
 
 

University of Birmingham

Assessment of post-contingency congestion risk of
wind power with asset dynamic ratings
Banerjee, Binayak; Jayaweera, Dilan; Islam, Syed

DOI:
10.1016/j.ijepes.2014.12.088

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Banerjee, B, Jayaweera, D & Islam, S 2015, 'Assessment of post-contingency congestion risk of wind power
with asset dynamic ratings', International Journal of Electrical Power and Energy Systems, vol. 69, pp. 295-303.
https://doi.org/10.1016/j.ijepes.2014.12.088

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Mar. 2024

https://doi.org/10.1016/j.ijepes.2014.12.088
https://doi.org/10.1016/j.ijepes.2014.12.088
https://birmingham.elsevierpure.com/en/publications/cc9a6773-baad-486c-9c86-ec4b31a8c7d3


1 

 

Assessment of Post-Contingency Congestion Risk of 

Wind Power with Asset Dynamic Ratings 

 

Binayak Banerjee
1
 (corresponding author, email: binayak.banerjee@curtin.edu.au, tel. 

no. +61433581836),  

Dilan Jayaweera
2
 (email: D.Jayaweera@bham.ac.uk)  

Syed Islam
1
 (email: S.Islam@curtin.edu.au) 

 

1
Department of Electrical and Computer Engineering,  

Curtin University, Kent Street, Bentley, Perth, 

Western Australia 6102, Australia 

 

2
School of Electronic, Electrical and Systems Engineering 

The University of Birmingham 

Edgbaston, Birmingham, B15 2TT, UK 

 

Abstract 

Large scale integration of wind power can be deterred by congestion following an 

outage that results in constrained network capacity. Post outage congestion can be 

mitigated by the application of event control strategies; however they may not always 

benefit large wind farms. This paper investigates this problem in detail and proposes an 

advanced mathematical framework to model network congestion as functions of 

stochastic limits of network assets to capture post contingency risk of network 

congestion resulting through the constrained network capacity that limits high 

penetration of wind. The benefit of this approach is that it can limit the generation to be 

curtailed or re-dispatched by dynamically enhancing the network latent capacity in the 

event of outages or as per the need. The uniqueness of the proposed mathematical 

model is that it converts conventional thermal constraints to dynamic constraints by 

using a discretized stochastic penalty function with quadratic approximation of 

constraint relaxation penalty. The case study results with large and small network 

models suggest that the following an outage, wind utilization under dynamic line rating 
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can be increased considerably if the wind power producers maintain around a 15% 

margin of operation. 

 

Keywords – dynamic asset ratings, locational marginal price, latent network capacity, 

stochastic optimization, wind power generation. 

 

1. Nomenclature 

Cg(Pg)  Cost of conventional generation  

Cw(Pw), Cost of wind power feed in 

CDLR Total cost of dynamic line rating 

Ccongestion Total cost of network congestion 

NL Total number of branches in network 

Nk Number of values in discretised probability distribution of line capacity 

NW Total number of wind generators  

(hpq,k, smax,pq,k) k
th

 Ordered pair (probability, value) representing line capacity probability distribution 

Ssch,pq Power flow in line from bus p to bus q  

apq,k The dynamic line capacity discrete probability distribution 

cOLp Unit cost of dynamic line rating 

Plocal,n Adjustment of load at bus n after redispatch during congestion 

sjk Wasted wind discrete probability distribution 

tjk Reserve requirement discrete probability distribution 

cD Unit cost of network congestion 

LMPi Locational Marginal Price  at node i  

LMPi,base Locational Marginal Price at node i during uncongested base case 

PW Total wind power generation  

 PW,base Total wind power generation during uncongested base case 

PD,i Real power demand at bus i 

LMPV Index measuring variation in Locational Marginal Price from base case  

 

2. Introduction 

Network congestion is an undesirable result of insufficient capacity being available on a 

network to transport electricity from generation to loads. It leads to highly variable 

locational marginal prices (LMP) at nodes usually with high prices at load points which 

are affected by congestion compared to those which are not. A number of publications 

have used LMP as an indicator of network congestion [1-3]. In systems with large 

amount of wind power, network congestion hinders effective integration and utilization 

of wind as extra wind generated has to be curtailed thereby leading to uncertainty in 

revenue for wind power producers. The dynamic nature of wind results in large 
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variations in power output over a short period of time, which makes effective utilization 

of wind an even bigger challenge in congested networks.  

Network congestion has a greater impact in networks under contingency. When a 

contingency occurs in a branch, the remaining branches in the network can experience 

greater loading and be at a higher risk of network congestion [4-7]. While traditional 

security analysis uses the N – 1 criterion this does not account for variation in output of 

wind leading to post contingency congestion and curtailment of wind. Therefore, even 

when a network seems to have no congestion and utilizes wind effectively, there is a 

high risk that any contingency will drastically change the situation.  

