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Abstract
Objectives: When developing a clinical prediction model, penalization techniques are recommended to address overfitting, as they
shrink predictor effect estimates toward the null and reduce mean-square prediction error in new individuals. However, shrinkage and pen-
alty terms (‘tuning parameters’) are estimated with uncertainty from the development data set. We examined the magnitude of this uncer-
tainty and the subsequent impact on prediction model performance.

Study Design and Setting: This study comprises applied examples and a simulation study of the following methods: uniform shrinkage
(estimated via a closed-form solution or bootstrapping), ridge regression, the lasso, and elastic net.

Results: In a particular model development data set, penalization methods can be unreliable because tuning parameters are estimated
with large uncertainty. This is of most concern when development data sets have a small effective sample size and the model’s Cox-Snell R2

is low. The problem can lead to considerable miscalibration of model predictions in new individuals.
Conclusion: Penalization methods are not a ‘carte blanche’; they do not guarantee a reliable prediction model is developed. They are

more unreliable when needed most (i.e., when overfitting may be large). We recommend they are best applied with large effective sample
sizes, as identified from recent sample size calculations that aim to minimize the potential for model overfitting and precisely estimate key
parameters. � 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

In health care, diagnosis and prognosis may be informed
by statistical models that predict disease presence and
outcome occurrence in individuals [1]. Such models are
broadly known as clinical prediction models [2] and are
often developed using a multivariable regression frame-
work (e.g., logistic, survival, or linear regression), which
provides an equation to estimate an individual’s outcome
probability (for binary or time-to-event outcomes) or
outcome value (for continuous outcomes) conditional on
values of multiple variables (predictors).

When estimating regression models using a particular
data set, conventional estimation techniques are often used,
in particular ordinary least squares or standard maximum
likelihood estimation. However, these tend to give model
s article under the CC BY license (http://creativecommons.org/licenses/by/
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What is new?

Key Findings
� When developing a clinical prediction model,

penalization techniques are recommended to
address overfitting; however, they are not a ‘carte
blanche’.

What this adds to what was known?
� Although penalization methods will, on average,

improve on standard estimation methods, in a
particular data set, they can be unreliable, as their
unknown shrinkage and tuning parameter estimates
are often estimated with large uncertainty.

� The most problematic data sets are those with
small effective sample sizes and where the devel-
oped model has a Cox-Snell R2 far from 1, which
is common for prediction models of binary and
time-to-event outcomes.

What is the implication and what should change
now?
� Penalization methods are best used in situations

when a sufficiently large development data set is
available, as identified from sample size calcula-
tions to minimize the potential for model overfit-
ting and precisely estimate key parameters.

� When the sample size is adequately large, any of
the studied penalization or shrinkage methods
can be used, as they should perform similarly and
better than unpenalized regression unless sample
size is extremely large and R2

app is large.

equations that are overfitted to the development data set and
so produce too extreme predictions when applied in new in-
dividuals, that is, some predicted outcome values lie too far
from the overall mean. For example, using standard
maximum likelihood estimation when developing a logistic
regression model can give predicted probabilities too close
to 0 for low-risk individuals and too close to 1 for high-risk
individuals. The problem of overfitting will usually in-
crease as the sample size of the development data de-
creases, the number of candidate predictors increases, and
(for binary or time-to-event outcomes) the number of
outcome events decreases.

Penalization and shrinkage methods have been proposed
to resolve overfitting concerns. These include uniform
shrinkage estimated via bootstrapping, ridge regression, the
least absolute shrinkage and selection operator (lasso), and
elastic net [3e6]. Penalization techniques shrink (in fact,
introduce bias to) the estimated predictor effect estimates
(i.e., odds ratios, hazard ratios, or mean differences) toward

R.D. Riley et al. / Journal of Clin
the null. Compared with standard estimation methods, this re-
duces the variance of the developed model’s predictions in
new individuals, thereby reducing the mean-square error of
the predictions. For example, in a logistic regression model,
penalization methods will shrink predictor effects (odds ra-
tios) toward 1, so that predicted probabilities in new individ-
uals show less variability (i.e., are pulled away from 0 and 1,
toward the mean outcome probability in the data set).

