The Toklat River is a braided north-flowing, gla-
cier-fed tributary of the Yukon River which derives 
a substantial percentage of its total flow from valley 
glaciers in its headwaters. The upstream catchment 
is ~ 115  km2 in area, ranging in elevation from 1,835 
to 1,197 m. Mean annual precipitation is ~ 2,400 mm 
of which ~ 2,000  mm falls as snow, while mean 
annual June to September daily air temperature in 
2008 (recorded 5 km to the North at the Toklat Road 
Camp) was 11.8 °C (day) and 4.7 °C (night) (WRCC, 
2008). The underlying geology is dominated by 
Devonian and Silurian clastic and carbonate rocks, 
with Quaternary and Neogene sediments along the 
valley sides (Gilbert et  al., 1984). Extensive debris 
fans and talus cones have formed along the valley 
margins with glacial and fluvial-glacial deposits in 
the valley bottom.

From May 30th to  September 8th, 2008, we stud-
ied seven sites across four groundwater-fed streams 
arising across a fluvial terrace (0.9  km2 area) on the 
floodplain of the middle fork of the Toklat River 
in Denali National Park, Alaska (63°29′19.54″ N, 
149°57′54.05″ W). These streams, in comparison to a 
barren active floodplain, support a dense marginal 
vegetative community including soapberry [Shepher-
dia canadensis (L.) Nutt.] and dwarf birch (Betula 
nana L.), alongside other riparian specialist plants. 
Sites were selected to represent different groundwa-
ter and riparian conditions (see Table  1). Upstream 
(A2, A5, B2) and downstream (A1, A4, B3) sites 
within the same streams were used to compare local 
variations in the levels of groundwater influence as 
determined by local flow paths, which were in turn 
related to the position of the site on the alluvial ter-
race (Fig. 1). The riparian vegetation associated with 
individual streams varied, depending on proximity to 
the active channel, and also the hydrological condi-
tions in the surrounding terrace sediments.

To contextualize the following analyses, pre-
cise topographical measurements of the study area, 
including the position of the channels on the terrace 
and the elevation of individual sites, were mapped 
using a Geo electronic distance measurer (LEICA, 
Wetzlar, Germany).

Water source contributions

A total of 70 water samples were collected at 14-day 
intervals across all sites and additional samples were 
collected higher up the catchment to represent spe-
cific water sources (e.g., ice-melt, snowmelt, debris 
fan seepage flow and rainfall). Stream water samples 
were collected from the center of the stream using 

Table 1  Site characteristics 
of the seven groundwater-
fed study streams on the 
mid-Tolkat floodplain 
 (DFSdeep = debris fan side 
[deep];  GMWriv = glacial 
meltwater [river])

Site Flow pathways and sources Flow permanence Mean discharge 
(cumecs)

Mean 
water tem-
perature 
(oC)

A1 DFSdeep Perennial 0.012 –
A2 DFSdeep Perennial 0.006 4.45
A4 DFSdeep Perennial 0.016 –
A5 DFSdeep Perennial 0.004 4.03
B1 GMWriv and  DFSdeep Perennial 0.051 3.50
B2 GMWriv Ephemeral 0.041 3.69
B3 GMWriv Ephemeral 0.093 5.34



 Hydrobiologia

1 3
Vol:. (1234567890)

acid-rinsed Nalgene polyethylene bottles. Samples 
were filtered through 0.45  μm nylon membrane fil-
ters and refrigerated prior to analysis. In the labora-
tory, chloride  (Cl−) concentrations (ppm) were meas-
ured using an ICS 2000 (Dionex, Sunnyvale, USA). 
Instrumental precision for the analysis of  Cl− was 
0.25 ppm.

Concentrations of  Cl− in deep groundwater from 
the debris fan site  (DFSdeep) were approximately 
85 times greater than in samples of snow and gla-
cial meltwater; therefore, we used  Cl− measure-
ments across stream samples and water sources to 

estimate the proportional contribution of  DFSdeep 
from the debris fan to the total flow for each 
groundwater stream. Estimates were made using a 
groundwater mixing model, with the groundwater 
end-member estimated from high  Cl− concentra-
tions observed in waters from  DFSdeep:

where  DFSdeep
% was the percentage contribution of 

water at each site that was derived from  DFSdeep, Su 
was the concentration of  Cl− at upwelling sites, and 

DFS%
deep

=

(

S
u

S
D

)

× 100

Fig. 1  Study site schematic. A is a catchment overview. B is the groundwater channel sampling site schematic. Site location within 
state of Alaska (bottom right)
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SD was the mean  Cl− concentration of debris fan 
seepage (Crossman et al., 2011).

