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Uncertainty Representation in Visualizations 
of Learning Analytics for Learners: Current 

Approaches and Opportunities 
Carrie Demmans Epp and Susan Bull 

Abstract— Adding uncertainty information to visualizations is becoming increasingly common across domains since its addition 

helps ensure that informed decisions are made. This work has shown the difficulty that is inherent to representing uncertainty. 

Moreover, the representation of uncertainty has yet to be thoroughly explored in educational domains even though 

visualizations are often used in educational reporting. We analyzed 50 uncertainty-augmented visualizations from various 

disciplines to map out how uncertainty has been represented. We then analyzed 106 visualizations from educational reporting 

systems where the learner can see the visualization; these visualizations provide learners with information about several factors 

including their knowledge, performance, and abilities.  This analysis mapped the design space that has been employed to 

communicate a learner’s abilities, knowledge, and interests. It also revealed several opportunities for the inclusion of uncertainty 

information within visualizations of educational data. We describe how uncertainty information can be added to visualizations of 

educational data and illustrate these opportunities by augmenting several of the types of visualizations that are found in existing 

learning analytics reports. The definition of this design space, based on a survey of the literature, will enable the systematic 

exploration of how different design decisions affect learner trust, understanding, and decision making. 

Index Terms—open learner models, learning dashboards, uncertainty, educational reporting, learning analytics, visual analytics  

——————————      —————————— 

1 INTRODUCTION

his paper surveys work on visualizing uncertainty 
across various domains as well as the visualizations 

that are currently used in the educational reporting that is 
available to learners. This survey is the basis for the defi-
nition of a design space that will allow for the systematic 
study of how uncertainty information might be repre-
sented for student-users of educational reporting.  

People need access to relevant information and infor-
mation about the accuracy and reliability of that infor-
mation to make informed decisions and understand the 
recommendations that an adaptive system makes. This 
article, therefore, aims to sensitize designers to the oppor-
tunities and challenges that surround representing model 
or assessment uncertainty in the visualizations that learn-
ers can see. Once sensitized to this design space, a better 
understanding of how learners use this information to 
support their decision making will be possible.  

The presentation of information about the quality of 
the data over which people are reasoning has been gain-
ing attention across several disciplines, including visual 
analytics, oceanography, meteorology, medicine, fluid 
flow, geography, cartography [1], and educational report-

ing [2]. Some of this work has focused on exploring do-
main-specific applications of uncertainty representation 
while other work has focused on the representation of 
uncertainty in a more discipline-independent manner. 
Many of the existing representations of information and 
its accompanying uncertainty have been visual, and while 
the objective of information visualization is to support 
user understanding, it has been found that people can 
struggle with understanding visual representations of 
uncertainty even when they have received training in 
their semantics, interpretation, and use [3].  

Thus far, most visualizations of uncertainty in infor-
mation have been explored in disciplines where users are 
experienced in reasoning over probabilistic or uncertain 
information such as in mapping [4], statistics [5]–[7], or 
the military and intelligence services [8], [9]. The repre-
sentation of uncertainty for users who may be less com-
fortable or experienced with reasoning over uncertainty 
has only begun to be explored [2], [10]–[12].  

Education is a domain where considerable work is be-
ing done in the area of visualizing student performance 
or knowledge in order to inform instructors, learners, the 
parents of learners, and other decision makers [2], [13]–
[16]. The visualized information is usually based on an 
analysis of learner data. This analysis may involve the 
cognitive modelling of a learner and his/her knowledge 
or the statistical modelling of the learner’s performance 
on assessments. Regardless of the approach that is used to 
analyze learner data, uncertainty is not typically present 
in the visualized data and those who are meant to inter-
pret it are not typically trained in its use. Excluding in-
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Figure 1. SQL-Tutor open learner model [21] represents student 
activity and knowledge level within a database programming 
tutor. It shows learners what they have understood and misun-
derstood as a proportion of their activities within the system. 
Source: [19]; used with permission. 

formation about the reliability and consistency of data or 
any other form of uncertainty can negatively affect many 
of the tasks that visualizations of educational data aim to 
support. This includes the learner’s self-regulation, moni-
toring, and decision making tasks [15], [17]–[23].  

We focus this survey on a particular sub-area of infor-
mation visualization within education, where learners are 
given access to visual representations of their knowledge, 
activities, abilities, assessment outcomes, or any other 
analytics that have been performed within their learning 
context. These visualizations can be thought of as graph-
ical report cards and fall into several categories including 
learning dashboards [18], which are typically based on 
statistical models of learner performance, and open learn-
er models [24] that require an underlying model of the 
learner’s knowledge, abilities, beliefs, or attitudes. Both 
open learner models and learning dashboards report on 
the activities that have been performed by a learner or 
assessments that have been performed on a learner’s ac-
tivities in a technology enhanced learning environment 
(Figure 1, Figure 2). The data that is used to support these 
visualizations often comes from automated sources but 
could be human generated. This would be the case if the 
results of classroom tests, teacher assessments, peer as-
sessments, or even self assessments were entered into the 
system. For the purposes of this paper, the distinction 
between the different types of visualizations that learners 
can access based on their learning activities is not rele-
vant, what is important is that learners can see and un-
derstand reports on their activities and any inferences 
that have been made based on their activities.  

Upon initially encountering visualizations of learning 
analytics, it may not be entirely obvious how they could 
contain uncertainty since the visualizations are largely 
based on objectively recorded learner activities or other 
educational assessments. Even if we ignore the potential 
for instructors or others who assess learner activities to 
make mistakes, be inconsistent, or be uncertain about the 
grade that they are assigning, we must acknowledge the 
uncertainty that is inherent to any modelling and analysis 
process because of the inevitable loss of detail or because 

of inconsistencies in the learner’s behaviours or perfor-
mance. It is also possible that drawing information from 
multiple sources, such as a teacher and logs of student 
activities within a technology-enhanced learning envi-
ronment, may show inconsistencies because of the lens or 
pedagogical framework under which they operate. For 
example, one system may interpret high activity levels to 
mean increased knowledge where another system inter-
prets those same patterns of high activity to mean a lack 
of knowledge because the patterns are associated with 
guessing or gaming the system rather than legitimate 
learning activities. Moreover, the visualization process 
can itself introduce uncertainty [25].   

None of this is meant to imply that technology-
enhanced learning environments and the reports that 
they provide are less accurate than those that are pre-
pared by people. However, the uncertainty that is present 
in these environments and that results from the analysis 
and presentation of educational data can be accounted for 
and communicated to users, which could enable more 
informed decisions. 

At present, most of the visualizations that provide in-
formation to learners about aspects of their learning do so 
without fully addressing the uncertainty that is part of the 
underlying information or the inferences that are made 
from this information. Rather, they tend to hide uncer-
tainty by employing design techniques, such as the use of 
performance categories (e.g., low, medium, or high). This 
may lead to misinformed decisions and affect how learn-
ers feel about their efforts, their work products, the tech-
nology enhanced learning environment, their learning, 
and the visualization itself. We argue that the appropriate 
and thoughtful presentation of uncertainty within educa-
tional reporting can help learners to better understand 
their strengths and weaknesses so that they can make 
decisions that better support their learning goals.  

 

 
Figure 2. Student Activity Monitor (SAM). The bar chart (top) 
and parallel coordinate (bottom) visualizations of student activ-
ity. Source: [12]; used with permission. 
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To this end, we describe a design space that is based 
on previous work in uncertainty visualization and educa-
tional reporting for learners. To map this design space, 
we analyzed uncertainty representation in other domains 
from the perspective of the visual variables that are de-
tailed by Bertin [26] and Gestalt [27] psychology. This 
analysis revealed how these variables have been manipu-
lated to represent uncertainty and other information 
within 50 visualizations. We then analyzed the use of the 
same visual variables within 106 educational reporting 
visualizations that are accessible to learners.  This analysis 
considered how these variables were used to support the 
high-level communication goals that the studied visuali-
zations were attempting to convey, such as the learner’s 
activities or mastery of a concept or his/her knowledge in 
contrast to that of an expert or peer.  The analysis consid-
ered how the designers of the visualization handled po-
tential uncertainty when choosing which information to 
present and how it was to be presented. This revealed 
that uncertainty information is represented in less than 
half of the studied visualizations and it is rarely repre-
sented directly. It is much more common for uncertainty 
to be communicated indirectly via the use of categories or 
linguistic cues. 

After analyzing existing uncertainty and educational 
reporting visualizations, we combined the information 
about the use of visual variables within both sets of visu-
alizations with information about the effectiveness of the-
se visual variables for representing uncertainty (see 3.1 
Existing Uncertainty Representations). This helped identi-
fy the variables that were available and appropriate for 
representing uncertainty within educational reporting. 
Once these opportunities were identified, we modified 
existing visualization approaches to illustrate how the 
different visual variables could be used to communicate 
uncertainty information in educational reporting. 