A number of sources agree that the true thermal capacity of a transmission line is 

considerably higher than the rated values [8-12] since ratings are calculated under the 

worst case weather assumption although such operating conditions occurs rarely in 

practice. It is possible to exploit this property by using dynamic line ratings (DLR) 

which model the thermal limit of transmission lines as stochastically varying function of 

internal and external real time operating conditions such as ambient temperature, level 

of loading, intermittent effects, and sag. These methods capture real time variations and 

are an improvement over existing methods of using multiple thermal limits to account 

for different weather conditions based on the relationship between temperature and 

ampacity outlined in IEEE Std 738-2012 [13]. 

Some ISOs (independent system operators) currently use normal and emergency 

ratings as well as separate ratings for hot and cold weather. These ratings are an 

approximation of the real time variation in line ampacity and the actual thermal limit 

has a high likelihood of being significantly different. In modern power systems which 

consist of multiple competing entities and fast changing power flows due to presence of 

intermittent renewable generation, inaccurate estimation of real time ampacity can result 

in underutilization of network capacity and congestion. Dynamic ratings can provide a 

significant increase in the normal and emergency operational flexibility of power 

transmission systems compared to the more traditional static rating and alleviate 

network congestion due to short periods of high wind power output. DLR is applicable 

for power systems with short to medium lines where thermal capacity as opposed to 

stability limit is the limiting factor to line capacity. 

The benefit of DLR over conventional congestion management approaches is that it 

can potentially release latent capacity dynamically rather than relying on generation 

curtailment and demand reduction in congested parts of a network, thus improving the 

operational flexibility and deferring investments. Dynamic line ratings can exploit the 

advanced real time monitoring and control capabilities of smart grids to potentially 

alleviate network congestion, and ensure a more equitable allocation of costs between 

market participants. 
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The two immediate challenges of implementing the dynamic line rating methods 

presented in [8-11] are the need for an online, smart monitoring system to capture real 

time variation and the modelling of uncertainty in constraints in optimal scheduling. 

While uncertainty in optimization variables can be accounted for by stochastic 

optimization techniques, uncertainty in constraints is more challenging to model since 

analytical constrained optimization techniques only allow fixed constraints. Most of the 

power system applications of optimal scheduling problems model line power transfer 

limits as deterministic values and place less emphasis on dynamic variation in line 

capacity. An alternative to this is chance constrained optimization which allows some 

flexibility in the constraint satisfaction by allowing constraint violation, provided their 

probability is limited to a specified value. [14, 15]  

This paper proposes a new mathematical framework and a methodology to 

incorporate benefits of real time variation in line ratings to temporarily relax post-

outage constrained capacity of a network and to vary reinforcement thresholds. The 

technique allows the stochastically estimated real time ampacity to be included in 

scheduling decisions by allowing a degree of flexibility to satisfy dynamic thermal limit 

constraints. The uniqueness of the proposed approach is that it replaces the current 

deterministic constraints (normal and emergency) in the optimal scheduling problem, 

with dynamic constraints. The approach dynamically quantifies the extent to which post 

outage constrained capacity could be relaxed by utilizing a discrete stochastic penalty 

function that takes into account the merits of dynamic line ratings. This method also 

incorporates the benefits of smart grid environments where real time data of system 

parameters such as sag and ambient temperature is available. The proposed approach 

could potentially provide considerable advantage over traditional approaches of using 

deterministic ratings due to the use of real time extraction of latent capacities during the 

optimization process. The paper also shows how dynamic line ratings can be used to 

reduce the risk of post outage network congestion while better facilitating wind 

integration for N – 1 and N – 2 contingencies. The proposed technique indicates the 

extent of congestion in a power network by weighting LMP at each node with respect to 

demand and finding the difference in the weighted LMP from the uncongested base 

case. The extended conic quadratic (ECQ) approach presented in [16] is used for 

optimization. It is modified to include dynamic line ratings. 
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3. Dynamic Asset Rating 

3.1 Stochastic Optimisation with Dynamic Asset Ratings 

The maximum thermal capacity of a line depends on the maximum allowable 

temperature of the line at which the conductors start to lose structural integrity or 

undergo annealing. IEEE Std 738 2012 outlines the process for calculating the 

maximum ampacity based on weather conditions for steady state, transient and dynamic 

scenarios. A number of models [8, 9, 11] apply the concepts in IEEE Std. 738 to 

determine dynamic line ratings which use weather data as an input. Kazerooni et al [10] 

have shown that when all the stochastic variations in weather are accounted for, the 

thermal capacity of the line can be modelled by the generalized extreme value 

probability distribution and in most cases the rated line capacity is on the lower end of 

the possible range of thermal capacities.  

The correlation between wind speed and the cooling of the line was considered 

negligible in for this study, due the variation in weather conditions in different parts of  

a line [11]. While it is expected that weather conditions will mostly be favourable 

compared to the worst case assumptions for conventional line ratings, it is unlikely that 

all parts of the line will be exposed to high wind speeds which coincide with periods of 

high wind at the single location of the wind farm. It is assumed that the dynamic 

capacity is limited by regions where cooling due to wind is low and this provides a 

conservative estimate of the benefit due to DLR on wind integration. Typical 

parameters for the probability distribution of line capacity are provided in [10]. To 

determine the probability distribution of line ampacity historical weather data across the 

line will be necessary as per the procedure outlined in [10]. If correlation between wind 

speed and dynamic thermal ratings are to be accounted for, a different approach is 

required where the probability distribution of line capacity is conditional based on the 

probability of the wind speed distribution. A range of probability distributions for line 

capacity would be necessary for different wind speeds. Such an approach should be 

used with caution as it may overestimate the benefit of DLR. 