Penalization techniques are thus recommended as essen-
tial tools for prediction model development [3,7e12], espe-
cially for situations where the effective sample size is low
(and thus potential magnitude of overfitting using standard
methods is high) [13]. For example, Pavlou et al. conclude
that ‘‘penalized regression is a flexible shrinkage approach
that is effective when the EPV is low (!10)’’ [8], and
Ambler et al. note that ‘‘the performance of ridge and lasso
in our simulations suggests that it is possible, with care, to
develop a risk model when the EPV is as low as 2.5’’ [7].
Given such recommendations, we are concerned that applied
researchers might view penalization methods as a ‘carte
blanche’ to develop a prediction model regardless of the size
of the data set available for model development. Indeed, pre-
vious simulations suggest that although penalization may
indeed be effective on average, it may fail in the particular
data set being used for model development [12,14].

In this article, we build on previous statistical articles
[12,14], to highlight this issue to a broad audience. We use
applied examples and graphical displays to show that shrinkage
and tuning parameters in penalized regression are typically
estimated with large uncertainty. We demonstrate how this
problem increases as the effective sample size reduces (i.e.,
when development data sets have smaller numbers of partici-
pants or events, relative to the number of candidate predictors)
[15e17] and that the consequence is miscalibration and poor
performance when the model is applied to new individuals.
The impact on blood pressure predictions is demonstrated at
the individual level, and our empirical examples are reinforced
by analytic reasoning and a small simulation study. Section 2
describes our methods, Section 3 reports our results and
applied examples, and Section 4 concludes with discussion
and recommendations.
2. Methods

Penalization methods for prediction model development
are now described, followed by details of our applied exam-
ples and simulation study for evaluating their performance.

2.1. Shrinkage and penalization methods

Perhaps the simplest penalization method is where a uni-
form (linear and global) shrinkage factor (S) is used to
shrink the predictor effects estimated from standard (un-
penalized) maximum likelihood estimation. For example,
a modified logistic regression model with shrunken predic-
tor effects can be obtained by
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�
5a� þ S

�bb1X1i þ bb2X2i þ bb3X3i þ.
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where S is a shrinkage value between 0 and 1 and used to
uniformly adjust the predictor effects (bb1; bb2;.Þ estimated
from standard maximum likelihood and a� is the updated
intercept, estimated after determining and applying S to
ensure that the calibration-in-the-large is correct (i.e., that
the sum of predicted probabilities equals the overall propor-
tion of observed events).

The true S is that which minimizes the expected mean-
square error of predictions from the model when applied
to the same population as that which the development data
set is sampled from. However, S is an unknown parameter
and so must be estimated, for example, using the heuristic
solution of Van Houwelingen and Le Cessie (given in
Appendix) [18], or via bootstrapping as described else-
where [1,2,19,20]. Riley et al. showed the estimate of S de-
pends on R2

app, which is the apparent (‘app’) value of the
Cox-Snell R2 (a measure of proportion of variance exam-
pled by the model in the development data set) [21].

Rather than using a postestimation uniform shrinkage to
penalize the regression coefficients from standard
maximum likelihood estimates, other approaches are avail-
able that penalize during the model estimation itself [12]. In
this article, we focus on three popular penalized regression
methods: ridge regression [4,6], the lasso [3], and elastic
net [5]. Such penalization approaches include a term
lpenðbÞ, where penðbÞ is a particular penalty term and l
is a nonnegative tuning parameter, which controls the
amount of shrinkage. Further details of the penalty terms
for each approach are given in Appendix. A value of
l 5 0 corresponds to no shrinkage (i.e., applying the stan-
dard maximum likelihood estimator when fitting a model
such as logistic regression). The penalty factor for elastic
net or the lasso is defined such that it can shrink predictor
effects to zero and hence allows the exclusion of some pre-
dictors. The penalty term in ridge regression sets many of
the predictor coefficients close to zero, but never exactly
to zero.