Flow pathways

Stream depth and hydraulic head were measured 
twice daily from June 17th to  September 2nd, 2008, 
using nested piezometers inserted to depths of 50 cm 
and 100 cm at each sample site (Fig. 1). Within the 
piezometers, Level TROLL 500 pressure transduc-
ers (In-Situ Inc., Fort Collins, USA) were used to 
log water level and the direction of subsurface water 

movement was determined by calculating the hydrau-
lic gradient at each piezometer nest (dividing the 
difference between stream water level and the water 
level in the piezometers at 50 cm depth by the vertical 
distance). A positive gradient indicated groundwater 
discharge. To provide additional context and con-
firm the contributions of different flow paths, pH and 
electrical conductivity (EC) were monitored monthly 
using a HI 98,127 multimeter (Hanna Instruments, 
Woonsocket, USA).

Fig. 2  Seasonal variabil-
ity in the association of 
macroinvertebrate taxon 
diversity with flow pathway 
contributions from  DFSdeep 
to groundwater-fed streams

Fig. 3  Seasonal heterogeneity in physical and chemical char-
acteristics of groundwater-fed streams. A Correlation between 
elevation  (cm relative to lowest point on terrace) and mean 
TOM and mean FPOM in June. B Correlation between eleva-

tion and mean CPOM in July. C Seasonal changes in FPOM 
throughout study period. D Temporal variation in chlorophyll 
concentrations in August. E Site-specific increases in CPOM
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Physical and chemical variables

Stream morphology

Stream channel dimensions, water depth, and flow 
velocity were measured at 1/6 depth every 3  weeks 
over the study period, and stream discharge and flow 
duration curves were subsequently estimated. At each 
site, predominant substrate size was determined by 
measuring the b-axis of 100 randomly selected stones 

(Burgher et  al., 2002) and D50 was calculated. The 
bottom component of the Pfankuch Stability Index 
was also determined, incorporating scores for rock 
angularity, brightness, particle consolidation and size 
distribution, scouring and deposition, and aquatic 
vegetation (Pfankuch, 1975). The bottom component 
of this index describes the stability of the material 
in the streams that is almost always underwater with 
higher scores being more unstable.

Fig. 4  Relationships between flow pathways, organic matter 
concentrations, and macroinvertebrate abundances. A Mac-
roinvertebrate abundance and %DFSdeep in June. B FPOM and 
%DFSdeep in June. C Abundance and FPOM in June. D Abun-

dance and FPOM in July. E Abundance and CPOM in July. F 
Abundance and TOM in July. Lines represent relationships and 
are not statistically derived from Spearman’s rank correlations
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Stream discharge

Stream stage (m) was measured across streams 
using Level TROLL 500 pressure transducers (In-
Situ Inc., Fort Collins, USA). These transduc-
ers were placed at the surface of the stream bed, 
and at a depth of 50 cm, across five of the sample 
sites (A2, A5, B1, B2, and B3), and mean stream 
stage was logged at 15-min intervals. Stream stage 
data were combined with stream rating equations 
derived for each cross section, enabling stream dis-
charge to be estimated for each site, over the entire 
study period.

Water temperature

Stream water temperature (°C) was measured using 
Tinytag Plus thermistors (Gemini, Chichester, UK), 
inserted at the surface across five of the sample sites 
(A2, A5, B1, B2, and B3) at 15-min intervals. Per-
ennial streams were identified as those where in-
stream temperatures exceeded 0  °C throughout the 
year (Brown et al., 2006a).

Diurnal variations in water temperature, stream 
stage, and discharge were assessed using an index 
of variation (Fowler & Death, 2001). The diurnal 
stage variation index (DSVI) was derived using the 
following equation:

where  Smin and  Smax were the minimum and maxi-
mum stage values for every 24-h period throughout 
the study season (24  h was chosen because of the 
strong diurnal variation in flow) (Crossman et  al., 
2013b). Similarly, indices for Diurnal Temperature 
Variation (DTVI) and Diurnal Discharge Variation 
(DDVI) were determined.