The analysis of 50 visualizations that include uncer-
tainty information and 106 educational reporting visuali-
zations mapped the design spaces that were already oc-
cupied. This revealed the gaps that are present in these 
design spaces. Now that these gaps have been identified, 
their use for communicating information about uncertain-
ty can be explored.  

The inclusion of uncertainty information in education-
al reporting could allow learners to make more informed 
decisions that better support their desired outcomes. The 
gaps in this space and the examples of their exploitation 
may also allow the designers of these visualizations to 
explore this space and the relationship that the inclusion 
of uncertainty information has to system or report use, 
user trust in the system or report, and the development of 
learners’ metacognitive skills. 

The paper first discusses the elements that go into vis-
ualizing educational data. This includes elements of in-
formation visualization, a discussion of learner modelling 
and learning analytics, and a discussion of how educa-
tional data has been represented. Following this general 
background, an analysis of how uncertainty has been rep-
resented in other domains and educational reports is pre-

sented. We then present the design space that is available 
for representing uncertainty within visualizations of edu-
cational data for learners. This is followed by a discussion 
of how this design space might be explored and a current 
system is modified to provide an example of how this 
design space might be used to communicate uncertainty. 

2 VISUALLY REPRESENTING EDUCATIONAL DATA  

Very little work has been reported on how to best repre-
sent different aspects of educational data, including un-
certainty, to users of educational systems. However, con-
siderable work has been performed in the use of different 
types of visualizations within educational reporting and 
technology-enhanced learning environments. In addition 
to this, substantial work in the area of information visual-
ization can be exploited to design visualizations that help 
learners make informed decisions about their learning or 
abilities; better understand their learning; or comprehend 
how their knowledge or abilities have changed.  

We have divided the discussion of these related areas 
into four sections. The first explains a subset of the prin-
ciples from information visualization. The second dis-
cusses how people interpret visual information, and the 
third presents an overview of the analysis methods that 
are often applied to educational data; this includes learn-
ing analytics and learner modelling. The fourth section 
discusses the purposes of giving learners access to educa-
tional reporting with a focus on existing approaches to 
visualizing educational data.   

2.1 Information Visualization 

To better understand how information can be communi-
cated to learners visually, we must first understand how 
people perceive visual information. This leads us to ex-
plore the field of information visualization which is pri-
marily concerned with finding ways to communicate 
complex information in a manner that allows the con-
sumers of that information, in our case the learner, to 
more easily understand the data and make inferences 
based on the presented information [28]. Information vis-
ualization is further concerned with the faithful presenta-
tion of information and its associated patterns. Wainer [7] 
argues that effectively displayed data reminds us of the 
limitations of that data and prevents us from making in-
correct inferences. Please see [26] and [27] for additional 
background in information visualization. 

One of the ways that we can aid users in understand-
ing and interpreting information is by exploiting the vis-
ual variables that psychology has shown us can be pro-
cessed pre-attentively. Bertin [26] refers to these as selec-
tive. These variables reduce user cognitive load since in-
formation that is communicated through them is auto-
matically processed without requiring focused attention. 
The use of the individual visual variables are detailed in 
the works of Gestalt psychology [27] and Bertin [26] 
where overlapping and sometimes different perspectives 
are provided. We, therefore, define the variables (see Ta-
ble 1) to scaffold our later analysis (see Section 3). 
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While it might be possible and even tempting to use all 
of the visual variables, this is not recommended. Tufte 
advocates that all unnecessary marks be removed from a 
visualization [30]. However, there are cases when provid-
ing additional information can improve both the  user’s 
ability to interpret information and the memorability of 
the visualization’s intended message  [31]. There is, there-
fore, a balance to be found between minimizing the 
amount of additional information that is given to users 
and ensuring that the visual representation effectively 
communicates the intended message as well as the data’s 
context [28]. Many metrics and heuristics for evaluating 
the appropriateness of visualizations have been proposed 
[32], [33]. A discussion of these heuristics and any accom-
panying metrics can be obtained from [33]. 

Keeping the tension between limiting unnecessary in-
formation, minimizing cognitive load by exploiting the 
pre-attentive processing system, and enabling system 
developers to reinforce their message through multiple 
channels resulted in the selection of a subset of the visual 
variables that are described by Gestalt [27] and Bertin [26] 
(see Table 1). The properties of each of these variables are 
detailed in Table 2 which describes the extent to which 
people can order items based on the variable without it 
having been assigned an order (orderable), group items 
based on the variable (associative), pre-attentively process 
the variable (selective), and quantitatively compare items 
based on the variable (comparable). Table 2 also details 

the variable’s cardinality or length; this indicates the 
number of levels that people can distinguish and, there-
fore, the maximum number of levels that we can com-
municate using that visual variable. For example, blur has 
a cardinality of 4. This means that users can only effec-
tively group items or distinguish between them without 
additional thought when four different levels of blur are 
used even though users may be capable of recognizing 
more levels of blur.  

While these variables were chosen because they can be 
pre-attentively processed and any visualization can be 
decomposed into these variables, other considerations 
with respect to people’s ability to interpret information 
need to be made. 

2.2 Interpretability of Visualization Data 

Manipulating the visual variables that are described in 
Table 1 and Table 2 provides a reasonable starting point 
from which to visualize data, but it is not enough to un-
derstand how these variables can be manipulated. The 
complex nature of human perception means that some 
things should be kept in mind when creating visualiza-
tions for users, especially those who may not receive 
training or who have lower-numeracy levels, as may be 
the case among learners, especially school-aged children 
and low performers. Moreover, carefully selecting visual 
representations is important since even people with high-

Table 1. A description and example of the visual variables  

Visual Variable: Explanation Example Visual Variable: Explanation Example 

Position:  Changes in the x, y, or z location of an element.  Size: Changes in the length, area, or repetition of ele-
ments 

 

Motion: This is often called common fate. Elements that 
share a direction, velocity, or frequency of motion tend to 
be perceived as belonging to the same group. 

 Continuity: Elements along a smooth and continuous 
path tend to be grouped together. The use of other vari-
ables, such as colour, can interfere with this visual effect. 

 

Hue: Changes in hue at a given value. Both Gestalt and 
Bertin call this colour. 

 Opacity: Changes in the amount of light that can travel 
through an object. 

 

Saturation: Changes in the amount of grey in the colour 
space (0 = grey, 1 = full colour). This can be thought of as 
the purity of the colour. 

 Orientation:  Changes in the alignment of elements. Ro-
tating visual elements can result in changes in their ori-
entation to one another. 

 

Value: Changes from light to dark.  Grain: Variation in pattern. This is sometimes called tex-
ture. 

 

Boundary:  Graphical elements tend to be grouped to-
gether when they are within a boundary or common 
region. A closed contour tends to be interpreted as the 
boundary of the object and elements within that contour 
as belonging to the same group. 

 Connectedness: Uniform, connected regions are perceived 
as a single unit. 

 

Proximity: Graphical elements that are close together are 
perceived as belonging together. 

 

Shape: Variation in shape at a constant size. Visual ele-
ments can go from being a simple shape to have the 
characteristics of an icon, which limits interpretability. 

 Numerosity: Changes to the number of elements within a 
space tend to be grouped together. In this example, the 
two circles with more dots would be perceived as be-
longing to the same category. Our ability to distinguish 
between groups with different numbers of elements 
increases with age [29].  

 

 

Closure: A closed contour is interpreted as a shape. If 
enough of the contour is shown then people perceive the 
shape in its entirety by filling in the missing information.  

 

Depth: Changes in position along the z-axis (i.e., stereo-
scopic depth) 

 Added Marks: Elements with additional marks tend to be 
perceived as different from those without marks. Those 
with the same added marks also tend to be interpreted as 
belonging to the same class of elements.  

 

Arrangement: Changes in the consistency of the alignment 
of elements. 

 

Curvature: Changes in the curvature of elements. Objects 
with similar curvatures tend to be grouped together. 

 Blur: Changes in the clarity or fuzziness of objects. This is 
also known as semantic field of depth. 
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er numeracy levels can struggle with properly interpret-
ing numerical information [2], [3], [10], [34].  

 While we do not address all of the challenges that 
people can face with respect to interpreting information, 
we provide some examples that are relevant to the user’s 
ability to interpret numerical information since later dis-
cussions focus on visualizing information for learners, 
many of whom may have low-numeracy. One such chal-
lenge is the denominator effect, which is when people 
ignore the denominators in ratios [10]. This can be com-
bated by using a common denominator, preferably of 
base 10, for all of the presented ratios. An alternative so-
lution is to use icon arrays, such as the one in Figure 3, 
since these are known to combat the denominator effect.  