The parameters of the probability distribution are determined according to the rated 

maximum limit on transmission lines. Based on the analysis in [8] most utilities load 
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their lines such that the probability of exceeding the rated capacity ranges from 20 – 

30%, depending on the season. Thus it was assumed that the probability of exceeding 

the rated capacity was 25% and an inverse distribution was used to determine the 

parameters for the probability distribution. The probability distribution was discretised 

by considering ten frequency and value pairs to represent the probability distribution. 

The actual probability can vary depending on the utility but it is straightforward to 

perform the analysis with a different value. A more detailed study might treat this as a 

random variable. The objective function incorporating DLR as a penalty function with 

stochastic elements is shown in (1) 

 
congestionCDLRCwPwCgPgCxf +++= )()()(  (1) 

where Cg(Pg), Cw(Pw), CDLR and Ccongestion represent cost of conventional generation, cost 

of wind (including reserves), cost of dynamic ratings, and cost of congestion 

respectively. Cg(Pg) and associated constraints of conventional OPF (optimal power 

flow) problems are given in [16-19]. Cw(Pw) is the cost of uncertainty due to wind, 

which can be incorporated into OPF by using stochastic optimization and is given in 

[16]. The problem is solved by transforming to a conic quadratic optimization problem 

and using an interior point method [16, 20]. This has the advantage that the objective 

function becomes quadratic and almost all the constraints become linear. These 

transformations are not system dependent and hence can be applied directly without a 

modification. 

 

3.2 Formulation 

The total cost of DLR (CDLR) in (1) is determined stochastically and represents the 

penalty for temporarily relaxing the line thermal constraint. The stochastic penalty 

function enables substitution of the static line thermal constraint with a dynamic 

constraint. The cost of DLR is partly due to the long term cost of derating due to 

repeatedly overloading lines and the short term risk of causing damage by severe 

overloading which causes line temperature to exceed the maximum allowable value. It 

is assumed that when implementing DLR, the short term risk and expected cost of 

thermal overload is considered much more significant than long term derating costs. 

Separate studies by Wang [21] and Zhang [22] describe the variation of thermal 
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overload risk with line current and demonstrate that for low levels of current 

overloading the risk of thermal overload is low but this increases rapidly for higher 

levels of DLR. Thus, the sensitivity of the penalty function to dynamic overloading 

must increase with increasing levels of DLR, thus suggesting an exponential penalty 

function. Instead it is modelled using a quadratic function as given in (2) since it can 

approximate the exponential function accurately for low levels of DLR, and the relative 

ease of calculating the Jacobian and Hessian matrices for quadratic functions. 
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where p-q represents a line from bus p to bus q. The cost of violating the constraint is 

proportional to the magnitude by which the actual line flow exceeds the line capacity. 

The constraints in (3) complement the expression for CDLR in (2) to account for the cost 

of uncertainty in stochastic line rating. 
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The thermal capacity of line p-q is approximated by a discrete random variable where 

each discrete value (represented by index k) of smax,pq,k has corresponding probability 

hpq,k. The term apq,k (with per unit cost cOLp) represents the amount by which the actual 

line flow exceeds the discrete line capacity in the k
th

 ordered pair and it corrects any 

violation in the constraint Ssch,pq > smax,pq,k. Thus (hpq,k, apq,k) represents the probability 

distribution of dynamic line rating and the average value of apq,k for all k represents the 

expected dynamic line rating.  

The cost of DLR is based on the expected value of dynamic line rating which 

includes both the amount of DLR (apq) and the time for which it is implemented (hpq). 

hpq is an array of relative frequencies associated with each value of apq. If the time for 

which DLR is implemented varies, the value of hpq,k will change so that the probability 

distribution of apq changes. If the time for a specific amount of DLR is varied, it will 

change the probability distribution (specifically a change in probability for that level of 

DLR) and hence the expected value of DLR. 

The DLR scheduling framework is to be used for a fixed scheduling period. This will 

typically be in the order of 15 – 30 minutes as longer periods of DLR will result in 

substantial risk of thermal overload. For the scheduling period under consideration, 
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DLR is implemented at all times or not at all and the risk of implementing DLR for that 

time is captured by the cost function. In practice, smart monitoring systems will record 

the line temperature at the start of the scheduling period and simulate the final line 

temperature at the end of the scheduling period including the uncertainty based on the 

method in IEEE Std. 738. Based on this, the probability of exceeding the maximum line 

temperature can be determined. The line capacity probability distribution for the given 

scheduling period can be determined by the generalized extreme value distribution and 

based on this capacity, current is scheduled to minimize the time for which the line is 

overloaded. The severity associated with an outage in the event that the risk of thermal 

overload is realized can be determined by the number of customers affected by the 

outage and the total energy not supplied. 

The risk associated with thermal overload includes both the likelihood of exceeding 

line maximum temperature and the cost of an outage in the line under consideration. 