As explained for the uniform shrinkage factor S, the true
value of the tuning parameter l is the one that minimizes
the mean-square error of model predictions in the target
population. However, l is unknown and so is often esti-
mated from the development data set using either K-fold
cross-validation, repeated K-fold cross-validation, or boot-
strap K-fold cross-validation [22]. Larger uncertainty in
the value of l leads to more uncertainty in the model’s
actual predictive accuracy [23].

2.2. Examples to illustrate uncertainty of uniform
shrinkage estimate

Three prediction models are used to illustrate uniform
shrinkage and the potential for uncertainty in the estimate
of S. First, we developed two models for predicting systolic
blood pressure (SBP) at 1 year in patients diagnosed with
hypertension. The development data set was based on a
subset of Riley et al. [24], and to contrast models with
different R2

app values, we developed models separately in
those considered low risk (model A, 262 participants with
no comorbidities) or high risk (model B, 253 participants
with comorbidities) for developing cardiovascular disease.
Seven predictors measured at baseline were used in the
modeling: SBP (mmHg), diastolic blood pressure (mmHg),
body mass index (kg/m2), age (years), sex (female 5 0,
male 5 1), current smoker (yes 5 1, no 5 0), and antihy-
pertensive treatment (yes 5 1, no 5 0).

Second, we used data from 654 children to develop a
model (model C) to predict log-transformed forced expira-
tory volume (in liters) using four predictors: age (years),
height (inches), sex (female 5 0, male 5 1), and current
smoker (yes 5 1, no 5 0). The data were obtained from
http://biostat.mc.vanderbilt.edu/DataSets and originally
come from Rosner [25].

2.3. Simulation study to examine uncertainty of tuning
parameter estimates

Our simulation study to examine the degree of instability
of the various penalization methods is now described. The
corresponding R code is provided at https://github.com/
gscollins1973.

2.3.1. Scenarios
We considered 10 simulation scenarios. All scenarios

had an outcome event proportion of 0.5 (50%) but varied
in the sample size from N 5 100 to N 5 1,000 (in steps
of 100), corresponding to an events-per-parameter value
of 2.5 (for N 5 100; 50 outcome events) to 25 (for
N 5 1,000; 500 outcome events). The scenarios are a prag-
matic choice, to cover a range of events per parameter and
to differ from those elsewhere [12,14], but we recognize
that they do not reflect all possible model development
settings.

2.3.2. Data generation
For each scenario, 500 data sets of the chosen sample

size were generated. Each data set was simulated contain-
ing a binary outcome and values of 20 continuous predic-
tors for each participant. First, values of the 20
continuous predictors were simulated using a multivariate
normal distribution with mean 0 and variance 1: five
weakly correlated true predictors (pairwise correla-
tion 5 0.1) and 15 uncorrelated noise predictors (pairwise
correlation 5 0). Then, the true outcome (Y) was generated
conditional on an underlying logistic regression model
based on all 20 predictors (equation given in appendix).

2.3.3. Model development
To each of the 500 simulated data set in each scenario, six

different methods were used to develop a logistic regression

http://biostat.mc.vanderbilt.edu/DataSets
https://github.com/gscollins1973
https://github.com/gscollins1973


Table 1. Three prediction models developed using linear regression, with summary of model performance and bootstrap uniform shrinkage
estimate

Model Outcome
Model equation derived using ordinary least

squares estimation (i.e., before any shrinkage)

Number of
patients/predictor

parameters R2
app

Uniform shrinkage (S)
estimate from 1,000

bootstrap samples (95%
confidence interval)

A Systolic blood pressure (SBP)
(low CVD risk population)

