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Abstract: This paper explores an innovative concept of cyber-physical real-time 

optimisation, in which a digital twin-assisted parallel learning (DTPL) 

mechanism is proposed to improve the performance of a fuzzy logic (FL-) based 

power-split hybrid propulsion control system in terms of stability and energy 

consumption. This mechanism enables parallel learning between the actual 

supervisor and its digital twin in real driving situations. If the virtual controller 

dominates the driving process, the new parameter functions are synchronised to 

the real controller at the same time. Based on an analysis of the conformation of 

the hybrid propulsion model and its FL-based control system, a chaos-enhanced 

accelerated particle swarm optimisation algorithm is applied to the parallel 

learning of the membership functions. By hardware-in-the-loop testing, the result 

shows that the DTPL-driven control system leads to better fuel economy. Fuel 

consumption can be reduced by up to 15% compared to a system using charge 

sustaining and charge depleting strategy, and by up to 12% compared to a system 

using FL control strategy over an in-house driving cycle collected from the 

driving simulator. 
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1 Introduction 

At present, the increases in emissions caused by traffic growth pose a challenge in 

terms of reducing CO2 emissions and improving urban air quality (Wu et al., 2012). 

Hybridization, as a transformative technical route to full-electric vehicles, is 

committed to fuel economy as well as emission reductions (Sabri, Danapalasingam 

and Rahmat, 2016). Relying on the architecture of hybrid powertrains, they can 

continuously work with over 40% thermal efficiency to enhance engine torque, 
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drivability and fuel-saving required by customers while meeting emission 

regulations (Lu et al., 2021). When considering the improvement of dynamic 

performance and energy efficiency for hybrid electric vehicles (HEVs), the 

optimisations of energy management approaches are often a crucial part as the 

process of achieving the mentioned goals(Tran et al., 2020). 

The energy management supervisory system controls the various kinds of 

power flow that ensure that the traction system can be operated properly (Ferreira 

et al., 2008). FL-based control systems provide efficient robustness that allows 

optimisation of energy management monitoring systems (see Ref. (Khayyam and 

Bab-hadiashar, 2014)). The electrical chain component evaluation vehicle has 

been equipped with the probabilistic FLC while its effectiveness has been assessed 

by modelling (Solano et al., 2012) and testing (Harel et al., 2013). The evaluation 

shows that probabilistic FLC (Type II) can be employed on a large scale for 

performing energy management tasks. Kheirandish et al. (Kheirandish et al., 2017) 

introduce the use of the dynamical fuzzy cognitive networks to account for 

speculations on the behaviour of fuel cell electric bicycles. However, such a system 

fails to escape the constraints of human cognition and its achievements also be 

restricted by previous experience. Tian et al. (Tian et al., 2018) introduced a 

hierarchical control by data-driving that is used for networked HEV energy 

controlling. The membership function of the neuro-fuzzy reasoning system with 

adaptive properties is formed from the trained driving data. To reduce the 

development workload for energy management controllers, Zhou et al. research a 

transferable representation modelling routine, where two artificial intelligence 

technologies of deep neural network(Zhou et al., 2021) and Gaussian process 

regression (Zhou et al., 2022) are developed to cooperate with an adaptive neuro-

fuzzy inference system for knowledge transfer of the energy management 

controller. Through the work of Zhou et al.(D. Zhou et al., 2017) and Collotta et 

al.(Collotta, Pau and Maniscalco, 2017), genetic algorithms and particle swarm 

optimisation were applied to perform outlier optimisation of FL-based control 

systems. Caraveo et al.(Caraveo, Valdez and Castillo, 2016) proposed that all of 

the above systems have the potential to be optimised to a networked model with 

dynamical fuzzy parameter adaptation. 

Optimisation-based control methods are influenced by numerical or analytical 

optimisation algorithms. Kolmanovsky (Kolmanovsky, 2014) presents the 

development of the game theories for HEV energy controlling and the specific 

experimental setup. However, the game theories cannot be extended to more 

vehicle types as the system elements of other vehicle types cannot be understood 

in depth (Martinez et al., 2017). Liu et al. (Liu et al., 2017) found that when 

reinforcement learning technologies were added to a vehicle with hybrid electric 

tracks, its transitional probability matrix can be derived from the particular driving 

schedules.  
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To improve vehicle system adaptability against drivers and pedestrians,  Li et 

al. research two optimal design methods of PHEV energy management system, 

wherein one takes care of car owners via personalized non-stationary inference (Li 

et al., 2021) and the other one takes care of pedestrians via pedestrian-aware 

interactive optimization (Li et al, 2021). Deep reinforcement learning (Mnih et al., 