The value of cOLp is chosen so that the quadratic function in (2) best fits the variation of 

risk of thermal overload with current. Thus the risk of thermal overload is described by 

the expected cost of outage in a particular line which is considered the cost/penalty of 

DLR. In the case studies, a number of different values of cOLp are used to determine the 

effect that the cost of DLR has on the effectiveness of DLR.  

The proposed approach assumes cost of congestion (Ccongestion) to increase linearly 

with the extent of congestion in the system. The main contributor to Ccongestion is the cost 

of dispatching expensive reserve generation after lower cost generation has been 

curtailed. It is assumed that these rapid response reserve generators have minimal 

startup cost and a much smaller output range compared to large generators. They are 

distributed in the network and the operating cost over the small range of output is 

approximated by linear cost functions. Alternatively, load may have to be shed if 

redispatch cannot supply load. The penalty associated with shedding load is also 

assumed to be linearly related to the load curtailed as shown in (4). 

 

∑
=
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N

n
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where Plocal,n represents any adjustment of load (by calling on local reserves or load 

shedding) at bus n (where the total number of buses is N). Plocal,n is required to balance 
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the system when congestion has occurred but it has a high cost per unit (cD). Cost of 

network congestion can also represent the loss of revenue for generators since they 

cannot sell energy. This increased cost required to balance the system under congestion 

is allocated unevenly among customers which results in the volatility in nodal pricing 

that is observed during congestion. 

For low levels of DLR, cost of congestion is higher relative to the risk of thermal 

overload from dynamically overloading lines. The optimization algorithm prefers to use 

DLR than call on expensive reserves after redispatch due to the lower cost of DLR. 

However, there is a maximum amount of DLR indicated by the intersection of the two 

functions in (2) and (4) beyond which, risk of DLR is greater than cost of congestion. 

Beyond the threshold point CDLR is greater than Ccongestion thus forcing the optimization 

to not allow DLR beyond this limit as the risk associated with further overloading 

would not be justifiable. The DLR limit point represents both the maximum extent to 

which thermal limits can be relaxed and the time for which it can be relaxed 

In addition to CDLR and Ccongestion the basic OPF formulation includes generator fuel 

cost (Cg(Pg)) and constraints including real and reactive power balance, voltage limits, 

generator limits, and minimum generator up and down time. Line thermal constraints 

are replaced by the dynamic line rating formulation. The proposed approach modelled 

wind power intermittency cost (Cw(Pw)) using stochastic optimization by discretizing 

the probability distribution of wind power and balancing probabilistic reserve cost with 

cost of wasted wind [16] as shown in (5). 
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Where the power output of wind generator j is PWj and the unit feed in cost is ej. The 

cost of wind in (5) is subject to the constraints in (6). 

 
jkWjjk wPt −≥  

Wjjkjk Pws −≥  

0,0 ≥≥ jkjk st  

(6) 

where (fjk, wjk) is the k
th

 ordered pair (out of a total of M) representing the discretized 

probability distribution of wind generator j. NW is the number of wind generators in the 

system and cWj and cRj are the unit cost of wasted wind and reserve generation 

respectively at wind generator j. The cost of wasted wind represents the opportunity 

cost of not being able to sell the energy generated. 
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The problem was solved by transforming it to an extended conic quadratic (ECQ) 

form using the transformations in (7) [16, 20]. 

 )cos( niniin VVR δδ −=  

)sin( niniin VVT δδ −=  

2

2

i
i

V
u =  

(7) 

Adding the rotated conic quadratic and arctangent equality constraints in (8) captured 

the nonlinearity of the classical OPF problem [16, 20]. 
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2 ininni TRuu +=  
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ni
R
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(8) 

All other constraints are transformed into linear expressions making the ECQ-OPF problem easily 

tractable by primal-dual interior point methods. 

 

4. Case studies 

The case studies are performed on the IEEE 14 bus test system and the IEEE 118 bus 

test system [23]. The wind speeds are generated by random numbers with a Weibull 

distribution and combined with the power speed characteristics of the turbines to obtain 

the wind power output. The wind farm locations, capacities, type of wind turbine and 

Weibull parameters are shown in Table 1. The power speed characteristics of the wind 

turbine were scaled to the capacity of the wind farm. At the specified wind farm 

locations, any existing conventional generation is replaced by equivalent amount of 

wind generation. The Weibull parameters are based on data obtained from the Albany 

and Emu Downs wind farms in Western Australia.  

Table 1 Wind farm data 

 Bus 

Number 

Rated capacity 

(MW) 

Weibull 

parameters 

(c,k) 

Wind 

turbines 

power curve 

14 

bus  

6 100 (7.2, 2.35) Enercon E66 

8 30 (7.8, 2.80) Vestas V82 

118 

bus 

12 85 (7.2, 2.35) Enercon E66 

25 220 (7.8, 2.80) Vestas V82 

59 155 (7.3, 2.41) Enercon E66 

80 477 (7.7, 2.77) Vestas V82 
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Buses 6 and 8 in the standard IEEE 14 bus system have synchronous condensers with 

no active power injection. Connecting wind turbines to these buses will provide active 

power injection with necessary reactive power support for wind turbines from the 

synchronous condensers. In the 118 bus system the choice of wind farm buses were 

based on a number of factors such as dispersion of wind farms throughout the grid, 

ensuring there were wind farms of different capacities and to ensure the overall wind 

capacity available was adequately high so that the effects of congestion were 

observable. 