Microbial biofilms

Samples of microbial biofilms were collected 
monthly at each site following the protocol described 
in Ledger and Hildrew (1998). For each sample, the 
surface area  (cm2) of four randomly selected stones 
was calculated by tracing the stone outline onto an 

DSVI =
1

n

n
∑

i=1

(

S
max

− S
min

)

acetate sheet. Surfaces were then scraped into a 50 ml 
tube frozen and stored in the dark until analysis. The 
sample mass was measured using a microbalance 
(Ohaus, Parsippany, USA) to estimate the biofilm 
mass per unit area (g  cm−2). A 10 ml subsample was 
freeze dried and chlorophyll pigments were extracted 
in 90% acetone for 24  h. Absorbance at 750, 664, 
647, and 630 nm was determined using a spectropho-
tometer (Hanna Instruments, Woonsocket, USA), and 
total chlorophyll was calculated (Sterman 1988).

Benthic macroinvertebrates

Five replicate benthic invertebrate samples were 
collected monthly at each site using a Surber sam-
pler (0.093  m2, mesh 330 µm) and preserved in 90% 
ethanol. Flotation was subsequently used to separate 
macroinvertebrates from gravel and heavier organic 
materials, by the addition of a saturated solution of 
 MgSO4. The remaining mineral portion of the sam-
ple was examined for cased-caddisfly larvae and 
other macroinvertebrates that were not extracted via 
flotation.

Macroinvertebrate taxa were identified using 
Thorp and Covich (2001). Individuals were identi-
fied to species, wherever possible, but Simuliidae 
and Chironomidae were only identified to family. 
The abundance of different taxa was enumerated, and 
macroinvertebrate diversity (H) was calculated using 
Shannon’s Index of Diversity (Shannon & Weaver, 
1949)

where Pi is the relative abundance of each taxon, cal-
culated as the proportion of individuals of a given 
taxon to the total abundance within the sample.

Organic matter

Organic material collected in the Surber samples 
was first dried at 65  °C and then sieved into coarse 
(> 1  mm) and fine (< 1  mm) fractions. The weight 
of each fraction was measured using a microbalance 
(Ohaus, Parsippany, USA) prior to ashing in a furnace 
at 540 °C for 2 h. Ash-free dry mass was then deter-
mined by re-weighing the different organic matter 

H = −
∑

P
i
ln(P

i
)
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fractions. From these data, the ash-free dry mass of 
FPOM and CPOM, as well as total organic matter 
(TOM), was calculated per unit area (mg  m−2).

Data analysis

Objective 1: Spatial patterns in environmental 
and physical variables

Patterns of environmental and physical variables 
across sites were evaluated in relation to their eleva-
tion by correlating different variables (e.g., TOM, 
FPOM, CPOM, site elevation, and flow permeance) 
using a series of Spearman’s rank-order correlations.

Objective 2: Relationships between environmental 
variables and macroinvertebrate communities

Metrics for macroinvertebrate communities (total 
abundance and Shannon–Weaver index) were related 
to water source contributions, TOM, CPOM, FPOM, 
and site elevation using Spearman’s rank-order cor-
relations. A Mann–Whitney U test was carried out 
between the macroinvertebrate diversity of ephemeral 
and perennial streams as diversity data were not nor-
mally distributed. Comparisons of variance in mac-
roinvertebrate abundance between sites within and 
between months were completed using ANOVA, with 
P-values generated using F-tests.

Variation in macroinvertebrate community struc-
ture and relationships with physical and chemical 
variables were analyzed using detrended correspond-
ence analysis (DCA; Hill & Gauch, 1980). DCA is 
an ordination technique that detrends (divides the 
axes into segments and centers the second axis on 
zero) and equalizes the weighted variance of taxon 
scores along the axis segments. Similar communities 
occur closer together on both axes. Axis 1 and Axis 
2 sample scores from these analyses were correlated 
against physical and chemical variables (discharge, 
DDVI, DSVI, pH, EC,  Cl− concentration, chloro-
phyll, FPOM, CPOM, HG, sediment particle size, site 
elevation, and the Pfankuch Stability Index). A DCA 
with independent non-parametric analysis of addi-
tional variables was selected, rather than a detrended 
canonical correspondence analysis which uses 

multiple linear regression to directly constrain rela-
tionships between sites and samples to the measured 
variables (Ter Braak, 1986), as it is more appropriate 
for smaller datasets. Water temperature data (DTVI) 
were not included in the DCA as this was only meas-
ured at five sites, and thus, temperature was correlated 
separately using Spearman’s rank-order correlation.