2015), was applied by Wu et al. (Wu et al., 2019) for developing a sequential 

control policy of hybrid electric buses. However, the availability and reliability of 

such a computationally burdensome algorithm need to be further evaluated in a 

real-world environment. Ahmadi et al. (Ahmadi, Bathaee and Hosseinpour, 2018) 

invoked a genetic algorithm to regulate the control parameters of the FLC. The 

vehicle was significantly improved in terms of performance and fuel economy after 

precise tuning. Dynamic programming is one of the benching-marking global 

optimisation algorithms. It explores provably optimal control policies by 

traversing all states (Silva and Press, 2010) (Zhang and Xiong, 2015). However, 

precise information about the future driving state is rarely available in practical 

situations. This leads to dynamic programming and genetic algorithms that cannot 

handle real-time problems very well (Zeng, Wang and Member, 2017). 

Digital twin (DT) is an emerging concept that aims to construct a virtual mirror 

of a physical entity to emulate its real-world operation performance (Tao and Qi, 

2019). Through its access to big data, high-dimensional expensive problems within 

cyber-physical systems can be better solved. (Zhou et al., 2018) (Lu et al., 2020). 

Wang et al. (Wang et al., 2020) proposed a novel surrogate modelling approach 

combining proton physics models and data-driven modelling in the construction of 

an exchange membrane fuel cell model. Vohra et al. (Vohra et al., 2020) developed 

an accelerated surrogate model for charting various input variables to live interest 

quantities to reduce calculated cost and time and achieve efficient multi-physics 

solved DTs. Through this series of discussions, computational gains can bring 

great potential value in the generation of training data and the optimisation of new 

manufacturing process control. However, the development of this technology has 

been constrained by the lack of clarity on specific applications. 

In order to overcome the above research limitations, a new concept for cyber-

physical real-time optimisation is proposed, namely DT-assisted parallel learning 

(DTPL) mechanism, for a fuzzy logic (FL-) based engine powered hybrid 

propulsion control system. The real controller and its digital twin can learn in 

parallel under real driving conditions using this mechanism. When the virtual 

controller dominates the process, the new parameters of its membership functions 

(MFs) are synchronised to the real controller. The contributions are as follows: 

1) A DTPL mechanism is proposed to enhance the stability and energy efficiency 

of FL-based engine-powered hybrid propulsion control systems. 

2) Chaos-enhanced accelerated particle swarm optimisation algorithm is 

developed to improve the efficiency of the real controller’s DT for parallel 

learning. 
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3) A condition for synchronisation of controller parameters is designed by using 

a specific cost function to obtain better fuel economy performance. 

Following the Introduction, a HEV architecture and its FL-based engine-powered 

hybrid propulsion control system inherited from the previous study (Li, Zhou, He, 

et al., 2020) ( Li, Zhou, Williams, et al., 2020)  are briefly described in Section 2. 

In Section 3, the mechanism of DTPL is explained and the process of parallel 

learning and real-time evaluation is presented. In Section 4, the HiL experiment 

and a comparative analysis of different control strategies are carried out. 

Conclusions are summarised in the final. 

2 Engine-powered Hybrid Propulsion Control System 

2.1   System Configuration 

As shown in Figure 1, the power-split hybrid propulsion powertrain consists of a 

gasoline engine and an integrated starter-generator (ISG) At the same time, a trans- 

motor is added to this powertrain. The whole powertrain is provided power by a 

gasoline-electric mixed contribution. The drives of the electricity and power 

sources are combined in series and their speeds are allowed to add up (equal 

torque). Different driving modes can be achieved by the collaboration of a clutch 

and a lock (Ehsani et al., 2018). The peak power of the trans-motor is 𝑃𝑚𝑜𝑡∗ =
75 kW with 270 Nm maximum torque. The peak power of the gasoline engine is 

𝑃𝐼𝐶𝐸∗ = 63 kW with 140 Nm peak torque. The peak power of the ISG is 𝑃𝐼𝑆𝐺∗ =
32 kW. The data used are from (Li, Zhou, He, et al., 2020) ( Li, Zhou, Williams, 

et al., 2020). 