The GEV distribution describing the dynamic line capacity is characterized by the 

mean, shape parameter and scale parameter. Typically, when a line is operating at 

nominal capacity, the probability of the nominal capacity underestimating the true 

capacity ranges from 70 – 80% [8]. Thus, the probability of underestimating the true 

capacity was assumed to be 75% and an inverse distribution was used to determine the 

mean for the probability distribution. The shape and scale parameters were set to -0.2 

and 0.03 respectively which are typical values [10, 24]. By varying the mean, shape and 

scale parameters, the extent of DLR capability in a line can be controlled. A more 

detailed study might consider the probability of line overload to be varying in real time. 

Both the systems are compared in terms of LMP profile and wind curtailment for a 

number of outages with and without DLR. Risk profiles with and without DLR are also 

compared for both systems in addition to the effect on generation mix during congestion 

 Risk of network congestion is the product of likelihood and the severity of network 

congestion. The severity of congestion is indicated by the volatility in LMP and the 

amount of wind curtailment. Volatility in LMP is most commonly used as an indicator 

of network congestion as congestion cost is a significant component of LMP in 

transmission systems [2, 3, 25]. Pricing signals have been proposed as a control 

mechanism for renewable energy integration [26].  The proposed method first 

establishes a base case for LMP without incorporating network constraints. For each 

outage scenario, the LMP at each bus is compared to the base case LMP, weighted by 

the load at that bus and the overall weighted variation in LMP is found. To compare the 

LMP profile of a specific case to the base case, the term LMPV is defined by (9).  
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LMPV is the LMP normalized by base LMP and has no units. A large value of LMPV 

generally indicates that the given LMP profile is very different to the uncongested LMP 

profile which most likely suggests that the network is congested. 

The likelihood of network congestion is determined from the probability of the 

outages which lead to network congestion. Likelihood of N – 1 outages are determined 

directly from the probability of failure of a specific line. Likelihood of N – 2 outages are 

determined as the probability of two independent N – 1 outages or as a common mode 

outage where one event causes multiple outages. 

Wind curtailment is normalized with respect to the wind generation in the 

uncongested base case and determined by (10). 

 

basew

wbasew

P

PP

,

,
curtailedwind

−
=  (10) 

The spare capacity in the network is measured as the total available capacity 

expressed relative to the total rated capacity of all lines and is determined by equation 

(11). 

 

∑

∑ −

=

linesall

linesall

flow

I

II

max

max )(

capacityspare  (11) 

Where Imax is the magnitude of maximum current in a line and Iflow is the magnitude of 

current actually flowing in the line. In the case studies, additional spare capacity 

required to relieve network congestion is used to determine the capacity released by 

DLR. 

 

4.1 Modified IEEE 14 bus system 

The first test established the base case scenario, without any contingency in the system 

with LMP profile shown in Fig. 1(a).  
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Fig. 1   LMP profile (a) before congestion, base case (b) Line 6-12 removed (c) Line 6-

12 removed but with dynamic asset rating  

 

Fig. 1 (a) shows minimum variation in LMP indicating no congestion. Fig. 1(b) shows 

the effect of an outage in line 6-12 on the LMP profile which shows a significant rise in 

LMP in nodes 12, 13 and 14. Fig. 1(c) shows that DLR reduces the LMP in node 12 

thereby reducing network congestion but not eliminating it completely. 

Fig. 2 shows the line percentage loading profiles. Fig. 2(a) shows the line loading 

profile for the network under normal conditions (without any contingencies). Under 

normal operating conditions, all the lines connected to wind farm 1 are loaded to 85% - 

98% of full capacity. 
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Fig. 2   Line loading percentage (a) base case (b) after outage in line 6 – 12.  

 

After an outage, line 6 – 13 is at 100% capacity (Fig. 2(b)) and congestion results as 

seen in Fig. 1(b). The spare capacity is measured as the total available capacity 

expressed relative to the total rated capacity of all lines and is determined by equation 

(11). 
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Where Imax is the magnitude of maximum current in a line and Iflow is the magnitude of 

current actually flowing in the line. Spare capacity is calculated for all the critical lines 

in the system which are identified as those connected directly to bus 6 (the wind bus). 

These are defined as critical lines because these lines are loaded close to their full 

capacity and likely to be congested in the event of contingencies. 
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Fig. 3   Generation mix under different conditions 

 

Fig. 3 shows the generation mix which indicates curtailment of wind as a result of 

congestion. The output of wf1 is curtailed when the line 6 – 13 experiences an outage. 

When the dynamic rating of assets is considered it restores the scheduled wind output to 

the pre contingency value. In this case, if the DLR is incorporated for the assessment/ 

decision-making process then the post-contingency impact on wind farm output can be 

eliminated. 