 
Figure 3. An icon array showing the pass rate for a course 

Another common challenge faced by those trying to in-
terpret bar graphs is the within-bar bias, where  people 
think that points shown within the bar that are equidis-
tant to those outside the bar are more likely to occur even 
though their probability of occurrence is the same (Figure 
4). This type of error affects decision making and at least 
27 percent of college-educated people make this mistake 
[3], meaning that error bar-like reporting should probably 
be avoided in visualizations of educational data for learn-
ers, especially in school settings or domains where stu-
dents have limited mathematics and statistics training. 

Designers of educational reports should also be aware 
that the human perceptual system gives precedence to 

 

1While people can distinguish between 10 levels of blur and up to 5 levels 
of blur have been used effectively in at least one setting [35], it is proba-
ble that most people can only use 4 levels effectively [36]. 
2Infinity is a theoretical cardinality. There may be practical limitations on 
people’s ability to interpret all possible values. 
3All cardinalities of 2 are based on the definition of the variable, which is 
inherently binary. 
4This is the approximate cardinality for selection, the most limited of the 
properties 
5While numerosity’s cardinality is unknown, it interacts with a person’s 
cognitive development [29] and the element’s contour. We, therefore, 
recommend using small cardinalities, especially with younger learners. 

certain visual variables (see [32] [37] [38]). Due to this and 
the variability with which some of the variables (e.g., hue 
and saturation) are interpreted [39], it is recommended 
that more conservative cardinalities are used for certain 
variables (see Table 2). This potential variability in the 
interpretation of different visual variables also illustrates 
how the visualization process can introduce uncertainty. 
It should be used as a cautionary note about the im-
portance of providing additional cues within a visualiza-
tion of educational data since many of the users of these 
visualizations may not have received training in their 
semantics, interpretation, or use even though it is recom-
mended that they receive training [16]. 

 
Figure 4. Within-bar bias: people who exhibit within-bar bias will 
interpret the value at point B as being more likely than the value 
at point A even though they are equally likely. 

2.3 Learner Modelling and Learning Analytics 

Before we can discuss the current state of the field with 
respect to visualizing educational data, we must discuss 
how this data is analyzed so that we can better under-
stand how it has been or might be represented visually. 
Part of this involves understanding how data is collected 
within technology-enhanced learning environments. 
While educational reporting systems can rely on teacher-
entered assessments, many technology-enhanced learning 
environments perform the detailed tracking of learner 
activities. This information could and has been combined 
with teacher assessments of student knowledge and its 
analysis is sometimes referred to as learning analytics 
[40], especially when it aims to describe groups of stu-
dents or identify patterns in student performance. In con-
trast, the modelling of this data at a student level is often 
referred to as learner or student modelling [20], [41]–[46].  
The techniques used in learning analytics are often simi-
lar to or the same as those used within learner modelling. 

Table 2. Visual variable properties 
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 Properties 

Orderable                      

Associative                      

Selective                      

Comparable (> = <)                      

Cardinality  3 41 ∞2 23 2 2  ∞ ∞ 74 ? 5 ? 4 ∞   ∞ 5 7 

  - True,  - False,  - Partially True, - Low, ∞ - Infinite, ? – Unknown  
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However, learning analytics usually seeks to describe 
learners and groups of learners to inform teaching prac-
tices, whereas learner modelling is more commonly em-
ployed to drive the personalization that occurs in adap-
tive learning environments. That said, learner modelling 
can be thought of as a special type of learning analytic. In 
both cases, the intended consumer of the analytic is not 
the learner but rather another decision maker such as a 
policy maker, teacher, or adaptive learning system. 

Systems that employ learner models do so with the in-
tent of using a model that represents aspects of the learn-
er’s beliefs, goals, knowledge, intentions, or cognitive 
state. These models can be computed using various ap-
proaches that are either data-driven, as in learning analyt-
ics and educational data mining, or based on educational 
and psychological theories [47].  

Once a model has been computed, it can be used to 
adapt learning materials or activities to a learner within a 
technology enhanced learning environment [48]–[50]. 
Models can also be used to inform the learner, the teach-
er, or other decision makers in order to support the im-
provement and understanding of learning and the envi-
ronments in which it occurs [14], [40], [51]. After compu-
ting a learner model or performing analytics on learner 
data, the results of these processes can be made available 
to learners at which point the veracity of the data and the 
inferences made from it becomes increasingly important.  

We cannot assume that the data is accurate since inac-
curacy could be introduced at any stage in the modelling 
process. Furthermore, the modelling process is inherently 
inaccurate because it creates an abstract representation of 
specific items. In spite of this limitation, models have 
been both useful and effective when employed to help 
people learn within adaptive systems [45], [52]–[56]. In 
many cases, the intelligent tutoring systems that employ 
learner models have been shown to achieve similar learn-
ing effects to those achieved through human tutoring [55]. 

We, therefore, have an obligation to ensure that learn-
ers can properly interpret the information that they are 
shown given their background preparation and abilities. 
This may be more difficult when communicating with 
learners who have different levels of knowledge and ex-
perience with respect to interpreting visual, numerical, or 
uncertain information [3], [5], [7], [8]. Supporting a group 
of students with heterogeneous abilities would not be 
uncommon in introductory undergraduate courses.  

2.4 Visualizing Educational Data: Open Learner 
Models and Dashboards 

Given the sometimes complex nature of the analytics that 
are performed on educational data, not all visualizations 
communicate all aspects of the underlying data or the 
manipulations that were performed over that data. These 
visualizations aim to support the monitoring of learner 
activities and the decision making of a range of stake-
holders from the education system; all of whom have dif-
ferent needs and abilities. This can include policy makers, 
principals, parents, teachers, and students. As a result, 
educational reporting and the visualization of educational 
data can take many forms and often falls under the um-

brella of learning dashboards that display everything 
from a student’s grades on individual tasks beside a class 
average to learner activities and the relationships between 
learners in an online community [15], [24], [57]. Allowing 
learners to have access to these reports gives them feed-
back about their learning activities, performance, or 
knowledge. It can also help learners meet their educa-
tional goals by supporting their reflection and decision 
making [14].  

One of the more prominent and specialized approach-
es to visualizing educational data for learners is called 
open learner modelling; these visualizations ‘open’ the 
underlying representation or model of a learner so that 
the learner can view all or part of the model [24], [58]. 
They, therefore, require the presence of an underlying 
learner model that has performed some form of analysis 
or inference on the learner’s data. In the same way that 
learner models can be thought of as a specific type of 
learning analytic, open learner models can be thought of 
as a specific type of learning dashboard. This makes open 
learner models and learning dashboards a special type of 
information visualization that is meant to enable infer-
ences over a representation of a person’s knowledge and 
any inferences that have been made about that person’s 
knowledge. Even though open learner models may not 
always represent what is more popularly called big data, 
they are intended to make the abundance of data that is 
available about a learner understandable. In making the 
information understandable, open learner models aim to 
achieve their primary goals of supporting the learner’s 
metacognitive development and abilities; supporting 
learner reflection; providing learners with feedback about 
their abilities, beliefs, and knowledge; enabling the learn-
er to plan learning activities; and supporting learner self-
assessment [14], [24], [58]–[60]. 

Open learner models are usually meant to be used by 
learners themselves. However, the use of other visualiza-
tions of learner activities and abilities can be found in 
many types of technology enhanced learning environ-
ments, including learning management systems such as 
Blackboard [61] or Moodle [62]. Those that do not rely 
upon an underlying model of the learner are often called 
learning dashboards. Neither they nor open learner mod-
els typically address uncertainty in the same manner as 
that used in other areas of information visualization even 
though they may accommodate for uncertainty in the 
underlying model or present information about the mod-
el’s accuracy [24] (see Section 3.2.2 for additional details). 
This may be, at least, partly due to the lack of representa-
tion of uncertainty in other forms of educational assess-
ment and feedback. For example, students are not typical-
ly given a grade with a confidence interval, such as 85 
percent plus or minus 3. The closest thing that commonly 
used assessment methods have to representing uncertain-
ty is the use of grade categories (e.g., A, B, or C) that re-
duce the precision that assessors must use. When consid-
ering formal testing, measurement error is commonly 
represented in score reports using confidence intervals. 
Investigations into the effect that different confidence-
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band representation methods have on teacher and under-
graduate comprehension have recently begun [2].   

While most systems do not directly represent uncer-
tainty, there have been some notable systems that either 
represent uncertainty [13], [63]–[65] or incorporate mech-
anisms that handle uncertainty. ViSMod directly repre-
sented uncertainty graphically; it showed student 
knowledge as a Bayesian model that included uncertainty 
information about the learner’s concept knowledge as a 
probability [65]. The challenge faced when using such 
approaches is how to support learner understanding 
since their full comprehension is dependent on a fairly 
advanced understanding of mathematics, which renders 
these approaches ill-suited for use with some learner 
populations (e.g., primary school children or those in spe-
cial education contexts). 