Figure 1   The propulsion system architecture model 
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2.2   FL-based Supervisory Controller 

Considering the need to enable the vehicle power demand, 𝑃𝑑 , to be allocated 

appropriately, the torque demand, 𝑇𝑑, which measured at the gearbox input and the 

state of charge, 𝑆𝑜𝐶, the one of the battery pack (BP) are combined and paired to 

form the input quantities to the propulsion control system. The system has two 

traction modes: purely electric drive mode, 𝑀𝑜𝑑𝑒𝐸𝑉, and FL-based drive mode, 

𝑀𝑜𝑑𝑒𝐹𝐿𝐶. The modes are represented as follows: 

   
(𝑇𝑚𝑜𝑡 , 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = 𝑀𝑜𝑑𝑒𝐸𝑉(𝑃𝑑, 𝑆𝑜𝐶), 𝑆𝑜𝐶 > 0.5,

(𝑛𝑚𝑜𝑡 , 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = 𝑀𝑜𝑑𝑒𝐹𝐿𝐶(𝑃𝑑 , 𝑆𝑜𝐶), 𝑆𝑜𝐶 ≤ 0.5,
}                                 (1) 

where: 𝑇𝑚𝑜𝑡 is the trans-motor torque; 𝑛𝑚𝑜𝑡 is the trans-motor speed; 𝑃𝑖𝑐𝑒 is the 

ICE power; and 𝑃𝑔𝑒𝑛 is the ISG power. 

In electric mode, the ICE and ISG can be successfully deactivated as the 

electric traction system can achieve the full amount of torque required. The 

distribution of power, in this case, is as follows: 

             (𝑇𝑚𝑜𝑡 , 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = (𝑇𝑑 , 0, 0).                                                                                    (2) 

The FLC is used to manage the vehicle energy in fuzzy logic control mode. This 

allows BP's SoC to safely provide power to drive the vehicle. The standard 

triangular MFs play a regulatory role in the current fuzzy set containing linguistic 

terminology. Their membership’s degrees are indicated as a normalised value 

function in the interval [0, 1]. MFs are classified into three levels, Low (L), 

Medium (M) and High (H), according to the magnitude of their values. As can be 

seen in Table 1, the "if A and B, then C and D" strategy is used in the rule base. 

This means that if the input states are A and B, then the control outputs C and D 

are determined. The mathematical expression for this policy is: 

 

              [𝐶 𝐷] = (𝐴 × 𝐵) ∘ 𝑅                                                                                        (3) 

where. "A" represents the fuzzy set of power demand; "B" represents the fuzzy set 

of SoC; "C" represents the crisp value of the normalised motor speed; "D " 

represents the crisp value of the normalized ISG power; "R" represents the fuzzy 

relation matrix of the cross product index of "A" and "B". The formula derivation 

is under equation (3), using the Sugeno fuzzy set below: 
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Table 1   Fuzzy logic rule base for decision reasoning 

Rule Demand 

power 

SoC 

value 

Motor speed 

Ref. 

ISG power 

Ref. 

1 L L H H 

2 M L L H 

3 H L L H 

4 L M H M 

5 M M M M 

6 H M L M 

7 L H H L 

8 M H H L 

9 H H M L 

In the inference mechanism, fuzzy sets are generated by a max-min combination. 

During the defuzzification process, the sets are combined and applied as crisp 

values for the controller output. The individual membership values are finally 

output as weighted by the average of the corresponding centres. In the FLC model, 

the final power distribution is calculated as follows: 

             

𝑛𝑚𝑜𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡1 ∙ 𝑛𝑚𝑜𝑡
∗ ,

𝑃𝑔𝑒𝑛 = 𝑂𝑢𝑡𝑝𝑢𝑡2 ∙ 𝑃𝑔𝑒𝑛
∗ ,

𝑇𝑚𝑜𝑡 = 𝑇𝑑 ,

𝑃𝑖𝑐𝑒 = {
𝑃𝑑 − 𝑛𝑚𝑜𝑡 ∙ 𝑇𝑚𝑜𝑡 − 𝑃𝑔𝑒𝑛 , 𝑃𝑑 ≥ 0,

−𝑃𝑔𝑒𝑛, 𝑃𝑑 < 0,}
 
 

 
 

                                          (4) 

where, 𝑛𝑚𝑜𝑡
∗  is the maximum speed of the traction motor, and 𝑃𝑔𝑒𝑛

∗  is the 

maximum power of the ISG.  