To determine the significance of environmental 
variables for individual taxa abundance, the six most 
dominant taxa (96% of total abundance) were corre-
lated individually with each variable for each month 
(due to the strong seasonal gradient of macroinver-
tebrate distribution correlations) using Spearman’s 
rank-order correlation.

Results

Water source contributions and flow paths

Characteristics of the seven sample sites were spa-
tially and temporally variable at a range of scales 
(Table  1). Sites at the low elevation end of the ter-
race (A1–A5 and B1) were perennial, with high per-
cent  DFSdeep. In contrast, sites further up the terrace 
(B2 and B3) were ephemeral, reflecting their higher 
elevation, with markedly lower  DFSdeep contributions 
(Fig.  2). As glacial seepage  (GMWriv) contributed 
more flow to the ephemeral streams, flow was only 
initiated after the infiltration of seasonal meltwater 
and precipitation raised the water table to intersect 
the surface.

Organic matter was similarly variable: TOM and 
FPOM were negatively correlated with elevation in 
June (P < 0.01; Fig.  3a). FPOM generally increased 
in all streams from June to August (Fig. 3c) and total 
chlorophyll in microbial biofilms increased in August 
by a factor of ~ 4.5 (Fig.  3d). Notably, FPOM, total 
chlorophyll, and CPOM were lowest in almost all 
sites in June (Fig. 3e).

Variation in macroinvertebrate communities

Macroinvertebrate diversity was significantly cor-
related with percent  DFSdeep (P < 0.01; Fig.  2) 
and was higher in perennial channels than ephem-
eral channels (P < 0.01). The relationship between 
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macroinvertebrate diversity and site elevation (a 
proxy for flow permanence; see Water source con-
tributions and flow paths) was also significant 
(P < 0.05), with the highest diversity at lower eleva-
tion sites (perennial streams).

At all sites except A4, macroinvertebrate abun-
dance was highest during August and significantly 
higher at B2 and B3 (P < 0.01). During June, mac-
roinvertebrate abundance (Fig.  4a, b) was signifi-
cantly correlated with percent  DFSdeep and FPOM 
(P < 0.05; Fig. 4c). FPOM and percent  DFSdeep were 
themselves significantly correlated (P < 0.05). During 
July and August, macroinvertebrate abundance was 
not significantly associated with  DFSdeep. However, 
macroinvertebrate abundance was still significantly 

correlated with FPOM and also CPOM (P < 0.05, 
Fig. 4d, e).

Seasonal variation at each of the seven sites was 
evident in the DCA (Fig.  5a). Sites on Axis 1 were 
plotted primarily according to the time of sampling, 
and on Axis 2 to site location (cumulative variance 
90%). Perennial streams were grouped into clearly 
defined monthly clusters (June, July, and August). 
Ephemeral streams were grouped into two clusters, 
June and July/August. This seasonal gradient for both 
stream types along Axis 1 accounted for 58% of the 
variance in taxa distribution.

Ephemeral streams in June and perennial streams 
in June and July supported similar macroinverte-
brate community structure (Fig.  5b), characterized 
by a higher abundance of Baetis tricaudatus Dodds, 
1923, Baetis bicaudatus Dodds, 1923, Clinocera spp., 
Zapada haysi (Ricker, 1952), and Alaskaperla ovi-
bovis (Ricker, 1965). In late July/August, ephemeral 
channels supported a higher abundance of Chirono-
midae and Collembola whereas perennial channels 
supported a higher abundance of Oreogeton spp., 
Ecclisomyia spp., Isoperla petersoni Needham & 
Christenson, 1927, and Plumiperla diversa (Frison, 
1935). The strong seasonal gradient of DCA Axis 
1 indicated that significantly correlated variables 