3 UNCERTAINTY 

While some of the data analysis methods that are de-
scribed in Section 2.3, account for variability or other 
sources of uncertainty in the data that is being analyzed, 
they do not explicitly discuss the concept of uncertainty, 
its many forms, and the implications that it has for the 
interpretation of the information that is presented. We 
must, therefore, discuss how uncertainty has been con-
ceptualized if we are to explore its visual communication 
and use in educational reporting. 

Uncertainty can be introduced from a variety of 
sources or during any level of information processing 
[66]. This includes the interpretation of that information 
[1] and its  visualization [25]. 

Even though uncertainty can be reduced to two basic 
types (aleotonic and epistemic [67]), its multifaceted na-
ture [32] has made it useful for those who work with un-
certainty to detail the types of uncertainty that are often 
encountered in the data with which they work. These 
frameworks refine and sub-divide uncertainty to ensure 
that they account for the types of uncertainty that are 
prevalent in different domains. We have synthesized the-
se frameworks into a single list and added examples from 
education: 

 Accuracy [68]–[71]: The difference between what 
has been observed and reality. It includes many po-
tential sources and types of error and could be the 
result of a learner slip (e.g., accidentally clicking on 
the incorrect multiple-choice answer) or error. 

 Precision [68], [69], [71], [72]: This is the known level 
of accuracy of different measurement tools and in-
cludes the standard error of measurement as well as 
the granularity at which information can be tracked 
or measured. In an educational domain, a percent-
age grade (e.g., 87) would have a greater precision 
than a letter grade (e.g., A) and standardized tests 
have known measurement error. In a modelling 
context, this might be represented by the level of 
granularity that is provided by the statistical model-
ling technique or the type of constraint that a learner 
has violated [43]: the constraint that indicates that 
the rules of subtraction have been violated has a 

lower precision than a constraint that indicates that 
the rules of subtracting negative numbers have been 
violated. 

 Completeness [69]–[72]: This is the comprehensive-
ness of the data which includes its coverage, selec-
tion criteria, and the availability of the desired in-
formation. This asks whether the learner has per-
formed enough activities for us to make inferences 
about his/her abilities in an area. If the tutoring en-
vironment changes its intervention based on learner 
affect, a system that infers affective state based on 
logged interactions may be reasoning over incom-
plete information when compared to one that also 
uses a webcam feed of the learner’s face. 

 Lineage [6], [68]–[71], [73]: This is the source of the 
information and how the information has been ma-
nipulated. It includes any aggregations that have 
been performed as well as the sensitivity of any al-
gorithms that are applied to the data. Typically, this 
will be measurable in educational contexts when 
statistical modelling techniques, such as k-means 
clustering, are applied since these techniques can be 
tested with new data and their accuracy reported. In 
some cases, the accuracy or sensitivity of algorithms 
may be unknown  

 Judgement [68]–[70], [72]: This relates to the subjec-
tivity of a data source or the inferences that are 
made over data as well as the trustworthiness of the 
data source or agent performing inferences. In an 
educational context, this may relate to who is per-
forming an assessment. A student may trust an in-
structor’s assessment over that of a peer when tech-
nology-enhanced learning environments allow peer 
assessments to be performed. 

 Validity [68], [69], [71], [73]: The usefulness and 
credibility of the data for its intended purpose. 
Teacher comments that are tied to a rubric may 
seem more valid to a student than a peer’s com-
ments that are not tied to the assignment rubric. 

 Currency [69]–[72]: Is the information current 
enough to be useful? Generally, information that is 
more recent is a more reliable measure of a student’s 
abilities than old information. Some modelling sys-
tems perform a weighted average over student ac-
tivities where more recent activities are given great-
er weight in order to account for uncertainty that 
might be due to currency [74]. Other systems ad-
dress this by averaging performance measures and 
providing information about how learner perfor-
mance has changed over time [48]. 

 Statistical Variance & Consistency [68], [69], [71], 
[72]:  Agreement in the evidence. Learners may per-
form poorly on an assessment due to a distraction 
even though they normally perform well. Like with 
currency, some systems also perform different types 
of aggregation to account for variance in learner 
performance [48]. 

Regardless of the types of uncertainty that are being 
represented, people tend to reject or accept uncertain in-
formation in its entirety [71], which is why care should be 
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taken in its representation. Well-designed visualizations 
may help combat people’s biases towards data uncertain-
ty and aid in their analysis [71].  

To help users with decision making tasks, we should 
provide them with information about the data’s accuracy; 
precision and currency information should also be given 
since it is important to decision making [69]. The amount 
of influence that uncertainty has on decision making is 
affected by the type of uncertainty information that is 
provided and its method of communication [75]. Access 
to uncertainty information and increased granularity in 
uncertainty reporting can decrease user confidence in 
their decisions and may only affect the decisions that are 
being made about items that are at the extremes (i.e., 
those with very high or very low uncertainty) [75]. These 
and other results show that the manner of presentation of 
uncertainty information can be exploited to encourage 
certain decision-making behaviours. See [10], [8], [35], [72] 
for information on the particular ways in which decision 
making can be influenced.  

To date, uncertainty information has most commonly 
been represented numerically although it has a long tradi-
tion of being visualized [6]. Gershon [72] recommends 
being selective when representing uncertainty since its 
representation adds a dimension to the data [1], [31]. The 
only uncertainty that is shown should be that which is 
essential to the target task. Moreover, it should be pre-
sented as simply as possible while maintaining the domi-
nance of the information that is important for a given task 
rather than distracting the user from his/her task [1]. In a 
pronunciation tutoring environment where a learner 
must decide which aspects of his/her pronunciation to 
improve, this may mean that only the items with the most 
extreme values (best or worst pronounced) or those with 
the highest accuracy are presented to learners [48]. Alter-
natively, those with high inaccuracy due to learner incon-
sistency might include uncertainty information in order 
to encourage the learner to increase his/her consistency 
in pronouncing certain characters.  

To overcome this potential barrier, we would recom-
mend the use of pre-attentive visual variables since they 
can be processed quickly, unlike icons6 [69]. Others have 
recommended the use of what are considered to be natu-
ral cues for uncertainty: blur [4], [36], [69], [76], graduated 
shading or colour value [7], closure through the use of 
dotted or dashed lines [4], [36], and ambiguous labels 
when precision is lacking [7]. In contrast to what might be 
expected, colour hue is not recommended for communi-
cating uncertainty because it is not pre-attentively order-
able [36], but it could be used to indicate the presence of 
uncertainty on a binary level [1] or graduated scale when 
training or a legend are provided.  

3.1 Existing Uncertainty Representations 

To better understand how uncertainty representation 
might be used in educational reporting, an analysis of its 
use within other fields was performed. The 50 visualiza-
 

6 Icon is not meant to mean a graphic in a user interface. MacEachren et 
al. use the term icon to communicate the use of a symbol with a complex 
visual shape, such as a missile or emoticons.  

tions that were analyzed came from various communities 
including information visualization, geographic infor-
mation systems, medical information systems, and statis-
tical visualization. These visualizations were found based 
on a search for articles related to uncertainty and visuali-
zation. Colleagues in information visualization were also 
contacted to ensure that no major works had been missed. 
This resulted in the exploration of a community main-
tained reference list7.  

Any visualization that represented some form of un-
certainty and was not a form of educational reporting was 
included regardless of whether the visualization had been 
evaluated for its effectiveness. All of the visualizations 
that were analyzed had been published prior to October 
2013. Papers that analyzed visual variables for their effec-
tiveness at representing uncertainty independently of 
their use in a visualization were not included in the below 
analysis. However, they were used to inform the design 
space that is described in Section 4.  

Each of the visualizations was analyzed for its use of 
the visual variables that are described in Table 1, and all 
representations included a visual component that was not 
text-based. Details of visual variable use can be seen Ta-
ble 3, where the usage of visual variables is provided 
(Used) as are the details about the overloading of visual 
variables to represent uncertainty and one or more other 
dimensions within the data (Unc.), or the use of a variable 
to represent only uncertainty (Unc. Only). 
 

7 http://www.sci.utah.edu/~kpotter/Library/Catalogs/uncertainty 
Vis/ 

8 Sometimes a variable was used to communicate 2 things: uncertainty  
and another piece of information 

9 Unc. Only indicates that the variable was only used for the purpose of 
communicating uncertainty information.  

Table 3. A summary of the use of the visual variables for 
communicating uncertainty (Unc.) or other information 

Visual Variable 
Used Unc.8 Unc. Only9 
% No. % No. % No. 

