
 
 

University of Birmingham

Hog (HDL on Git):
Biesuz, N.v.; Cieri, D.; Gonnella, F.; Loustau de linares, G.; Peck, A.

DOI:
10.1016/j.nima.2023.168016

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Biesuz, NV, Cieri, D, Gonnella, F, Loustau de linares, G & Peck, A 2023, 'Hog (HDL on Git): An easy system to
handle HDL on a git-based repository', Nuclear Instruments & Methods in Physics Research. Section A.
Accelerators, Spectrometers, Detectors, vol. 1049, 168016. https://doi.org/10.1016/j.nima.2023.168016

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 21. May. 2024

https://doi.org/10.1016/j.nima.2023.168016
https://doi.org/10.1016/j.nima.2023.168016
https://birmingham.elsevierpure.com/en/publications/05e11777-61b7-4f90-9ee3-f76eb33aa648


Nuclear Inst. and Methods in Physics Research, A 1049 (2023) 168016

H
N
a

b

c

d

e

A

K
G
H
V
V
T

1

t
p
V
t
m
s
Q

2

2

H

h
R
A
0
(

Contents lists available at ScienceDirect

Nuclear Inst. andMethods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

og (HDL on Git): An easy system to handle HDL on a git-based repository
.V. Biesuz b, D. Cieri c, F. Gonnella a,∗, G. Loustau De Linares e, A. Peck d

The University of Birmingham, B295TT, Edgbaston, Birmingham, United Kingdom
INFN sezione di Ferrara, Polo Scientifico e Tecnologico - Edificio C, Via Saragat 1, 44122 Ferrara, Italy
Experimentelle Teilchenphysik, Max–Planck-Institut für Physik, Föhringer Ring 6 80805, Munich, Germany
Electronics Department, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
University of Massachusetts Amherst, Amherst, MA 01003, USA

R T I C L E I N F O

eywords:
it
DL
HDL
erilog
cl

A B S T R A C T

Coordinating firmware development among many international collaborators is becoming a very widespread
problem in high-energy physics. Guaranteeing firmware synthesis reproducibility and assuring traceability of
binary files is paramount.

We devised Hog - HDL on git (cern.ch/hog), a set of Tcl and Shell scripts that tackles these issues and
is deeply integrated with HDL IDEs, such as Xilinx Vivado Design Suite and ISE PlanAhead or Intel Quartus
Prime, and all major simulation tools, like Siemens ModelSim or Aldec Riviera Pro.

Git is a very powerful tool and has been chosen as standard by several research institutions, including
CERN. Hog perfectly integrates with git to assure an absolute control of HDL source files, constraint files,
IDE and simulation settings. It guarantees traceability by automatically embedding the git commit SHA and a
numeric version into the binary file, also automatically renamed.

Hog does not rely on any external tool apart from the HDL IDE and git, so it is extremely compatible and
does not require any installation. Developers can get quickly up to speed: clone the repository, run the Hog
script, work normally with the IDE.

The learning curve to use Hog for the users is minimal. Once the HDL project is created, developers can
work on it either using the IDE graphical interface, or with the provided Shell scripts to run the workflow.

Hog works on Windows and Linux, supports IPbus, Sigasi and provides pre-made YAML files to set
up a working Continuous Integration on GitLab (Hog-CI) with no additional effort, which runs the HDL
implementation for the desired projects. Other features of Hog-CI are the automatic creation of tags and GitLab
releases with timing and utilisation reports.

Currently, Hog is successfully used by several firmware projects within the High-Energy Physics community,
e.g. in the ATLAS and CMS Phase-II upgrades.
. Introduction

Hog (HDL on git) [1,2] is a set of Tcl and Bash scripts, designed
o help maintaining HDL projects on git [3] repositories. Hog is com-
letely integrated into the most popular HDL IDEs,1 such as Xilinx
ivado [4] and ISE [5] (PlanAhead [6]) and Intel Quartus [7], allowing
o use the software normally via their graphical interface, or in batch
ode thanks to the provided Hog scripts. Hog supports all the external
imulators supported by Xilinx, such as Siemens Modelsim [8] and
uestasim [9] or Aldec Riviera [10].