28.10 þ 0.46*SBP þ 0.41*DBP þ 0.013*BMI
þ 0.45*age � 2.05*sex � 17.81*treat �
2.08*smoker

262/7 5 37 0.23 0.94 (0.77 to 1.18)

B Systolic blood pressure (SBP)
(high CVD risk population)

�12.69 þ 0.94*SBP þ 0.21*DBP
�0.001*BMI þ 0.06*age þ 1.72*sex �
1.04*treat þ 0.17*smoker

253/7 5 36 0.56 0.98 (0.87 to 1.10)

C ln(FEV) �2.07 þ 0.02*age þ 0.04*height þ 0.03*sex
þ 0.05*smoker

654/4 5 164 0.81 1.00 (0.96 to 1.04)

DBP, diastolic blood pressure; BMI, body mass index; CVD, cardiovascular disease.
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model based on the 20 predictors: three penalized regression
methods (ridge regression, elastic net, and lasso), two uni-
form shrinkage methods (heuristic shrinkage or bootstrap
shrinkage), and, for comparison, standard (unpenalized)
regression. The tuning parameter (l) for the ridge regression,
elastic net, and lasso was estimated using 5-fold cross-
validation, using the cv.glmnet function from the glmnet
package in R [26], to minimize the deviance. In addition
to 5-fold cross-validation, we also investigated whether us-
ing bootstrapping would improve stability for ridge regres-
sion. In each bootstrap sample (total of 200 bootstrap
samples), 5-fold cross-validation was used to select the tun-
ing parameter, and the median l over the 200 bootstrap sam-
ples was taken forward to develop the model.

2.3.4. Model validation
To evaluate the performance of each developed predic-

tion model, a validation data set (N 5 5,000; 2,500
outcome events) was created using the same data gener-
ating procedure, giving a much larger effective sample size
than the recommended 100 to 250 outcome events for vali-
dating a prediction model [27,28]. Each developed model
was evaluated in this independent validation data set by
calculating the c-index, Nagelkerke R2, calibration-in-the
large, and the calibration slope.

2.3.5. Summarizing simulation results
For each type of model (e.g., uniform shrinkage, lasso,

elastic net, ridge regression), in each scenario, the key find-
ings are the average model performance and, in particular,
the variability in model performance across the 500 devel-
oped models in each scenario and also the variability in tun-
ing parameter estimates. To illustrate this, boxplots are
presented for each scenario.
3. Results

The key findings from our applied examples and simula-
tion study are now described.
3.1. Uncertainty in uniform shrinkage estimate: findings
from applied examples

Consider the three models to predict a continuous
outcome introduced in Section 2.2. The corresponding un-
penalized model equations are shown in Table 1 and cover
situations with small (model A), medium (model B), and
large (model C) values for R2

app of 0.23, 0.56, and 0.81,
respectively. For each model, Table 1 shows the mean boot-
strap estimate of S together with a 95% confidence interval
for S derived from the 2.5th and 97.5th percentile values of
the bootstrap samples. Our ‘best guess’ of the true S is the
mean estimate across 1,000 bootstrap samples, but the
width of the distribution of the 1,000 values reveals the un-
certainty in this choice. If the width is narrow, it gives more
assurance that the mean estimate is suitable; however, if the
width is wide, the mean estimate may be far from the true
value of S for the target population.