Wf2 is not affected by the contingency because the congestion is localized to wf1. The 

wind curtailed is normalized with respect to the wind generation in the uncongested 

base case and determined by equation (10). 
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Table 2 summarizes the effect of different outages on the system. Only outages 

resulting in significant congestion are reported in Table 2.  
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Table 2 Comparison of Congestion with and without DLR 

Case 

No. 

line out No DLR with DLR spare 

capacity 

required to 

match DLR 

LMP 

variation 

wind 

curtailed 

LMP 

variation 

wind 

curtailed 

1 none 0.0 0% 0.0 0% - 

2 6-11 6.07 8% 2.21 1% 18% 

3 6-12 5.07 13% 0.52 1% 22% 

4 6-13 8.05 33% 4.54 2% 54% 

5 6-11, 6-12 6.52 23% 2.81 2% 26% 

6 12-13, 6-13 6.87 34% 4.09 8% 27% 

7 13-14, 6-12 6.20 14% 2.37 1% 24% 

8 12-14, 6-13 7.50 33% 4.04 5% 44% 

 

It is seen that DLR reduces congestion (although doesn’t eliminate it completely) and 

reduces wind curtailment. The line loading is shown as a percentage of line capacity for 

each line in Fig. 4. When outages in critical lines are considered, the reduction in 

average LMPvariation ranges between 43 – 64%, with exceptional cases of being as high 

as 89% (case 3). Congestion in a line is not always due to physical thermal limits. In 

some cases the line may not be at the thermal limit, but further power flow through the 

lines would cause voltage drops that would violate constraints. As a result the flow 

through the line is limited. This is the reason why DLR cannot completely eliminate 

congestion. In cases where non critical lines with low levels of loading experience an 

outage, the increase in LMPvariation would be negligible and dynamic line rating would 

have limited effectiveness. 

For comparison, Table 2 presents the amount of spare capacity that would be required to 

reduce congestion to the same level as DLR. Thus, dynamic asset rating can allow the 

cost of network reinforcement to be deferred. In the presented cases, if a worst case 

scenario design were to be carried out, then 54% of spare capacity would have to be 

built into the system to provide the same benefit as DLR (outage of line 6 – 13 as per 

case 4).  
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Table 2 also showed that while some N – 2 outages lead to higher value of LMPvariation 

compared to the corresponding N – 1 outage this is not always the case. For example 

when 6 – 13 is out (N – 1) LMPvariation is 7.3% higher than when 12-14 is also out. 

While this would initially indicate a higher level of congestion with the N – 1 outage as 

opposed to the n-2 outage a closer examination of the LMP profile is required. Fig. 4 

shows the LMP profiles of an (N – 1) outage (case 4) and an (N – 2) outage (case 8). 

 

Fig. 4   Comparison of LMP profiles (a) line 6-13 out (N-1) (b) lines 12-14 and 6-13 out 

(N-2) 

 

While the LMP profile in Fig. 4(a) is generally flatter, the three nodes (12, 13, 14) with 

a higher LMP skews the average LMP variation. In Fig. 4(b) the average difference to 

the base line case may be smaller but more nodes have a higher price than the base case. 

So the N – 2 outage leads to higher LMP in more buses even though the increase in 

LMP per bus is lower than the N – 1 case. 

 

4.2 Modified IEEE 118 bus system 

The envelope of a number of sample LMP profiles for different values of LMPV for the 
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0.165 since nodes 90 and 91 have a higher LMP than the base case, as indicated in Fig. 

5. Below 0.165 there is no discernible change in LMP and hence for the remaining case 

studies LMPV less than 0.165 is considered insignificant. 

 

Fig. 5  Comparison of baseline LMP distribution and LMP distribution envelopes for 

LMPV = 0.165, 0.4, and 0.93 in IEEE 118 bus system 

 

Fig. 8 shows the risk profile and histogram of outages with significant congestion out 

of 150 simulated cases. In addition to independent N – 2 and N – 1 outages common 

mode outages were also considered. According to Fig. 8 (b) for the IEEE 118 bus test 

system only 50% of the outages resulted in severe congestion as compared to 95% of 

outages for the IEEE 14 bus test system. This is because for a large system with the 

generation more dispersed, there are many options for redispatch so not all outages lead 

to severe congestion. The range of LMPV following an outage without DLR is 0.165 to 

30 with the most of the outages resulting in an LMPV of 13-18. After DLR has been 

implemented following an outage, LMPV with DLR has a range of 0 to 17 with most 

outages having very low LMPV. 

 Fig. 7 shows the wind curtailment profile for the 118 bus system. In a worst case 

scenario using DLR reduces the wind curtailment from 20% to 5%. In approximately 

half the simulated outages the wind curtailment (both with and without DLR) is 

negative indicating that wind integration increases after an outage. This is unexpected 

and since it occurs in a third of all the cases an examination of the wind generation 

profile for two sample outages with negative wind curtailment is undertaken in Fig. 9.  
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In Fig. 9 (a) there is an outage in branch 23 – 25 resulting in 5% increase in wind 

integration after the outage and without DLR. The wind power output of bus 12, 25 and 

to a lesser extent bus 59 increases after the outage since there is inadequate conventional 

generation. When DLR is implemented wind farm output on buses 12 and 25 decreases 

slightly as DLR has made more conventional generation available; however not as 

much as before the outage occurred. This is due to the varying levels of DLR in 

different branches. DLR results in slightly more wind integration on bus 59 as it is 

likely that there is greater DLR capability in the surrounding network. The wind farm 

on bus 80 is at maximum capacity and is unaffected by the outages and DLR. The value 

of LMPV is 0.8 without DLR and 0.6 with DLR which is relatively low.  

