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Abstract 

Background: CIGs languages consist of approach specific 
concepts. More widely used concepts, such as those in UMLS 
are not typically used. Objective: An evaluation of UMLS 
concept sufficiency for CIG definition. Method: A popular 
guideline is mapped to UMLS concepts with NLP. Results are 
reviewed to evaluate gaps, and appropriateness. Results: A 
significant number of the guideline text mapped to UMLS 
concepts. Conclusions: The approach has shown promise and 
highlighted further challenges.  
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Introduction 

Clinical Practice Guidelines are seen as encapsulating the best 

available evidence regarding management of a condition, con-

stituting a widely accepted standard. CIGs will allow guidelines 

to be run by decision support systems [1]. Numerous ap-

proaches convert clinical guidelines into computer interpretable 

guidelines [2, 3]. One common aspect is that use languages with 

project specific concepts and semantics. All these languages 

aim to represent a common artefact (i.e., clinical guidelines). 

However, except for a few obvious concepts (e.g., patient), 

there is variation in the name, definition as well as structure of 

many of them. There are numerous coding systems such as 

UMLS and SNOMED CT, which provide unambiguous defini-

tion of healthcare related concepts. Furthermore, there is a high 

degree of traceability amongst most of these coding systems. 

Natural Language Processing (NLP) allows the computational 

analysis and processing of data in natural languages (i.e., text), 

increasingly applied in healthcare [4]. The objective of this pa-

per is to understand, using NLP, whether the expressive prow-

ess of UMLS is sufficient, to effectively provide semantic def-

initions for a CIG ontology.  

Methods 

The paper adopts a bottom-up approach by examining how pub-

lished clinical guidelines can be mapped on UMLS concepts. 

MetaMap [5] analyses free text, and maps its contents to UMLS 

concepts. An utterance that is a block of text, is split into 

phrases. The tool then looks for words in the phrase that can be 

matched to UMLS concepts, with maximum confidence of 

1000. When MetaMap cannot map words to UMLS concepts it 

produces a ‘NOT FOUND’ result. Each matched word may be 

mapped to multiple concepts, depending on the context of the 

sentence. A local server of MetaMap 2020 was used, in its de-

fault mode without additional parameters. The top results were 

reviewed manually to examine whether the MetaMap mapping 

is accurate and unambiguous in a specific context. For this, the 

work analyzed the NICE NG28 guideline. The following tests 

were performed to the MetaMap output: a) Descriptive statisti-

cal analysis of the number of mappings of each matched word; 

b) Examination of the confidence variation in the mappings of 

each word; c) Review of the words that gave a NOT FOUND 

result from MetaMap to identify potential semantic gaps in 

UMLS.  

Results 

The analysis found a total of 3527 unique mapping interpreta-

tions, on 1188 concepts. These 1188 concepts were associated 

with 85 semantic types. Figure 1 presents the distribution of the 

frequencies of concepts (CUIs). For example, 1 concept was 

mapped 130 times, whereas the majority of concepts were 

mapped fewer than 20 times, with 665 concepts being identified 

only once.  

 

Figure 1 – Frequency of number of concepts appearing in 
mappings of words (e.g. 1 CUI appeared 30 times) 

Table 1– Most common concepts in NG28  

 

Table 1 presents the 10 most common concepts that were 

mapped from NG28. Figure 2 shows the number of mappings 
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C0027361 36 3.0% person 

C0001675 30 2.5% adult 

C0011860 24 2.4% diabetes type 2 

C0150600 22 2.0% recommendation to 

C0087111 20 1.9% therapy 

C0039798 18 1.7% therapy (MeSH) 

C2347489 17 1.5% person observer 

C0021641 15 1.4% insulin 

C0013227 15 1.3% medicines 
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for each instance of matched word (i.e., excluding those not 

found). It can be seen that the majority of the words had fewer 

than 10 mappings.  

 

Figure 2 – Number of mappings per word per utterance 

Table 2 – UMLS semantic types 

 

In total the analysis found 85 semantic types. Table 2 shows the 

10 most common semantic types associated with mappings. 

The top 20 semantic types were associated with 85.6% of the 

mappings. Figure 3 shows the frequency of the standard devia-

tions of the mappings for each matched word (where a word 

had more than one mappings). It can be seen that the majority 

of mappings had the same confidence scored.  

 
Figure 3 – Standard deviation distribution of the scores of 

mappings for each phrase. 

Most mapping scores were the same, without prevailing inter-

pretation.  

MetaMap was not able to match 1135 phrases. This is a signif-

icant number (approx 39% of all phrases) indicating a potential 

gap in being able to capture the guideline. Table 3 shows the 

most frequent phrases that were not matched, and the most fre-

quent unmatched phrases that were considered to constitute se-

mantic gaps. 

Table 3 – Top NOT FOUND words considered to be 
semantically relevant (left column) and top NOT FOUND 

words in general 

 

Conclusions 

UMLS does provide a rich semantic basis that we can use to 

model guidelines as CIG. An extract of the NICE NG28 guide-

line was used as a proof of concept. There is little information 

that cannot be mapped supporting the position that CIG can 

converge to existing semantic standards. The main challenge in 

UMLS to represent CIG seems to be logical operators. A num-

ber of issues were revealed in need of further research focusing 

including accuracy of MetaMap, detection and representation 

of ‘not found’ concepts, and analysis of more syntactically 

complex phrases, which may incorporate logical operators ap-

plied to the concepts.  
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Offer 12 and 198 

Encourage 8 or 102 

achieve 6 : 94 

Tolerated 6 is 66 

Reduce 5 If 61 

Explain 4 who 45 

HbA1c to 4 that 44 

Caution 3 ( 38 

Reasses 3 and 198 

the HbA1c 3 or 102 

Advise 2 is 66 

Individualise 2 If 61 

Prescribe 2 is 66 
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