. Working principles

.1. No installation required

The Hog repository must be added as a submodule to the main git
DL repository. For this reason, no installation is required: Hog does

∗ Corresponding author.
E-mail address: francesco.gonnella@cern.ch (F. Gonnella).

1 Integrated Development Environments.

not rely on external libraries or software that would not already be
needed for your HDL development. Cloning the git repository (and the
submodules) is enough to be ready to synthesise, place and route and
produce the binary file or start developing.

Moreover, different versions of Hog can be used in different reposi-
tories, so that the users do not need to update Hog unless they choose
to do so, saving useless overhead work.

On the other hand, having multiple Hog copies on a machine is not
a problem because the Hog module’s size is less than 1 MB.

2.2. Guarantee reproducibility and traceability

Hog’s main goal is to guarantee the Place&Route reproducibility and
the traceability of the produced binary files. To achieve this, Hog has
total control of the IDE settings and of all the project files (HDL sources,
constraint files, etc.). All these files are listed in dedicated text files,
ttps://doi.org/10.1016/j.nima.2023.168016
eceived 31 July 2022; Received in revised form 26 December 2022; Accepted 27
vailable online 11 January 2023
168-9002/© 2023 The Author(s). Published by Elsevier B.V. This is an open acce
http://creativecommons.org/licenses/by/4.0/).
December 2022

ss article under the CC BY license

https://doi.org/10.1016/j.nima.2023.168016
https://www.elsevier.com/locate/nima
http://www.elsevier.com/locate/nima
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2023.168016&domain=pdf
mailto:francesco.gonnella@cern.ch
https://doi.org/10.1016/j.nima.2023.168016
http://creativecommons.org/licenses/by/4.0/


N.V. Biesuz, D. Cieri, F. Gonnella et al. Nuclear Inst. and Methods in Physics Research, A 1049 (2023) 168016

v
a
a
g

3

w
a
r
t
O

4

C
o
t

u

4

p
s
e

u

a
g

v

h

t
f

m
p
a

s
i

E
g

D

c
i

R

called list files, with an extension that identifies the file set type to be
included in the project, e.g. design sources (.src), simulation sources
(.sim), constraint file (.con). Hog exploits the git SHA2 to extract the
ersion number of the project from specially formatted git tags, that
re automatically created by Hog-CI as explained in Section 3. The SHA
nd the version are then embedded into the binary files by means of
enerics/parameters.

. Hog’s continuous integration

Hog provides YAML files to operate the Continuous Integration
orkflow on GitLab CI/CD platforms, using shared docker runners
nd private machines, with an installation of gitlab-runner and the
equired IDE and simulation software. Hog-CI builds and simulates
he projects and automatically tags new versions in the repository.
ptionally GitLab releases can be automatically created.

. Using Hog locally

Hog-handled repositories require only the Hog submodule and a Top
folder, which contains the files use by Hog create the HDL projects:
configuration files (see Section 4.1) and list files (see Section 4.2).
One repository can contain multiple HDL projects, each of them cor-
responding to a sub-directory of the Top folder, that we refer to as top
project-directory. Each of these directories must include a configuration
file named hog.conf and a list sub-directory, containing the list
files. Every time a binary file is produced, Hog automatically checks
that no uncommitted modifications were done to the project. This
certifies that the binary file correspond to a certain commit in the
repository and guarantees reproducibility and traceability.

4.1. Project configuration files

The hog.conf project configuration file is used by Hog to create
the project and define the properties for the IDE and the project. It uses
the TOML formatting language syntax [11], with five defined sections.

• Main section: containing the project-related settings, such as the
target FPGA or the device family;

• Synthesis and Implementation sections: containing the settings to
configure the synthesis and implementation strategies;

• Parameter section (Xilinx only): including volatile parameters that
must be set before launching each run;

• Hog section: specifies Hog directives valid for the project.

ustom Tcl scripts can be executed before and/or after the creation
f the project by adding them in the top project-directory and naming
hem pre-creation.tcl and post-creation.tcl.
An optional simulation configuration file, called sim.conf, can be

sed to specify simulation properties.