Added marks 16.0 8 16.0 8 100.0 8 

Arrangement 8.0 4 8.0 4 100.0 4 

Blur 6.0 3 6.0 3 100.0 3 

Boundary 34.0 17 8.0 4 25.0 4 

Closure 12.0 6 8.0 4 66.7 4 

Connectedness 14.0 7 2.0 1 12.5 1 

Continuity 20.0 10 2.0 1 12.5 1 

Curvature 10.0 5 2.0 1 20.0 1 

Depth 10.0 5 6.0 3 60.0 3 

Grain 6.0 3 6.0 3 100.0 3 

Hue 54.0 27 36.0 18 66.7 18 

Motion 18.0 9 10.0 5 55.6 5 

Numerosity 18.0 9 16.0 8 88.9 8 

Opacity 12.0 6 10.0 5 83.3 5 

Orientation 24.0 12 16.0 8 72.7 8 

Position 50.0 25 28.0 14 56.0 14 

Proximity 16.0 8 2.0 1 12.5 1 

Saturation 18.0 9 14.0 7 77.8 7 

Shape 34.0 17 22.0 11 57.9 11 

Size 50.0 25 36. 0 18 52.0 13 

Value 18.0 9 10.0 5 50.0 5 



AUTHOR ET AL.:  TITLE - COPYRIGHT IS HELD BY IEEE 9 

 

The most commonly used visual variables were size, 
hue, and position with approximately fifty percent of the 
visualizations using these variables. The visual variables 
that were most commonly used to represent uncertainty 
were size and hue (approximately 36 percent). Uncertain-
ty was represented using position in 28 percent and shape 
in 22 percent of visualizations. The next most commonly 
used visual variables were saturation, orientation, 
numerosity, added marks, and opacity.  

If we only consider the proportion of uncertainty rep-
resentation to the use of visual variables then all of the 
uses of grain, blur, added marks, and arrangement were 
dedicated to uncertainty information (see Table 3). The 
next most used visual variables (saturation, orientation, 
numerosity, and opacity) represented uncertainty at least 
seventy percent of the time. Hue, value, shape, motion, 
depth, closure, position, and size were all used to repre-
sent uncertainty in at least half of the cases where these 
variables were used (Unc. Only). Of these highly-used 
variables, saturation and hue are known to be poor com-
municators of uncertainty; blur, position, and value have 
been shown to effectively communicate uncertainty; and 
arrangement, size, and opacity are known to be moder-
ately effective at communicating uncertainty [69].  

However, we do not yet know if these variables can be 
used to represent uncertainty in learning dashboards 
since we do not know how information has been repre-
sented in visualizations of educational data: these visual 
variables may already be used for communicating other 
information. Moreover, the varied nature of learner abili-
ties adds another dimension to the design task since stu-
dents in a single class may have heterogeneous numeracy 
or literacy and only some may have the background 
preparation that is needed to work with a particular visu-
al representation. This is unlike the settings where most 
uncertainty visualization work has been done: their users 
are typically accustomed to working with uncertainty and 
trained in interpreting its various representations. 

3.2 Uncertainty Representation in Educational 
Reporting 

An analysis of 106 visualizations from the educational 
reports that are provided through various technology-
enhanced learning environments was performed. These 
visualizations were found through literature searches for 
open learner models, learning dashboards, and educa-
tional reporting. In many cases, this also involved work-
ing backwards through the reference lists of papers and 
visiting authors’ websites to find additional work. The 
selected systems have been reported in various venues 
including artificial intelligence in education (AIED and 
IJAIED); user modelling, adaptation and personalization 
(UMAP); intelligent tutoring systems (ITS); learning ana-
lytics (LAK); and the SIGCHI conference on human fac-
tors in computing systems (CHI). The analysis was only 
performed on visualizations that were reported prior to 
October 2013 and that were accessible to learners rather 
than those that were intended to be used by parents, in-
structors, administrators, or policy makers. The majority 

of visualizations were also paired with some form of 
adaptive tutoring system although this was not a re-
quirement for inclusion. Any visualization of educational 
data to which the learner has access was analyzed since 
these visualizations share similar considerations even 
though their underlying mechanics may be different. The 
below-described analysis considered the message that the 
visualization was attempting to convey (i.e., the visualiza-
tion’s communication goal), its use and representation of 
uncertainty, and its use of visual variables (see Table 1). 

3.2.1 Communication Goals 

The visualizations of educational data were categorized 
based on their intended message (i.e., type of information 
that they were attempting to communicate). Visualiza-
tions were allowed to belong to multiple categories when 
the information being conveyed fit within the described 
category. Categories emerged from the data and each 
time that a new category was found, the previously coded 
visualizations were revisited. The intended message cate-
gories are defined in Table 4. 

The most common communication goal was mastery 
with 72.9 percent of visualizations communicating learner 
mastery (e.g., Figure 5 and Figure 6), 38.3 percent encour-
aging comparison (e.g., Figure 7, Figure 8, and Figure 11), 
29 percent communicating learner activities (e.g., Figure 7 
and Figure 11), 20.6 percent communicating the relation-
ship between different entities (e.g. Figure 10), and 14 
percent providing social cues (e.g., Figure 7 and Figure 
11). Only 1.9 percent communicated learner interest, 2.8 
percent provided information about learner affect, and 0.9 
percent encouraged learners to notice changes in their 
knowledge. The limited exploration of the representation 
of social cues, learner interest, learner affect, and changes 
in knowledge may indicate that these communication 
goals are not as well understood as the others. As a result, 
the representation of uncertainty information and the 
study of how learners respond to it may be premature in 
these types of visualizations of educational data.  

Within the evaluated visualizations, bar chart style di-
agrams were used by 29.3 percent of visualizations, net-
work or graph representations were used by 17.9 percent 
of visualizations, and textual representations were used 
in 28.3 percent of visualizations. Word clouds, emoticons, 
tree maps, spider plots, line charts, pie charts, and scatter 
plots were used to represent information by fewer than 
six percent of visualizations, and 34.9 percent used repre-
sentations that fall into the Other category which includes 
speedometers [77], rose-like diagrams [78], animated 
characters [79], and magic wands [80]. Another example 
from the Other category is a tree that grows or dies based 
on changes in student knowledge [81] or a system where 
the visualization was paired with haptic feedback that 
communicated understanding [82]. Of the evaluated vis-
ualizations, 75.5 percent used only one display approach. 
The remaining systems combined two or more represen-
tations, with at most four display representations being 
used by any one visualization at a time. 
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Figure 5. The Next-TELL skill meter visualization [83]. 

Figure 6. The Next-TELL competency network visualization. 
Larger, darker circles indicate higher competency levels [83]. 

Figure 7. Comtella: each learner is represented as a star. Hue 
indicates learner status; star size indicates the number of con-
tributions; star brightness represents contribution quality. A 
learner’s offline status is communicated by adding black dots 
to the centre of the star. Source: [23]; used with permission. 

Table 4. The categories of communicative intent that emerged from the studied educational visualizations. 
Category Definition 

Activity These visualizations aim to communicate what learners are doing or have done. 

One version of SQL-Tutor (Figure 1) combined the representation of mastery with that of activity by assigning a colour to the 
proportion of the activities that the learner had yet to complete. This version also used text to indicate the proportion of the 
learning activities that the learner had completed.  Narcissus (Figure 11) communicated learner activities by using saturation 
and hue to show user contributions broken down by the types of activities that are commonly performed in software develop-
ment teams [22].   

Affect These visualizations aim to communicate a learner’s affect or motivation. 

My-Pet (Figure 9) changes the animated character’s expressions and behaviours based on the learner’s affective state [79]. 

Change in 
Knowledge 

These visualizations aim to communicate how a learner’s knowledge, preferences, or abilities have changed. 

In the case of ProTutor (Figure 8), the chart tracks the user’s ability to pronounce specific Russian characters [48]. The accuracy 
of the learner’s pronunciation of the selected characters is shown at three time points which allows the learner to see how 
his/her pronunciation has changed. In this case, the learner’s pronunciation accuracy improved and then decreased slightly 
demonstrating uncertainty that is due to statistical variance and consistency (see Section 3). 

Comparison The intent of these visualizations is to encourage the comparison of two or more entities. This may mean the comparison of 
knowledge between two peers or the comparison of a learner’s knowledge against some ideal. It could also mean the compari-
son of the learner’s performance against a particular goal. 

The use of columns in Narcissus (Figure 11) enables the monitoring and comparison of individual team member’s contribu-
tions against one another or against the contribution patterns that are expected given each person’s role within the software 
development team. By placing all of the learners within one visualization (Figure 7), Comtella encourages learners to notice 
both their and their classmates’ contributions to the learning community, and it highlights the differences in their contributions 
using several visual variables to communicate how learners have performed in comparison to one another [23]. 

Interest These visualizations aim to communicate a learner’s interest in concepts or activities. 

The My-Pet system (Figure 9) uses the cartoon animal to reflect the learner’s observed interest in a topic back to him/her. In 
contrast, the Pepper system (Figure 10) represents group level interest in topics by showing which words dominate a selected 
discussion [21]. 

Mastery These visualizations aim to communicate how much of a particular entity has been mastered by a learner (i.e., how much s/he 
knows or how well s/he can perform a skill). 

Figure 1 and Figure 5 show bar-chart style skill meters that communicate the proportion of a concept for which a learner has 
demonstrated knowledge or the learner’s mastery of a particular competency or sub-competency.  