3 Digital-Twin-Assisted Parallel Learning 

The proposed DT-assisted parallel learning (DTPL) is illustrated in Figure 2. The 

structure consists of a DT and parallel learning module that is used as a virtual 

controller and a real-time evaluation module. In the parallel module, the DT has 

the same FL structure and is trained online with the help of an intelligent swarm 

optimiser. In the real-time evaluation module, the evaluator evaluates the actual 

controller competitively with the virtual controller. The aim is to determine 

whether the DT's parameters are synchronised with the actual controller. In a real 

driving situation, if a better MF scale parameter is detected in the DT, the evaluator 

will pass this parameter to the actual controller. 
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Figure 2   Concept of the DTPL mechanism 

 

3.1   Parallel Learning for the Virtual Controller 

The input and output parameters are set to fixed values ( 𝑎𝑀, 𝑏𝐿, 𝑎𝐻, 𝑐𝐿, 𝑏𝐻, and 

𝑐𝑀) to simplify the operation of the optimisation algorithm. Following this design, 

24 MF scalar parameters are formulated to be optimised. The generic particles for 

each input and output can be presented in the following structure: 

    |𝑎𝑀 𝑏𝐿 𝑎𝐻 𝑐𝐿 𝑏𝐻 𝑐𝑀|                                                                      (5) 

In order to fit the FLC structure, the parameters of the inputs and outputs should 

obey the following order: 

          

𝑎𝐿 < 𝑎𝑀 < 𝑎𝐻 ,
𝑎𝐿 < 𝑎𝐻 < 𝑏𝑀 ,
𝑏𝑀 < 𝑏𝐻 < 𝑐𝐻 ,

𝑎𝐿 < 𝑏𝐿 < 𝑐𝐻 ,
𝑏𝑀 < 𝑐𝐿 < 𝑐𝐻 ,
𝑏𝑀 < 𝑐𝑀 < 𝑐𝐻 .

}                                                                   (6) 

The constraint in equation (6) cannot be ignored when considering iterations of the 

algorithm. The overall liquid fuel consumption and the SoC of the final BP are the 

two main constraint targets in this concept. These cost functions are expressed as: 

   
𝐽1 =

1

𝜌𝑔𝑎𝑠𝑜
∫ �̇�𝑓(𝑡)𝑑𝑡

𝐽2 =
1

𝑆𝑜𝐶(𝑡𝑒𝑛𝑑) 

}                                                                                (7) 

where, 𝜌𝑔𝑎𝑠𝑜 is the density of gasoline (0.77 g/ml); �̇�𝑓 is the fuel consumption 

mass rate (g/s); and  𝑡𝑒𝑛𝑑 is the final time of the driving cycle. 
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In this concept, the weighted sum method (Marler and Arora, 2010) is used to 

formulate that the swarm-based algorithm is applied to transform the multi-

objective into a single-objective and optimise it accordingly. Thus, the 

minimisation total cost function 𝐽 can be used to represent an inquiry into optimal 

energy flow control with constraints. The following equation can be derived. 

  min 𝐽 = 𝑤 ∙
𝐽1

𝐽1
∗ + (1 − 𝑤) ∙

𝐽2

𝐽2
∗                                                                        

          𝑠. 𝑡.

{
 
 

 
 
𝑆𝑜𝐶(𝑘), 0.8 ≥ 𝑆𝑜𝐶(𝑘) ≥ 0.2
𝑛𝑚𝑜𝑡(𝑘),
𝑇𝑚𝑜𝑡(𝑘),

𝑛𝑚𝑜𝑡∗ ≥ 𝑛𝑚𝑜𝑡(𝑘) ≥ 0
𝑇𝑚𝑜𝑡∗ ≥ 𝑇𝑚𝑜𝑡(𝑘) ≥ −𝑇𝑚𝑜𝑡∗

𝑃𝐼𝐶𝐸(𝑘),
𝑃𝐼𝑆𝐺(𝑘),

𝑃𝐼𝐶𝐸∗ ≥ 𝑃𝐼𝐶𝐸(𝑘) ≥ 0
0 ≥ 𝑃𝐼𝑆𝐺(𝑘) ≥ −𝑃𝐼𝑆𝐺∗

                                                   (8) 

In Equation (8), 𝑤 is a weight coefficient; 𝐽1
∗ and 𝐽2

∗ are scaling constants for the 

cost functions,  𝐽1 and 𝐽2. The SoC ensures the life cycle of the battery. Meanwhile, 

the chaos-enhanced accelerated particle swarm optimisation (CAPSO) algorithm, 

derived from Animal Swarm (Hossein et al., 2013) is used as an online optimiser 

for DT here. This algorithm helps to jump out the way of convergence to a partial 

optimisation by dynamically attracting parameters to create some 'accident like 

problems in each iteration (Zhou et al., 2017) (Zhou et al., 2018).  