For model A, which has the smallest R2
app value (0.23) in

the full development data set and contains seven predictor
parameters, the bootstrap mean estimate of S is 0.94, which
reflects low overfitting because of the larger number of 37
individuals per predictor parameter. Despite this, the range
of observed bootstrap values for S is reasonably wide, with
95% of values lying between 0.77 and 1.18. Thus, we are
not very confident about what the actual (true) shrinkage
factor should be. Hence, even in an example where overfit-
ting is expected to be low, the true shrinkage factor is very
difficult to ascertain from the data set at hand. Fig. 1A
shows that the uncertainty of S increases as the number
of participants in the development data set decreases and
as the corresponding mean estimate of S moves closer to
zero. For example, when refitting model A using a random
subset of 100 participants, the mean bootstrap estimate of S
is 0.82 and 95% of values fall between 0.52 and 1.27. When
using a subset of only 50 participants, the mean estimate of
S is again smaller (0.78) and the 95% range of values wider
(0.43 to 1.21). Thus, as the required level of shrinkage in-
creases, the uncertainty in the shrinkage factor also
increases.



Fig. 1. The mean estimate and 95% confidence interval of the uni-
form shrinkage factor (SÞ as derived from 1,000 bootstrap samples,
across different sample sizes for developing models A, B, and C as
described in Table 1. Curves are created using a lowess smoother.
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Now consider model B, which was developed using 253
individuals and seven predictors. These are similar numbers
to model A, but model B has a much larger R2

app (0.56) in
the full development data set, a mean shrinkage estimate
(0.98) closer to 1, and a narrower range of values for S
(95% interval: 0.87 to 1.10). To reduce sample size, we
sequentially removed one individual randomly at a time
and repeated the modeling process; this shows again that
the mean bootstrap estimate of S reduces and the observed
range of values widens (Fig. 1B), especially as the sample
size reduces below 100 individuals. For example, with only
50 individuals, the mean estimate of S drops to 0.84 and
95% of bootstrap values lie between 0.52 and 1.10.

Model C has an R2
app of 0.81 in the full development data

set, much larger than those for models A and B. The mean
shrinkage estimate is 1, and the 95% interval is very narrow
(Fig. 1C); essentially, there is strong evidence that
shrinkage of predictor effects is not required. This is not
surprising as there are only four predictor parameters and
654 participants. Indeed, even if we developed the model
in a reduced set of 20 randomly selected participants, the
mean shrinkage estimate is still close to 1 and the 95% in-
terval remains quite narrow (about 0.9 to 1.1).

Notice that, in these examples, there is less uncertainty
in the value of S when the estimate is closer to 1, that is,
settings where overfitting is less of a concern. Furthermore,
the estimate of S is closer to 1 in settings where R2

app is
closer to 1 (this is also shown analytically in the
Appendix). Most prediction models do not have R2

app values
close to 1. In particular, for binary and time-to-event out-
comes, the value of R2

app will often be much lower than 1,
as the maximum value is bounded below 1 [16]. Conse-
quently, uniform shrinkage estimates will often be far from
1 (toward 0) in models such as logistic and Cox regression,
especially when the sample size is small and the number of
predictor parameters is large.
3.2. Importance of estimating shrinkage precisely:
illustration using model A

To illustrate the importance of estimating S precisely, we
applied uniform shrinkage to revise the model A equation
shown in Table 1. Based on the full development data set
of 262 participants, bootstrap shrinkage suggests an S of
0.94 with a 95% confidence interval between 0.77 and
1.18 (Table 1). We compared predictions after applying
shrinkage values of 0.77 and 1.18. The difference in predic-
tions was generally within 7e8 mmHg for most partici-
pants, and only seven (2.7%) of the participants had a
difference O 10 mmHg (Fig. 2A).

Next, we reduced the development data set to a random
sample of 50 participants and re-estimated the equation for
model A. Because of the smaller sample size, the bootstrap
approach gave a lower estimate of 0.78 for S, with a wider
95% confidence interval of 0.43 to 1.21. We compared pre-
dictions after applying shrinkage values of 0.43 and 1.21.
Compared with when using all 262 participants, the distri-
bution of differences in predictions was much wider, and
now 10 (25%) of the participants had absolute



Fig. 2. Difference in predicted systolic blood pressure (SBP) values in mmHg, when using the lower or upper bound of the bootstrap-derived 95%
confidence interval for the shrinkage factor (SÞ to revise model A after (A) using 262 participants and (B) using 50 participants for model
development.
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differences O 10 mmHg; three participants even had a
O15 mmHg absolute difference (Fig. 2B). Hence, the
larger the uncertainty in the shrinkage factor, the larger
the uncertainty in predicted values for individuals, and so
the greater the concern that model predictions may not be
reliable for practice.