Relationship The intent of these visualizations is to communicate the relationship between different entities (e.g., people or concepts). 

The network graph used in the Next-TELL open learner model shows the relationship between the different competencies that 
are tracked within the underlying learner model (Figure 6). The Pepper word cloud (Figure 10) shows the relationship between 
discussion forums and learner interest in various topics since Pepper generates word clouds for a discussion forum or even 
individual posts when a user requests to see a cloud for a specified set of messages. 

Social Cues The intent of these visualizations is to create an awareness of the abilities, activities, or interests of others. 

Narcissus does this by showing the activities of each user in vertical columns (Figure 11), and Comtella (Figure 7) did this by 
showing all learners as stars within a grid that included representations of the dimensions of their contributions. 
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Figure 8. The pronunciation change chart from ProTutor. It 
shows the accuracy of a learner’s pronunciation at different 
points in time. Source:  [48]; used with permission. 

Figure 9. My-Pet uses a cartoon animal to communicate learner 
affective state by manipulating the facial expressions and dia-
logue that are used by the animal. Source:  [79]; used with per-
mission. 

Figure 10. Pepper word cloud. It shows the topics that are being 
discussed within a specified discussion forum. [21] 

Figure 11. Narcissus shows how much of each activity type 
group members have performed as well as when they submitted 
the work product for that activity. Source: [22]; used with per-
mission. 

3.2.2 Uncertainty 

Since all models and forms of aggregation contain some 
uncertainty, the manner in which the visualizations rep-
resented uncertainty, if it was represented, was analyzed. 
Of the 106 studied visualizations, 52 represented uncer-
tainty directly (9) [13], [19], [65], [84]–[88] or indirectly 
(48); 5 of the 52 represented uncertainty using both indi-
rect and direct methods [19], [65], [85], [87], [88].  

Indirect representations of uncertainty involved show-
ing the learner the evidence on which the inferences were 
based; text that hinted at uncertainty using hedges or oth-
er linguistic techniques (e.g., You may misunderstand 
concept A or “This extra contribution has been inferred 
from the terms visible at depth 2”  [89]); or categorization 
of student performance into broad levels such as excel-
lent, moderate, somewhat limited, and very limited [63]. 
For example, Figure 6 indirectly represents uncertainty by 
using performance categories that are communicated 
through colour; this system also allows students to see the 
weighted averaging of evidence that indirectly communi-
cates uncertainty that is due to lineage, currency, or statis-
tical variance and consistency (see Section 3 for defini-
tions of uncertainty types). Uncertainty was directly 
communicated via text (e.g., “possible misconceptions” 
[84]), by displaying error bounds or confidence intervals 
[19], through the use of probabilities [65], [85], or through 
the use of an insufficient data category [84] (e.g., My-Pet); 
this is similar to the longstanding tradition of including 
quality statements in the legends of maps [4].  

The use of categorization was most widespread: 43 
percent of all visualizations and 83.6 percent of those that 
represented uncertainty used this technique to manage 
precision, lineage, or statistical variance and consistency-
based uncertainty. This includes the visual representa-
tions that are shown in Figure 5, Figure 6, Figure 7, and 
Figure 10. All other uncertainty representations were 
used by less than 5 percent of the studied visualizations. 
However, this only tells part of the story. It fails to tell us 
how the visual variables were manipulated in order to 
communicate uncertainty. 

3.2.3 Visual Variable Use  

The analysis of how the studied visualizations communi-
cated their intended messages and represented uncertain-
ty was performed from the perspective of the visual vari-
ables that are listed in Table 1. If we consider Narcissus 
(Figure 11), we can see that it uses hue and saturation to 
communicate social cues around the types of contribu-
tions that students are making. Narcissus uses proximity 
and position to enable comparison and it employs the use 
of boundary, closure, and connectedness to communicate 
the activities that belong to each user. In contrast, 
Comtella (Figure 7) employs the boundary variable to 
indicate which elements belong to the visualization of 
student contributions to the class rather than which con-
tributions belong to an individual student. Comtella uses 
position to enable comparison by making all of the stu-
dent contributions visible at the same time, and it uses 
added marks (the black dots in the centre) to communi-
cate social cues. Comtella communicates student activity 
levels using size, while hue and saturation are used to 
communicate social cues about the quality of a student’s 
contribution as indicated by his/her status.   

An overview of how these variables were used, with 
respect to the type of message that was being communi-
cated, across all visualizations can be seen in Figure 12, 
and summary statistics of their use can be seen in Table 5. 
Figure 13 shows the variable usage as a proportion of the 
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Figure 13. Visual variable use as a proportion of the number of 
educational reporting visualizations that communicate the 
message type. The Other row shows the use of the visual vari-
ables as a proportion of all visualizations, and darker colours 
indicate a higher frequency of use. 

 
number of visualizations that aim to communicate a spec-
ified type of message. This allows us to see which varia-
bles tend to be used for different communication goals. 
For both Figure 12 and 13, dark blue indicates a higher 
frequency of use, greens indicate a moderate amount of 
use, browns indicate low usage, and white indicates no 
usage. The Other row indicates the use of the variable for 
communicating information that is not specific to uncer-
tainty or any of the communication goals from Table 4. 

The boundary visual variable is used by most visuali-
zations (78.5 percent) even though it is not used to com-
municate a specific aspect of the message. Rather, it 
groups visual elements and thus aids in the communica-
tion of which aspects of the visualization should be con-

sidered a part of the visualization or one of its sub-
components. The heat maps shown in Figure 12 and Fig-
ure 13 also show that the mastery, activity, social cues, 
and comparison categories use a greater variety of varia-
bles than many of the other message types. 

Figure 13 reveals that position is the dominant visual 
variable for communicating a message that involves de-
termining the relationship between two or more things; 
this includes communicating the relationship between 
system entities (people, concepts, or knowledge); facilitat-
ing comparison between a learner’s knowledge or activi-
ties and the knowledge or activities of an expert/peer; 
and determining changes in knowledge. This implies that 
visual variables that are related to the location of an item 
(e.g., position or depth) should probably not be used to 
communicate uncertainty in a visualization that also aims 
to show the relationship between two or more items. 
However, the use of depth to represent uncertainty may 
be appropriate in cases where the visual analytic is at-
tempting to communicate interest, social cues, or affect. 

Like some of the visualizations from other domains 
(see Section 3.1), BonPatron used shape to communicate 
uncertainty [90]. The graph, tree, and map views from 
Flexi-OLM [91], the VISMod open learner model [65], and 
OLMlets [92] manipulated value to communicate uncer-
tainty. Whereas, PSAT/NMSQT [13] used added marks 
and SIV [64] used position to communicate uncertainty. 
VisMod went a step beyond the manipulation of value to 
codify levels of certainty by also presenting the learner 
model as a Bayesian network that included probabilities 
[65]. While these systems were shown to be useful to 
learners, there has been little reporting on how the addi-
tion of uncertainty information affected learner decision 
making or understanding. 

4 OPPORTUNITIES FOR REPRESENTING 

UNCERTAINTY IN EDUCATIONAL REPORTING 

The above-described use of visual variables to represent 
uncertainty (Table 3) and educational data for learners 
(Table 5) reveals several opportunities for integrating un-
certainty representations into existing or new visualiza-

Table 5. A summary of the use of the visual variables 
within educational reporting visualizations 

Visual Variable 

Used Uncertainty Message 

% No. % No. % No. 

Added marks 34.9 37 2.7 1 56.7 21 

Arrangement 0.0 0 0.0 0 0.0 0 

Blur 1.9 2 0.0 0 50.0 1 

Boundary 84.9 90 0.0 0 6.7 6 

Closure 31.1 33 0.0 0 9.1 3 

Connectedness 31.1 33 3.0 1 42.4 14 

Continuity 1.9 2 0.0 0 0.0 0 

Curvature 1.9 2 0.0 0 50.0 1 

Depth 1.9 2 0.0 0 0.0 0 

Grain 1.9 2 0.0 0 100.0 2 

Hue 84.0 89 0.0 0 71.9 64 

Motion 8.6 9 0.0 0 0.0 0 

Numerosity 15.1 16 0.0 0 43.7 7 

Opacity 2.8 3 0.0 0 33.3 1 

Orientation 1.9 2 2.5 0 50.0 1 

Position 90.6 96 1.0 1 55.2 53 

Proximity 50.9 54 0.0 0 29.6 16 

Saturation 22.6 24 0.0 0 70.8 17 

Shape 37.7 40 0.0 1 35.0 14 

Size 57.6 61 4.9 3 73.8 45 

Value 20.8 22 22.7 5 40.9 9 

 
Figure 12. Visual variable use within educational reporting as a 
proportion of the total number of visualizations. The Other row 
shows the use of the variables for communicating information 
that does not belong to uncertainty or a particular communica-
tion goal. Dark blue indicates that a higher proportion of the 

visualizations use the specified variable. 
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tions of educational data. Table 6 details the potential 
uses of each of the visual variables. 