.2. List files

HDL files, IPs and constraint files that need to be added to the HDL
roject, must be listed in dedicated text files, called list files. These are
tored inside a sub-directory list of the top project-directory. Differ-
nt extensions are used, depending on the type of files to be included

2 Secure Hash Algorithm, a checksum identifier that git uses to
nambiguously identify a commit in a repository.
2

in the project, i.e. .src for design sources or .sim for simulation
sources. List files can be handled recursively, meaning that developers
can include a list file inside another, thus reducing duplication. Hog
creates a different VHDL library for each .src list file.

4.3. HDL sources and Intellectual Properties (IPs)

For the IPs, particular care must be taken to avoid that Vivado/
Quartus-generated files are committed to the repository. Each IP file
(.xci for Vivado) must be stored in a separate sub-folder and only the
IP file must be committed to the repository. The generated files shall
be listed in the .gitignore file to tell git to ignore them.

5. Summary and conclusions

Hog is available at gitlab.com/hog-cern/Hog and documented
t cern.ch/hog. Official mirror-repository are provided on
itlab.cern.ch, baltig.infn.it, github.com
Hog is released each year in January and June. The latest stable

ersion is the Hog2022.2.
Hog integrates with Xilinx and Intel IDEs, requiring minimal over-

ead work for developers with no extra installations.
Hog guarantees synthesis and P&R reproducibility and binary file

raceability by embedding git-SHA and a numerical version into the
irmware.
Hog can help to allow zero code duplication using the appropriate
ethodology. A template to set up the GitLab Continuous Integration is
rovided with Hog, allowing the developers to run the P&R workflow
nd simulations on private runner machines.
A tutorial was held at CERN on the 15th of June 2021. It was very

uccessful, with more than 80 participants. A recording of the tutorial
s available at [12].
Hog is currently used by several firmware projects within the High-

nergy Physics community, including ATLAS and CMS Phase-II up-
rades.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

[1] N.V. Biesuz, et al., Hog (HDL on git): a collaborative management tool to handle
git-based HDL repository, JINST 16 (2021) 04006.

[2] Hog Documentation, http://cern.ch/hog.
[3] http://git-scm.com/.
[4] www.xilinx.com/products/design-tools/vivado.html.
[5] www.xilinx.com/products/design-tools/ise-design-suite.html.
[6] www.xilinx.com/products/design-tools/planahead.html.
[7] www.intel.com/content/www/us/en/software/programmable/quartus-prime/.
[8] eda.sw.siemens.com/en-US/ic/modelsim/.
[9] eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/.
[10] www.aldec.com/en/products/functional_verification/riviera-pro.
[11] https://toml.io/en/.
[12] Hog Tutorial, https://bit.ly/hog-tutorial.

http://refhub.elsevier.com/S0168-9002(23)00006-2/sb1
http://refhub.elsevier.com/S0168-9002(23)00006-2/sb1
http://refhub.elsevier.com/S0168-9002(23)00006-2/sb1
http://cern.ch/hog
http://git-scm.com/
http://xilinx.com/products/design-tools/vivado.html
http://xilinx.com/products/design-tools/ise-design-suite.html
http://xilinx.com/products/design-tools/planahead.html
http://www.intel.com/content/www/us/en/software/programmable/quartus-prime/
http://eda.sw.siemens.com/en-US/ic/modelsim/
http://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
http://www.aldec.com/en/products/functional_verification/riviera-pro
https://toml.io/en/
https://bit.ly/hog-tutorial

	Hog (HDL on Git): An easy system to handle HDL on a git-based repository
	Introduction
	Working principles
	No installation required
	Guarantee reproducibility and traceability

	Hog's continuous integration
	Using Hog locally
	Project configuration files
	List files
	HDL sources and Intellectual Properties (IPs)

	Summary and Conclusions
	Declaration of Competing Interest
	References