3.2   Real-time Evaluation with Fuel Priority  

A short-term moving window 𝐻 was added to assess the fuel-saving performance 

comparison between FLCs with parallel learning. With 𝐻 , the competition is 

deemed fair and equal reference driving curves to existing for parallel learning 

under the CAPSO algorithm. 

Figure 3   Flow chart of the competitive evaluation procedure 
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The competitive evaluation procedure regarding the selection of a performance 

controller for the fuel-saving optimisation is shown in Figure 3. The optimiser 

applies the CAPSO algorithm to select the general optimum for the DT at each 

time step using the short-term driving curve constrained by the observation 

window as a reference criterion. The best scalar parameters of the MF are applied 

to the DT. Thus, The strengths and weaknesses of the two products in terms of 

fuel-saving optimisation are assessed. 

With the effect of the length of the observation window on fuel consumption, 

the cost function (2 controllers) is derived as: 

        
𝑐𝑠𝑛𝑟𝑒𝑎𝑙 = 𝑤 ∙

𝐽1
′

𝐻∙𝐽1
∗ + (1 − 𝑤) ∙ (

𝐽2
′

𝐻∙𝐽2
∗)
2

,

𝑐𝑠𝑛𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝑤 ∙
𝐽1
′′

𝐻∙𝐽1
∗ + (1 − 𝑤) ∙ (

𝐽2
′′

𝐻∙𝐽2
∗)
2

,

}                                                 (9) 

where 𝐻 is the length of the observation window; 𝑐𝑠𝑛𝑟𝑒𝑎𝑙 and 𝑐𝑠𝑛𝑣𝑖𝑟𝑡𝑢𝑎𝑙 are the 

cost functions of the two controllers; 𝐽1
′  and 𝐽2

′  are the evaluation objects for the 

execution controller; and 𝐽1
′′  and 𝐽2

′′  are the evaluation objects for the trained 

controller. 

The cost function of the actual controller is often considered to be the learning 

target of another controller in practical situations. The DTPL mechanism derives 

the cost function of each controller when the conditions are met as follows: 

          
𝑐𝑠𝑛𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝑘) − 𝑐𝑠𝑛𝑟𝑒𝑎𝑙(𝑘) < 0, and

𝑐𝑠𝑛𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝑘)−𝑐𝑠𝑛𝑟𝑒𝑎𝑙(𝑘)

𝑐𝑠𝑛𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝑘−1)−𝑐𝑠𝑛𝑟𝑒𝑎𝑙(𝑘−1)
< 1.

}                                                     (10) 

where the error and derivative of the cost function greatly influence the final 

decision for this test. If 𝑐𝑠𝑛𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝑘 − 1) − 𝑐𝑠𝑛𝑟𝑒𝑎𝑙(𝑘 − 1) = 0, then only the 

first condition of Equation (10) should be met and the MF scalar parameters in the 

virtual controller are then passed to the real controller. Otherwise, it continues to 

explore new scalar parameters to provide a solution with more efficient fuel-saving 

performance to be used at the next time step. 

4 Result and Discussion 

The working environment for this test was based on industry-standard real-time 

test equipment purchased by the ETAS Group (ETAS Products, 2018). Figure 4 

illustrates the setup flow of the HiL test system. The HEV model and FL control 

system were obeyed into MATLAB code in the first step. Afterwards, the code is 

exported to consolidation platforms via the host computer. In the user interface for 

configuring the HiL system, signal paths are created in the model and hardware. 

At the same time, the LABCAR simulation target LABCAR-RTPC generates the 
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code. Finally, the entire vehicle system is downloaded to DESK-LABCAR by the 

ETAS Experimental Environment (EE) under the ethernet protocol.  

Figure 4   Hardware-in-the-loop test bench 

 

EE monitors the performance of the vehicle. The recorded results display that the 

average time taken for the CAPSO algorithm to converge is 0.225 seconds. Given 

this average time, it is assumed that its capacity can continue to increase and that 

computational resources will still be available while still meeting the needs of the 

current version. According to Moore's law, the mechanism of DTPL working on 

an actual onboard controller for HEVs is expected and affordable. 