3.3. Uncertainty in uniform shrinkage and penalized
regression methods: findings from simulation study

We now discuss the uncertainty when fitting penalized
regression models, as identified by our simulation study
of uniform shrinkage, ridge regression, the lasso, and
elastic net.
3.3.1. Comparison of uncertainty in bootstrap and heu-
ristic shrinkage estimates of S

For the uniform shrinkage approach, the simulations
confirmed the findings identified from the applied exam-
ples. In particular, there was more variability in the estimate
of uniform shrinkage with more overfitting (i.e., when S
was further from 1 toward 0), as shown in Supplementary
material Figure S1. In addition, the simulation results



Fig. 3. Median values (short horizontal lines) and scatter plots showing variability in (A) tuning parameter estimate (l) and (B) predictive perfor-
mance of the developed model in the large validation data, for various methods across varying sample sizes for model development; for each sample
size, 500 data sets were simulated as described in Section 2.3, and for each data set, a model was developed for each method with (A) tuning
parameter estimated, and then (B) predictive performance tested. In (B), the long horizontal lines are the large sample performance values.
CITL 5 calibration-in-the-large; Horizontal spread within each sample size grouping is just random jitter to aid display; c-index is not shown for
heuristic or bootstrap shrinkage, as these methods do not change the ranking of predictions, and thus the c-index is the same as maximum likeli-
hood estimation.
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showed considerably less variability in the bootstrap esti-
mate of S than in the heuristic shrinkage estimate of S when
using small sample sizes for model development and when
the required shrinkage is large (S!0:8) (Supplementary
material Figure S1). When the sample sizes were larger
such that required shrinkage is smaller (SO0:8), the boot-
strap and heuristic approaches were much more similar in
their distribution of S estimates. This again suggests that
estimates of S are more stable when the overfitting is small
(i.e., S is closer to 1).

3.3.2. Uncertainty in tuning parameter estimates and
prediction model performance

Figure 3A illustrates the variability in the estimation of
the tuning parameter, l, in our simulation scenarios for each
of the three penalized regression approaches. For all three
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approaches, the smaller the sample size, the more uncer-
tainty in the estimate of l. Variability in the estimate of
the l was reduced using bootstrap 5-fold cross-validation,
compared with standard 5-fold cross-validation for ridge
regression (Supplementary Figure S5). There was negli-
gible difference between 5-fold and 10-fold cross-
validation (supplementary Tables S1 to S3).

Importantly, Figure 3B shows that more variability in l

led to more variability in the predictive performance of the
developed models when tested in the large validation data
set (also see Supplementary Material Figures S2, S3 and
S5). Even with the best model development approaches,
there was considerable variability in a model’s predictive
performance on validation, especially when the develop-
ment data set had a small sample size. In particular, for
every model, there was large variability in the calibration
slope on validation, and the slope was often very different
to 1 (i.e., indicative of miscalibration), with some methods
even giving a range of about 0 to 5 in the smallest sample
sizes (Fig. 3B). Therefore, despite their intention, the
various penalization and shrinkage methods did not provide
a ‘carte blanche’ that ensured a reliable model when
applied in new individuals.