Table 2  Significant Spearman rank correlations of envi-
ronmental variables on the first two axes of an independent 
DCA of sites using macroinvertebrate abundance (**P < 0.01; 
*P < 0.05)

Axis 1 (seasonal) Axis 2 (site)

DFSdeep%** (+ve) DFSdeep%* (−ve)
Fine particulate organic matter* (+ve) D50** (+ve)

Elevation** (+ve)

Table 3  Significant Spearman’s Rank Correlations between the six most abundant taxa and physical and chemical variables 
(***P < 0.01; ** P < 0.05; * P ≤ 0.1; aqualitative non-linear relationship observed in the data)

Taxa June July August

Positive Negative Positive Negative Positive Negative

Zapada haysi DFSdeep%*
FPOM*

Pfankuch*
D50*

CPOMa Elevation**
D50*

pH* Elevation*
TOM**

Chironomidae DFSdeep%*
FPOM***
TPOM*

Elevation** TOM**
CPOM**
FPOM**

Elevation** D50**
CPOM**
TOM**

DFSdeep%a

Ecclisomyia CPOM**
TOM**

Elevation** CPOM**
FPOM**
TOM**

Elevation** Pfankuch*** -

Oreogeton Chironomidae**
FPOM*

Elevationa Chironomidae**
CPOM**
FPOM**
TOM**

Elevation** Elevation**

Baetis bicaudatus DFSdeep%*
FPOM*
TOM*

Elevation** CPOM$ Elevation** DFSdeep%**
TOM*
CPOM*
Chlorophylla

Pfankucha

D50**
Chironomidae**

Simuliidae DFSdeep%a

FPOMa

CPOM**
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influenced taxa on a seasonal basis, while variables 
that correlated more strongly with DCA Axis 2 were 
accounted for by between site differences (Table  2). 
 DFSdeep% (positively correlated on DCA Axis 1 and 
negatively on DCA Axis 2) therefore influenced 
macroinvertebrate communities, both seasonally 
(increasing in concentration from June to August) and 
between sites (with greater  DFSdeep seepage concen-
trations in perennial streams).

Patterns of dominant macroinvertebrate taxa

The relationship of the six most dominant taxa with 
physical and chemical variables varied seasonally 
(Table  3). In June, several taxa (Z. haysi, B. bicau-
datus, Chironomidae, and Simuliidae [the latter 
found only at site A4 during June]) were correlated 
to water flow pathway  (DFSdeep%), FPOM, and site 
elevation (Fig. 6a–c). Ecclisomyia spp., although low 
in abundance in June and only collected at sites A4 
and B1, had a significant correlation with CPOM. 
The abundance of the predator Oreogeton spp. was 
significantly associated with abundance of their prey 
Chironomidae throughout June and July (P ≤ 0.05) 
(Fig. 6d, e).

In July, despite the change in FPOM availabil-
ity, several taxa continued to demonstrate positive 
associations with TOM (Z. haysi, Chironomidae, B. 
bicaudatus, Ecclisomyia spp., and Oreogeton spp.), 
predominantly related to CPOM availability. Eccli-
somyia spp. abundance increased markedly to become 
established in four of the seven stream sites. Despite 
initially establishing in the site furthest downstream 
in June (A4), Simuliidae were increasingly found at 
upstream sites, demonstrating a positive correlation 
with stream elevation throughout July and August.

Fewer taxa were associated with organic mat-
ter in August, with only Chironomidae and Baetis 

bicaudatus continuing to demonstrate a positive cor-
relation (Fig. 6f, g). B. bicaudatus also demonstrated 
a strong association with chlorophyll, sediment grain 
size, and the Pfankuch Stability Index during this 
month. Oreogeton spp. maintained significant asso-
ciations with Chironomidae in perennial streams dur-
ing August but not in ephemeral streams (Fig.  6h). 
Ecclisomyia spp., found at all seven stream sites, was 
significantly associated with the Pfankuch Stability 
Index.