If we remember back to Section 3, the use of saturation, 
orientation, hue, and shape should be avoided when rep-
resenting uncertainty because studies have shown that 
they do not effectively communicate uncertainty [69]. We 
would further recommend against the use of hue since it 
is already widely used for communicating other infor-
mation within educational reporting (see Figure 12) and 
because it is neither orderable nor comparable (see Table 
2). It is recommended that the use of size be avoided for 
communicating uncertainty since it has only been used 
successfully in applications where users undergo consid-
erable training, in the order of months. Providing this 
level of training to student users of educational reporting 
is unrealistic. Should size be used, the recommended 
mapping is for larger objects to be more certain and 
smaller objects to be associated with greater uncertainty 
[69]. Likewise, more certain information should be pre-
sented more clearly and be less obscured than uncertain 
information.  

The variables that are available for use fall into three 
groups: those that are good at communicating uncertainty 
(value and blur), those that are acceptable for communi-
cating uncertainty (arrangement and opacity), and those 
with an unknown ability to communicate uncertainty 
(grain, continuity, depth, curvature, closure, added 
marks, and motion). These indicate potential avenues for 
research into how learners respond to and interpret vari-

ous manipulations of the variables when attempting to 
communicate uncertainty information. 

When choosing which variables to employ it is, obvi-
ously, important to consider their potential effectiveness 
at communicating uncertainty to the visualization’s in-
tended audience. Different learners will have different 
needs. The smiley face example from Table 7 might be 
appropriate for low performers in a primary school con-
text, whereas the 3-D scatter plot might only be recom-
mended for those who have an undergraduate education 
with extensive mathematics or sciences training.  

It is also important to consider the communication goal 
of the visualization that is being created. For example, if 
you want to draw a learner’s attention to a particular ar-
ea, such as division, where s/he performs inconsistently 
then manipulating a variable that draws the user’s atten-
tion to this aspect of the visualization would be advisable. 
In this case, the manipulation of the added marks or mo-
tion variables might be most effective at drawing the 
learner’s attention to the information that is supposed to 
be highlighted. In a web-based environment, a blinking 
star could be placed beside the instructional material and 
practice exercises that are associated with division. This 
could highlight and perhaps even persuade the learner to 
provide the system with additional evidence of his/her 
abilities, which could in turn decrease the inconsistency 
that was observed in his/her ability to perform division. 
In contrast, the use of blur or opacity in this situation 
might obscure the intended message and result in the 
information being ignored. 

Table 6. The appropriateness of the available visual variables for representing uncertainty 
Visual  

Variable 
Can Represent 

Uncertainty Considerations 

Added Marks ? Marks could be added to information that is less certain. 

Arrangement ~ Arrangement might be able to communicate uncertainty with messier arrangements communicating less 
certainty than more ordered ones. This might work better if changing the arrangement of hashing within a 
bar-chart style skill meter than it would if changing the arrangement of the elements within a star style skill 
meter since scattering can hinder the interpretation of a visualization in low-numeracy populations [10]. 

Blur  Any aspect of a visualization could be blurred to communicate uncertainty. It should be noted that users 
disliked blur even though they could easily understand it [36]. However, they prefer the use of blur over 
that of value. If using blur, fuzzier images should be mapped to higher levels of uncertainty. 

Closure ? Users prefer dashed lines over blur, value, and arrangement but dashed lines are not as easily understood 
as blur or value [36]. It may be possible to show multiple levels of uncertainty using closure. However, it is 
more likely that you can only communicate the presence or absence of uncertainty. Using dashed rather 
than solid lines to invoke closure will require user training or the use of a legend since its use to communi-
cate uncertainty is not automatically understood [36]. 

Continuity ? Continuity would most likely only allow you to show if something is above a particular certainty threshold. 
Smooth curves could be used to communicate certainty and jagged lines could communicate uncertainty. 
This is probably most appropriate for use in graph-based visualizations. 

Curvature ? Changes in curvature could be used to communicate uncertainty but a legend will be necessary since more 
rounded objects could be used to communicate either certainty or uncertainty. 

Depth ? Less certain information should appear to be further away from the learner than more certain information.  

Grain ? Different textures could be used to represent different levels of uncertainty; a legend would be required. 

Motion ? Information with the same level of certainty could be given the same velocity or direction of travel. This is 
likely most suitable for use in visualizations that include animations or where position is not already used 
to communicate information other than group membership. 

Opacity ~ More certain information should be more opaque. The level of transparency should increase with the level 
of uncertainty. 

Value  Value is already widely used and is naturally orderable but may require the communication of the anchors. 
You should, therefore, communicate whether darker values are more certain than lighter values.  

 - Good, ~ - Okay, ? – Unknown 
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We also recommend that a technique called brushing, 
which is a collection of methods for viewing multidimen-
sional data, be used when learners can see the evidence 
on which the visualization is based; brushing allows the 
user to see the relationship between variables by identify-
ing relevant data points across visualizations [38]. An 
example of brushing that communicates group member-
ship is shown in Figure 14. Alternative techniques could 
be used provided they allow learners to see the source of 
the uncertainty beside its representation [68]. 

5 ADDING UNCERTAINTY REPRESENTATIONS TO 

VISUAL ANALYTICS OF LEARNING 

Reviewing previous uncertainty representations revealed 
that the user’s ability to understand the visualization is 
often overlooked [76]. This makes the careful design and 
evaluation of these visualizations based on the target us-
er’s ability to interpret them paramount since the inter-
pretability of information is essential to the monitoring 
tasks that are supposed to be supported by open learner 
models and other visualizations of educational data [31]. 
While this paper focuses on the visualizations that are 
used by learners, similar approaches could be employed 
for other user groups such as parents, teachers, or 
administrators. However, the possibility exists that the 
design space that is available for exploration is different 
since the reports that target these user groups may use 
different visualization approaches. For example, it is 
unlikely that the reports that are being used by school 
principals contain smiley faces. It is far more likely that 
these reports contain error bars since it would be 
expected that the target population can interpret them. 

Table 7 provides examples of how uncertainty infor-
mation could be added to some of the types of visualiza-
tions that are commonly used in educational reporting. 
For the bar chart example of the skill meter, using opacity 
or arrangement allows the designer to communicate how 
consistently the learner has demonstrated evidence of a 
particular skill or knowledge component, which can be 
used as a proxy for how much the learner should trust the 
displayed assessment information. Moreover, using opac-
ity to communicate something that is akin to error bars 
(as in example b.ii of the bar chart skill meter) could pre-
vent within bar bias and better communicate the potential 
range of a learner’s knowledge or abilities. The design 
that is proposed in b.ii has recently been externally vali-
dated for particular types of decision making tasks when 
they are being performed by adult members of the gen-
eral public [93]. Additional guidance on the communica-
tion of error bars can be obtained from [94].  

The star-based skill meter can be manipulated to 
communicate similar information to that shown in the 
bar-chart style skill meter. Opacity can be applied to icons 
to communicate how confident the system is in the learn-
er’s current knowledge level or its rating of the learner’s 
affect. In 3-dimensional spaces, using depth (i.e., the z-
axis) to communicate uncertainty by making certain items 

closer to the learner (see the 3-dimensional scatter plot 
example in Table 7) would help emphasize the infor-
mation that has higher levels of certainty, but it could also 
lead to less certain items being obscured which could 
mean that the learner does not receive all of the infor-
mation. In the case of word clouds, items can be blurred 
or their arrangement changed to communicate uncertain-
ty in the underlying analytics. This uncertainty could be 
due to any number of things. In the case of a word cloud 
that is used to show a community’s interest in different 
topics, blur could be used to communicate when small 
numbers of the community’s members have demonstrat-
ed a deep or ongoing interest in a particular topic which 
has resulted in the topic being emphasized within the 
word cloud even though the majority of the community is 
not interested in that topic. This situation could easily 
happen in the Pepper system [21].  

The decreased opacity of nodes in the graph example 
could be used to indicate the system’s confidence in the 
inferences that it has made; its lack of confidence in the 
results of an assessment; or inconsistent evidence for a 
particular concept. This could signal to the learner that 
s/he should perform more activities within the technolo-
gy enhanced learning environment. In contrast, the clo-
sure or thickness of the links between nodes could indi-
cate the system’s confidence in the relationship between 
the nodes. In this example, the nodes may represent 
learners and the links between those nodes their relation-
ships, where a solid or thick line indicates a continued 
reciprocal relationship and a dashed line represents a lack 
of confidence in the inferred relationship. This lack of 
confidence could be the result of a one-way relationship 
or lurker-like behavior in the virtual world even though 
the learners may have a relationship outside of the tech-
nology enhanced learning environment.  