Large development sample sizes were needed to reduce
the variability in both the estimate of l and predictive per-
formance on validation, for the penalization and shrinkage
methods to give a more reliable model for practice (i.e., as
the model development data set became larger, the methods
produced models with calibration slopes more consistently
close to 1 when applied in new data). In that situation, the
various penalization and shrinkage methods performed
similarly (Fig. 3B, Supplementary material Figure S5), with
an average calibration slope estimate close to 1 and reason-
ably narrow variability (e.g., 0.8 to 1.2). Other measures
were also more stable, such as R2, the c-index and the
calibration-in-the-large (Fig. 3B), and we would expect this
to also hold for other measures such as the integrated or
estimated calibration index [29,30].
4. Discussion

Our findings emphasize the potential for large uncertainty
of shrinkage and tuning parameter estimates used within
penalization methods when developing prediction models.
Although penalization methods are recommended because
they will improve on standard estimation methods on
average, in a particular data set, they can be unreliable.
The most problematic data sets are those with small effective
sample sizes and where the developed model has an R2

app far
from 1, which is common for prediction models of binary and
time-to-event outcomes [16]. Such uncertainty might lead to
considerable miscalibration of predictions when the model is
applied to individuals outside the development data set.

A limitation of our work is that the simulation study sce-
narios were pragmatic, and so do not cover every possible
type of model development data set and setting. However,
the findings echo related simulation studies by Van Houwe-
lingen [12] and Van Calster et al. [14]. Furthermore, our
simulation scenarios differ from those used in these articles,
and we also examined the reduction in uncertainty in esti-
mating tuning parameters over k-fold cross-validation using
repeated k-fold cross-validation and bootstrap k-cross-vali-
dation and assessed how this impacts on reducing uncer-
tainty in model performance measures. We also
demonstrated the issues using analytic reasoning and
applied examples, to showcase the problem to a wider
audience.
4.1. Recommendations

In model development data sets with large potential for
overfitting, the uncertainty about the true magnitude of
penalization will often be very large, and thus there is actu-
ally no guarantee they will improve calibration of predic-
tions in new individuals. Indeed, in situations where
penalization methods are most needed, they are more likely
to be unreliable. Hence, we recommend that researchers are
best applying penalization methods to develop a prediction
model when the effective sample size is large, such that the
amount of shrinkage and penalization is anticipated to be
small. In recent guidance [15e17], we show how re-
searchers can base sample size requirements on a targeted
uniform shrinkage factor of at least 0.9, such that the
magnitude of global shrinkage is desired to be 10% or less.
In such situations, penalization methods will have narrower
uncertainty about the estimated tuning and shrinkage pa-
rameters, such that developed models are more likely to
be reliable (well calibrated) when applied to new individ-
uals. This idea is supported by Figure 1, which shows that
the range of observed bootstrap values for the shrinkage
factor (S) becomes more acceptably narrow for sample
sizes where the mean estimate of S is between 0.9 and
1.0. Conversely, where the estimate of S is less than 0.9,
the variability in bootstrap values may escalate quite
rapidly. Even when S is estimated close to 0.9 or above,
the uncertainty may be surprisingly large still in some ap-
plications (e.g., see confidence interval for S for model A,
Table 1). Sample size should also be large enough to esti-
mate overall model fit precisely and key parameters such
as the model intercept [15e17].

Another key finding is that in smaller samples, boot-
strapping resulted in less variability in estimates of
shrinkage than other methods, including the heuristic esti-
mate of uniform shrinkage and k-fold cross-validation esti-
mate of tuning parameters in penalized regression.
However, in situations where sample size is larger, the
various methods were similar in terms of variability of
shrinkage (and subsequent predictive performance on vali-
dation). Hence, when the sample size is adequate, we
recommend that any of the studied penalization or
shrinkage methods can be used, as they should perform
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similarly and better than unpenalized regression unless
sample size is extremely large and R2

app is large (e.g., as
in model C).
4.2. Summary

In summary, penalization and shrinkage methods should
not be viewed as a solution to small effective samples sizes
for prediction model development. We recommend they are
best applied to develop models in situations where a suffi-
ciently large development data set is available, to minimize
the potential for model overfitting, improve the precision of
model parameter estimates (including shrinkage and tuning
parameters), and thus give more robust prediction models
for clinical practice.
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