4.1   Competitive Learning Performance 

The MF generates an evaluation of parallel learning as it evolves. This involved 

the cost function going through 15 iterations. The 100 km test cycle provided by 

Li et al. (Li, Zhou, et al., 2019) through observing human drivers interaction, 

wherein a driving simulator and CarMaker software are both used. 
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Figure 5   Membership function evolution 

 

Fig. 5 shows the MF evolution process driven by the CAPSO algorithm for an 

initial SoC of 0.4 during real-world driving. The MF scalar parameters of the inputs 

and the outputs have been updated 957 times over the 8000-second driving cycle. 

The average updating time of the MF scalar parameters is 8.36 seconds which 

means that the average application time of a set of MF scalar parameters for real-

world driving with uncertain driving behaviours is 8.36 seconds. 
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Figure 6   Real-time performance of two FLCs boosted by the DTPL 

 

Some of the real-time performance of the two FLCs is shown in Figure 6. The 

black dashed line represents the time of the MF parameters. As can be seen from 

the above subplot results, the DT is continuously updated by the DTPL and the 

parameters tend to pass at prominent spikes. Significant changes in human driving 

behaviour are the cause of this. The subplot below analyses the evolution of the 

output between FLCs at 2889s. It can be seen that the DTPL mechanism uses an 

aggressive output surface geared towards higher fuel economy in place of a 

correspondingly smooth output surface for most existing driving situations. 

4.2   Vehicle Performance Comparison  

Figure 7 illustrates a comparative analysis of the hybrid propulsion control system 

with a conventional control system based on FL. The new mechanism proposed in 

this paper has lower fuel consumption and a higher SoC value. Driven by it, the 

ICE initially focuses on compensating the overall power needs to prevent possible 
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risks of a rapid drop in SoC. The ISG also takes on a higher workload than a 

conventional FL-based control system. 

Figure 7   Vehicle performance comparisons at initial SoC=0.4 

 

The vehicle performance under three policies is summarised in Table 2. similar 

results can be observed for the performances with SoCs of 0.5 and 0.3. The 

classical rule-based control strategy utilising charge depletion (CD) and charge 

sustaining (CS) is applied as a benchmark for comparing different FL-based 

strategies. As the SoC decreases, the space available for system energy to be freely 

allocated shrinks seriously. Compared to the baseline strategy, an offline optimised 

FL static system can adaptively adjust the energy allocation but it is not as 

effective. The new FL dynamic mechanism of the DTPL collaboration, however, 

allows the selection of a controller with a better cost function to be driven in real-

time. The results show that this optimised system has the best performance in terms 
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of fuel-saving. At the same time, it can keep a high SoC value. Considering the 

rigour of the research, future work will focus on the experimental validation 

onboard. 

 

Table 2   The vehicle performance with different control policies 

Control strategy Initial 

SoC 

Final 

SoC 

Fuel consumption  

(L/100km) 

Saving 

(%) 
CD/CS 0.5 0.353 6.41 - 

Static FLC 0.5 0.379 6.24 2.7% 

Dynamic FLC 0.5 0.408 5.44 15.1% 

CD/CS 0.4 0.351 6.63 - 

Static FLC 0.4 0.379 6.48 2.3% 

Dynamic FLC 0.4 0.412 5.88 11.3% 

CD/CS 0.3 0.352 6.89 - 

Static FLC 0.3 0.379 6.75 2.0% 

Dynamic FLC 0.3 0.408 6.26 9.14% 

5 Conclusion 

This paper proposes a DT-assisted parallel learning (DTPL) mechanism. This 

mechanism can assist FL-based engine drive control systems with higher fuel-

saving efficiency. Rule-based strategies, as well as static FLC strategies, are also 

used for comparative analysis with the mechanism proposed in this paper. The 

findings of this study are as follows: 

1) Assisted by DT technology, the proposed mechanism can adapt to changes in 

driving behaviour in real-time while ensuring the effective working of the 

original FL-based control system. 

2) Compared to the conventional two control strategies, the proposed mechanism 

with dynamic FLCs in this paper can reduce fuel consumption and maintain a 

high SoC final value under various initial SoC value settings. 

3) The FL-based control system under DTPL optimisation can significantly 

reduce fuel consumption during real-world driving, wherein the fuel 

consumption performance can be saved by up to 15% compared to 

conventional CD/CS systems and up to 12% compared to conventional static 

FL-based systems. 
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