 

Fig. 6 Comparison of post outage risk profile of 14 bus system with and without DLR 

(a) outages against risk contours (b) histogram of LMPV 
 

Fig. 9 (b) shows the wind power generation for the outage of branches 63 – 65 and 38 

– 65. After the outage there is a 15.3% increase in wind penetration. Wind generators on 

buses 12, 25 and 59 increase their output after the outage and wind generator on bus 80 

is curtailed. The loss of the two branches leads to loss of major channels to transfer 

power generated at bus 80. As a result wind generation at bus 80 is curtailed and other 

wind generators have the opportunity to increase their output proportionally. Pre DLR 

LMPV is 32 and this reduces to 4.7 post DLR when the output of bus 80 increases to pre 

outage levels. However, due to the variable extent of DLR in different sections the 

10
−4

10
−3

10
−2

10
−1

0

2

4

6

8

10

12

14

16

probability of contingency
(a)

L
M

P
V

 

 

0.29

0.130.057
0.026

0.011

0.0051

0.0023

0.0010

0.00045

no DLR

DLR

0 3 6 9 12 15
0

0.5

1

LMP
V

(b)

re
la

ti
v
e

 f
re

q
u

e
n

c
y

 

 
no DLR DLR



20 

 

outputs of other wind generators do not reduce proportionally.  

 

 

Fig. 7  (a) Post outage wind curtailment profile for 118 bus system (b) Histogram of 

post outage wind curtailment 
 

 

The phenomenon of increased wind integration after an outage is a result of 

congestion limiting conventional generator output which provides wind farms the 

opportunity to increase their output provided they have enough reserves available. 

Implementing DLR may further increase capacity around wind farms thus increasing 

their output further.  

The effect of unit DLR cost on the reduction in congestion is shown in Fig. 10. Fig. 

10 (a) shows the variation in the boxplot of LMPV for different values of cOLp. A lower 

value of cOLp leads to a narrow interquartile range of LMPV and a lower median. Both of 

these parameters increase as cOLp increases and effectiveness of DLR reduces. At the 

highest tested value of cOLp (3000) the boxplot is almost identical to the no DLR case. 

Fig. 10 (b) shows the variation in mean value of LMPV which increases as cOLp 

increases. When cOLp is 3000 the mean LMPV is almost equal to the LMPV without DLR 

implemented. This is the threshold at which DLR becomes completely ineffective. 
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Fig. 8  Comparison of post outage risk profile of 118 bus system with and without DLR 

(a) outages against risk contours (b) histogram of LMPV   

 

 

Fig. 9  Wind power generation profile for outage in (a) branch between bus 23 – 25 (b) 

branches between bus 64 – 65 and 38 – 65 
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The relationship between cOLp and congestion cost is shown in Fig. 11 for different 

values of cOLp. The value next to each curve represents the value of cOLp for that curve. 

The relationship between cost of DLR and the cost of network congestion influences the 

effectiveness of DLR. DLR cost is lower than the cost of congestion for low levels of 

DLR. However, depending on the shape of the cost curve, DLR cost will exceed the 

cost of congestion for a certain level of DLR. The intersection of the DLR cost and 

congestion cost determines the threshold cost beyond which DLR will be ineffective for 

a given system. The threshold DLR decreases as cOLp increases. When cOLp is 3000 the 

maximum possible amount of DLR is insufficient to allow enough power flows to 

alleviate congestion. As a result, DLR provides no benefit in reducing congestion and 

the mean LMPV is almost equal to the mean LMPV with no DLR.  

The cost of DLR not only reflects the long term cost of repeatedly overloading the 

line but also the attitude of the system operator in terms of the amount of risk that is 

considered acceptable. In an extreme case a system operator may assume that there is no 

tangible cost in the short term and allocate a very low cost to DLR because alleviating 

network congestion is an immediate priority. On the other side of the spectrum the 

network operator may decide that the risk associated with temporarily overloading lines 

is too great and allocate a high cost thereby reducing the effectiveness of DLR. Ideally, 

the network operator should consider the severity and risk of congestion and weigh this 

against the risk associated with DLR. The risk associated with DLR also includes the 

risk to system security and reliability if thermal ratings are completely relaxed. The cost 

function should be chosen such that the thermal constraints are not fully relaxed at any 

time. If there are specific instances when implementing DLR could increase the risk to 

system security to unacceptable levels (as deemed by the system operator) then the cost 

function can be adjusted so that the DLR threshold point reduces the maximum 

allowable amount of DLR. The cost of DLR is not necessarily constant and it is 

expected that depending on priorities at any given time it will be varied. 