Discussion

Groundwater-fed streams were strongly influenced by 
local variation in water source and flow path dynam-
ics. Here, we found that in a glacierized catchment 
spatial and temporal variation in these variables 
influenced physical and chemical conditions and as 
a result the macroinvertebrate communities. Across 
the stream sites studied, macroinvertebrate communi-
ties were related to the duration of active flow in the 
channels, and its subsequent influence on physical 
and chemical processes and organic matter dynamics. 
Overall, these findings highlight the combined influ-
ence of flow regime stability and organic matter con-
tent as drivers of macroinvertebrate community struc-
ture and abundance across groundwater-fed streams 
in glacierized catchments.

Spatial and temporal variation in environmental 
conditions

Spatial variation in the physical and environmen-
tal conditions present across groundwater steams 
on the river terrace was high, with the largest differ-
ences occurring between perennial and ephemeral 
streams. Perennial streams were at lower elevations 
on the river terrace in comparison with ephemeral 
streams, and there were differences in water source 
contributions with perennial streams supported by 
groundwater from  DFSdeep (seepage from the valley 
sides), whereas ephemeral channels water source was 
predominantly  GWriver  (DFSdeep, snow and glacial 
meltwater) groundwater associated with the alluvial 
aquifer. These patterns align well with findings from 
previous studies which have also found spatial vari-
ation in water sources contributions at local scales in 

Fig. 5  Community variation in macroinvertebrates. A 
Detrended correspondence analysis of macroinvertebrate 
taxa and sample sites. B Ordination biplot of detrended cor-
respondence analysis, with independently correlated physical 
and chemical variables. Taxa: 1 Ceratopogonidae, 2 Hexa-
toma spp., 3 Megaleuctra spp., 4 Oligochaetae spp. A, 5 Bae-
tis bicaudatus, 6 Chelifera spp., 7 Zapada haysi, 8 Plumiperla 
diversa, 9 Simuliidae, 10 Ephydra spp., 11 Limniphora spp., 
12 Ecclisomyia spp., 13 Physchodidae, 14 Tipula spp., 15 
Hydracarina, 16 Collembola, 17 Chironomidae, 18 Oligochae-
tae spp. B, 19 Alaskaperla ovibovis, 20 Baetis tricaudatus, 21 
Clinocera spp., 22 Oreogeton spp., 23 Isoperla petersoni 

◂



 Hydrobiologia

1 3
Vol:. (1234567890)



Hydrobiologia 

1 3
Vol.: (0123456789)

glacierized catchments (Alther et  al., 2019; Zuecco 
et al., 2019), which concluded that flow permanence 
strongly influenced environmental conditions within 
streams (Brown et al., 2006a).

Temporal variation in environmental conditions 
within streams was also high. Ephemeral streams 
only started flowing in late summer with increases in 
glacial meltwater contributions to groundwater. More 
specifically, changes in water sources and flow paths 
influenced organic matter dynamics, with increases in 
TOM and total chlorophyll (from microbial biofilms) 
with highest levels observed in August. This pattern 
coincides with leaf fall and in-stream degradation, as 
well as peak primary productivity. Patterns such as 
this were expected in this study, but yet are uncom-
mon for streams in glacierized catchments, which are 
typically supported by low levels of allochthonous 
organic matter due to poorly developed riparian eco-
tones on highly disturbed glacial floodplains (Zah & 
Uehlinger, 2001).

Factors influencing variation in macroinvertebrate 
communities

Macroinvertebrate abundance, diversity, and commu-
nity composition varied spatially, across streams with 
different degrees of flow permanence, demonstrating 
the important influence of groundwater dynamics. 
Overall, perennial streams maintained a higher mac-
roinvertebrate abundance and diversity in compari-
son with ephemeral groundwater-fed streams. Higher 
macroinvertebrate diversity in perennial streams can 
be attributed to the greater channel stability and the 
permanence of flow (Wood et al., 2005; Brown et al., 
2006b, 2007b; Milner et  al., 2020). Conversely, the 
low macroinvertebrate diversity observed in ephem-
eral channels is likely a result of flow intermittency.