To provide an example of how one might use the 
design space in a real system, we have augmented the 
Next-TELL open learner model because we have access to 
that system. The Next-TELL open learner model was also 
used because it allows learners to see the information on  
which their model is based. This provides a sufficiently 
complex setting in which to demonstrate the use of the 
identified design space. 

 
Figure 14. Brushing: the selected data points (learners) are 
highlighted in pink. This allows the user to see changes in 

learner performance based on the measures being used. 
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If we add uncertainty information to the Next-TELL 
competency network visualization by applying grain to 
nodes in order to communicate the presence or absence of 
uncertainty above an acceptable threshold, we might end 
up with a visualization like that shown in Figure 15 rather 
than the simpler visualization that is currently available 
(see Figure 6). This addition is possible because Next-
TELL keeps a record of each assessment that is performed 
for a learner which allows us to determine the statistical 
variance and consistency in the learner’s performance 
(i.e., a type of uncertainty – see Section 3).  

Figure 16 shows what Next-TELL tracks and how it 
calculates its model of the learner’s competency level; this 
evidence screen shows the results of each assessment that 
has been performed. The data on which this screen relies 
allows for the calculation of the learner’s current 
knowledge or competency level as well as the calculation 
of the uncertainty associated with that competency level. 
In Figure 16, this uncertainty is based on the consistency 
of a learner’s actions. Since this visualization shows both 
the learner’s mastery of competencies and the relation-
ship between those competencies through the connected-
ness variable and we have chosen to display information 

Table 7. Examples of adding uncertainty information to the types of visual representations that are used in educational reporting. 

Visualization Uncertainty Representation Visualization with Low Uncertainty Visualization with High Uncertainty 

Skill Meter - 
Bar Chart 

a) map uncertainty to the arrangement of 
the skill meter fill 

b) map uncertainty to opacity for  

i) the entire meter when there is a lack of 
information 

ii) the area around the level of determined 
knowledge in a way that is similar to error 
bars for statistical variance and consistency 

a)   a)   

b.i)   b.i)  

b.ii)  b.ii)  

Skill Meter – 
Stars 

map opacity to certainty     

Emoticons map opacity to certainty   

 

    

 
3-Dimensional 
Scatter Plot 

map uncertainty in node values to depth  

 

 

 
Word Cloud a) map blur to uncertainty 

b) use the arrangement of words to com-
municate uncertainty (the messier the 
collection, the less certain it is) – this 
would only work if multiple word clouds 
are displayed at the same time 

 

 

 

a)  

 

 
b)  

 
Graph a)  map uncertainty in nodes to opacity  

b) map uncertainty in connections to clo-
sure 

c) map uncertainty in connections to line 
thickness where thicker lines indicate 
higher certainty 

 

 

a) 

 
b) 

 

c) 
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Figure 15. The Next-TELL Competency Network: it has been augmented using the grain visual variable to show the presence of 
uncertainty. A, B, and C show three different uncertainty propagation situations. 

about the uncertainty of a student’s mastery of a compe-
tency, the use of closure or curvature on the connections 
between competencies would be inappropriate. The exist-
ing visualization manipulated colour values to represent 
aspects of student mastery so hue, saturation, and value 
cannot be used without risking student confusion. Like-
wise, opacity cannot be used because it can be easily con-
fused with saturation when background visuals are ab-
sent, as is the case in the Next-TELL competency network. 
We, therefore, chose to add grain since it was available 
for use and could be added to the visualization without 
overloading the semantics of the visual variables that 
were already being used.  

 Figure 15 illustrates how uncertainty at lower nodes 
can propagate up to parent nodes. In the case of the sub-
graph near A, the uncertainty that is present in the Expert 
Knowledge and Conceptual Relationships leaves is high 
enough that the level of uncertainty that is present at their 
parent node (i.e., Domain Model) also exceeds the ac-
ceptable threshold and is communicated by adding the 
grain to the Domain Model node. B shows a case where 
the uncertainty level at the parent node (i.e., Learner 
Model) exceeds that of its children (i.e., Misconceptions, 
Learner Knowledge, Open Learner Model, and Learner 
Modelling Techniques). This could be the result of the 
combined uncertainty of the nodes exceeding the thresh-
old that is used for deciding when to visualize uncertain-
ty even though it is not exceeded at the lower levels. Al-
ternatively, it could happen because there is inconsistency 
in the evidence that is only associated with the Learner 
Model node. The last situation, C, is when the uncertainty 
associated with a child node (i.e., Academic Argumenta-
tion) exceeds the threshold and is visualized but the un-
certainty associated with its parent node (i.e., EE3H1) 
does not. These situations can happen because the evi-

dence that is used to calculate the learner’s level of com-
petency for a node includes both the evidence used to 
determine the child nodes’ competency levels and the 
evidence that is only associated with the competency of 
the node itself. This means that the level of certainty asso-
ciated with a leaf node does not necessarily result in the 
leaf’s parent having the same level of associated uncer-
tainty. 

We also add uncertainty information to the screen 
where learners can inspect the modelling process (Figure 
16) on which the visual representations that are seen in 
Figures 5, 6, and 15 are based. To ensure consistency be-
tween visualizations, grain was used to indicate uncer-
tainty in the higher-level skill-meter visualization and 
hue was used to highlight the elements that contributed 
to the inconsistency. This use of hue emulates brushing to 

 
Figure 16. Next-TELL evidence screen. Employing brushing 
draws attention to the pieces of evidence that are contributing 
to model uncertainty. 
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indicate the evidence (i.e., 2013-10-22 and 2013-11-05) that 
is associated with the uncertainty that is present in the 
student’s skill meter. This was possible because hue is not 
used to communicate level of mastery in this view of the 
information and because hue is only being used to high-
light the presence of uncertainty at a binary level.   

6 CONCLUSION 

This paper maps the use of a set of visual variables within 
existing visualizations of uncertain information and with-
in visualizations of educational information. Fifty differ-
ent visualizations from various disciplines were analyzed 
with respect to their use of 21 variables that can be ma-
nipulated when visualizing information. This analysis 
along with a review of the literature revealed which of the 
21 variables are known to communicate uncertainty suc-
cessfully, which hinder a user’s understanding of uncer-
tainty information, and which of the variables require 
further study in order to understand their influence on 
the user’s ability to understand the visual representation 
of uncertainty information.  

After describing how other disciplines have represent-
ed uncertainty, an analysis of 106 visualizations of educa-
tional data that can be seen by learners was performed. 
This revealed the extent to which uncertainty has been 
represented within educational reporting visualizations. 
The minimal representation of uncertainty in these visual-
izations was perhaps surprising given that assessment, 
data aggregation, the modelling of learner knowledge 
and abilities, and the visualization of this information all 
contain some element of uncertainty. The analysis de-
scribes how the same set of 21 visual variables is used 
with respect to the main communication goals of the 106 
visualizations of educational data that were evaluated.  

Unlike the visualizations of educational data, the visu-
alizations of uncertainty from other domains were rarely 
used to communicate social cues; the relationship be-
tween items; or the activity, mastery, affect, or interests of 
a user. The uncertainty visualizations from other domains 
were typically used to communicate the potential changes 
in a variable that were due to accuracy, precision, lineage, 
currency, or statistical variance and consistency. The vis-
ualizations of educational data often accounted for these 
types of uncertainty even when they were not represent-
ed. The evaluated learning dashboards and open learner 
models also communicated information that was related 
to judgment or completeness, which was not typically 
observed in other domains.  

The results of both analyses were combined to identify 
design opportunities for the inclusion of uncertainty in-
formation within the visualizations of educational data 
that are used for monitoring and reporting purposes. Ad-
ditional considerations that are based on the current use 
of visual variables and their previous study in limited 
contexts are provided alongside these design opportuni-
ties. After describing these design opportunities, we illus-
trated how some might be exploited by applying them to 
several types or classes of visual representation that are 
used within existing visualizations of educational data. 

We further illustrated the design space by applying it to 
the Next-TELL open learner model. This example and the 
exploration of the design space demonstrate how uncer-
tainty information could be incorporated into current vis-
ualizations and it provides a starting point for further 
exploration.  

When exploring this design space, it is important to 
keep the learner’s numeracy, literacy, previous training, 
and other abilities in mind since this affects their ability to 
interpret visualizations. It is also worth remembering that 
using some visual variables (e.g., hue, value, grain, mo-
tion, closure, arrangement, and curvature) for communi-
cating uncertainty information can require additional 
support or training even though these variables hold the 
potential to communicate uncertainty effectively. 

By exploiting this space, we can provide learners with 
additional information that can help them with their 
monitoring or decision-making tasks. Furthermore, the 
inclusion of uncertainty information in visualizations of 
educational data may influence the user’s trust (either 
positively or negatively) of the educational report or 
technology enhanced learning environment. As a result, 
the inclusion of uncertainty information should be pur-
poseful and its use closely monitored to ensure that it 
does not negatively affect learners by leading to confu-
sion, distraction, or sub-optimal decision making. 
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