Table 3 Comparison of Congestion with and without DLR For 118 bus system 

 

No. Branch 

out 

No DLR DLR  Spare 

capacity LMPV WC 

% 

LMPV WC 

% 

1 23-25 

17.4 19.5 0.93 0.97 

6.79 / 

13.1 
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2 23-25, 

25-27 20.2 10.0 13.3 2.97 

13.8 / 

19.4 

3 23-25, 

81-80 17.4 19.6 0.91 2.25 

6.93 / 

11.1 

4 26-25, 

25-27 16.4 

-

7.35 1.70 

-

5.49 

5.38 / 

3.51 

5 25-27 

16.4 0.05 1.72 

-

1.67 

5.02 / 

8.63 

6 25-27, 

26-30 27.6 13.9 17.56 0.52 

10.2 / 

19.7 

7 25-27, 

77-80 16.7 3.88 1.81 

-

1.08 

4.88 / 

14.6 

8 25-27, 

81-80 16.3 1.03 1.64 0.51 

5.05 / 

3.71 

9 26-30 

26.7 

-

5.38 4.87 

-

7.01 

8.52 / - 

10 26-30, 

8-30 27.4 

-

5.40 6.90 

-

9.33 

8.32 / - 

11 38-65, 

64-65 32.4 

-

7.88 4.67 

-

15.3 

4.89 / 

4.89 

WC = wind curtailed 

Spare capacity = % extra capacity required to match 

DLR (congestion/ wind curtailment) 
 

Table 3 shows the minimum spare capacity required as calculated by (11) required to 

match the effect of DLR for selected cases. These scenarios were chosen as they have 

the highest congestion out of all the simulated cases. The minimum capacity expansion 

which reduces LMPV to post DLR levels does not necessarily reduce wind curtailment 

to post DLR levels. Further capacity expansion is required to reduce wind curtailment to 

be comparable with the post DLR case. In some scenarios (case 9 and 10) no amount of 

capacity expansion leads to the wind curtailment being as low as in the DLR case. The 

minimum additional capacity required quantifies the latent capacity that DLR can 

release at a fraction of the cost of network upgrade. Network upgrade projects are often 

expensive and not justifiable for low likelihood outages causing network congestion. 

Dynamic line rating would reduce severity of these outages at a fraction of the cost and 

increase overall network robustness. To gain maximum benefit from capacity expansion 

it must be targeted at bottleneck regions. It is likely that if all the scenarios were to be 

covered, the real amount of capacity expansion would be much larger as most outages 

are in different parts of the network.  
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Fig. 10  (a) Boxplot of LMPV versus different levels of DLR cost (b) Variation of mean 

LMPV with DLR cost. 
 

 

Fig. 11  Comparison of DLR cost to congestion cost for different levels of DLR cost 
 

 

In the event of outages with negative wind curtailment there is an opportunity for wind 

power producers to provide emergency generation and increase their revenue. Given 

that a third of the simulated cases resulted in increased wind integration after an outage, 
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it is worth assessing the likelihood and potential cost versus benefit of such outages 

when sizing storage and reserves. The wind power producers may have an agreement 

where they will be remunerated at a higher rate if they maintain the extra reserve margin 

to provide emergency support. The factors which determine whether an outage results in 

negative curtailment are the location of the outage, the extent of DLR capability of each 

line and the location of conventional generation relative to wind generation. 

The method proposed for modelling real time variation in line rating will be practical 

within the context of a smart grid since is expected that infrastructure to monitor 

ambient temperature, wind speeds, and line sag in real time in multiple locations will be 

readily available. This information will be utilized by the system operator to update the 

line rating and dispatch as frequently as necessary. Another important consideration 

when implementing DLR is the operation of protection systems including over current 

relays which may operate if thermal limits are exceeded. Smart protection devices will 

be necessary to ensure that the protection system can distinguish between overcurrent 

and DLR events. Distance protection may be a practical solution as DLR will not lead 

to a significant change in voltage as in the case of a fault. Alternatively, protection 

devices which directly monitor line temperature and operate when there is considerable 

risk of thermal overload may be used instead of overcurrent relays. 

Implementing DLR in a smart grid also has the advantage that system security and 

reliability can be monitored in real time. In some cases system security and reliability 

may be compromised if DLR is implemented. The smart grid infrastructure should not 

allow DLR in such conditions. One method of implementing this would be to use the 

information to update the cost function of DLR in real time so that the maximum 

allowable extent of DLR is reduced. 

 

5. Conclusion 

The paper proposed a new mathematical framework to assess the potential ability of 

DLR to reduce risk of network congestion by limiting the curtailment levels of wind 

power in power systems. Case studies suggest that DLR can potentially release a 

considerable amount of capacity of network assets, enabling increased wind power 

integration. Wind integration under N – 1 and N – 2 outages can increase further if wind 

power producers maintain around a 15% margin of operation. The resulting margin of 
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operation is used to provide standing reserve while reducing the stress by DLR 

operation.  

Power systems need periodic investment planning to meet growth in demand, 

uncertainties, and risks associated with active operation. In that context, the proposed 

approach can be used to monitor the net network reinforcement requirement in power 

systems by utilizing the benefits that can be offered by DLR of assets under normal 

operation and credible outages. 
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