There were, however, temporal variations in 
macroinvertebrate communities across the stream 
sites. For example, diversity in perennial channels 

increased throughout the summer (June to August) 
likely due to the response of macroinvertebrate taxa 
to increasing OM availability, particularly CPOM, in 
July and August. In contrast, diversity in ephemeral 
streams was invariant, likely reflecting limitations on 
colonization due to distance from the macroinverte-
brate colonizing pool in the perennial streams (McAr-
thur and Barnes 1985; Fritz and Dodds 2005) as well 
as the influence of short summer seasons and thus 
opportunities for dispersal. Colonization of ephemeral 
stream reaches predominantly depends upon seasonal 
upstream migration from perennial reaches (William 
& Hynes, 1976; Fengolio et al., 2002) and aerial dis-
persal, which across the streams studied here already 
had low macroinvertebrate abundance. Although flow 
stability is likely to be the main determinant of spatial 
and temporal variations in macroinvertebrate com-
munity composition (see Milner et al., 2020), a series 
of co-varying physical and chemical variables may 
be responsible for the patterns observed across these 
groundwater-fed streams.

Organic matter dynamics was particularly vari-
able across and within streams. The strong positive 
relationship between FPOM and  DFSdeep%, and sub-
sequently macroinvertebrate abundance across flow-
ing streams in June, indicates the potential for FPOM 
transport to streams by groundwater flowing through 
colluvial deposits on the floodplain margins (Bois-
sier & Fontvielle, 1995). Certainly, FPOM entrain-
ment by waters percolating through the more densely 
vegetated and deeper soils on the valley sides would 
increase the FPOM content of  DFSdeep waters provid-
ing a valuable carbon resource to macroinvertebrates 
during periods when CPOM was limited (Richard-
son, 1991; Dobson & Hildrew, 1992). Furthermore, 
increases in CPOM due to leaf litter inputs in late July 
and August would explain the shift in the association 
of macroinvertebrates from FPOM in June to CPOM 
in late July and August across stream sites.

Irrespective of the organic matter source (FPOM 
or CPOM), there was a continued correlation between 
macroinvertebrate taxa and organic matter, indicative 
of resource tracking (Hart & Robinson, 1990; Rowe 
& Richardson, 2001). Two dominant mechanisms 
of tracking have been identified: (1) active (a delib-
erate emigration from sites of low to high resource 
availability) and (2) passive (accidental dislodge-
ment) (Richardson, 1991; Kohler, 1985; Rowe & 
Richardson, 2001). However, the facultative feeding 

Fig. 6  Seasonal variability in distribution of individual taxa 
with relation to physiochemical variables. A Zapada haysi, B 
Chironomidae, and C Baetis Bicaudatus to  DFSdeep%. D and 
E  The distribution of Oreogeton spp. associated with that of 
Chironomidae throughout June and July, respectively. F and 
G Association of Chironomidae and Baetis bicaudatus with 
resource availability throughout August. H Difference between 
association of Oreogeton spp. with Chironomidae within per-
ennial and ephemeral streams during August
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nature of some macroinvertebrates may complicate 
the resource tracking relationship where taxa alter 
their diet according to resource availability or devel-
opmental stage (Mihuc & Minshall, 1995; Moore, 
1977). Here, this may be the case as the relation-
ships between TOM and macroinvertebrates are most 
marked in resource-depleted environments, such as 
arctic and alpine streams (Tiegs et al., 2008).

Conclusions

Our findings presented here demonstrate that ground-
water sources and flow paths are key variables influ-
encing macroinvertebrate community structure in 
groundwater-fed streams. Our results also highlight 
the importance of changes in the source and timing of 
groundwater flow, in the context of wider uncertain-
ties of the extent (and reliability) of the contribution 
to flow from snow- and ice-melt and summer rain-
fall. Climate change is likely to affect these streams 
by altering the proportional contribution of individual 
water sources to streamflow. This may be highly com-
plex (e.g., Liu et  al., 2020) and at present is poorly 
known (Jyvasjarvi et  al., 2015). Given projections 
that maximum glacier water yield in Alaska will 
occur in 2060 under a RCP of 2.6 and 2090 under a 
RCP of 8.5 (Huss & Hock, 2018), glacier meltwater 
is likely to increase throughout the second part of this 
century in Alaska. Consequently, ephemeral streams, 
fed through the snow and glacial melt water, are 
likely to run longer over the summer and with poten-
tially greater flow.

To determine the full extent of climatic influences 
on these terraces, further research is needed into 
the relative importance of winter macroinvertebrate 
diversity and abundance on summer community com-
position and into seasonal changes in groundwater 
sources associated with receding glaciers and snow-
packs feeding deep aquifers.
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