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Automated machine learning 
recognition to diagnose flood 
resilience of railway switches 
and crossings
Jessada Sresakoolchai , Mehmet Hamarat  & Sakdirat Kaewunruen *

The increase in demand for railway transportation results in a significant need for higher train axle 
load and faster speed. Weak and sensitive trackforms such as railway switches and crossings (or 
called ‘turnout’) can suffer from such an increase in either axle loads or speeds. Moreover, railway 
turnout supports can deteriorate from other incidences due to extreme weather such as floods which 
undermine cohesion between ballast leading to ballast washaway or loss of support under turnout 
structures. In this study, new intelligent automation based on machine learning pattern recognition 
has been built to detect and predict the deterioration of railway turnouts exposed to flooding 
conditions which is the scope of this study. Since the turnout system is very complex by nature, 
different features and smart filtering are explored to find the potential features for deep learning. 
Nonlinear finite element models validated by actual field measurements are used to mimic the 
dynamic behaviors of turnout supports under flooding conditions. The study exhibits that the novel 
recognition model can achieve more than 98% accuracy, yielding the potential capability to recognize 
and classify turnout support deteriorations facing extreme weather conditions which will be beneficial 
for responsible parties to schedule and plan maintenance activities.

Railway infrastructure comprises different components to make it able to serve railway transportation purposes. 
This study will focus on railway turnouts which are one of the most significant parts of the railway system. 
Turnouts are sets of components of mechanical equipment that steer rolling stocks from one track to another 
track. For this function, railway turnouts have to be installed at railway junctions, railway spurs, siding tracks, 
or branches where rolling stocks need to change directions. From this, turnouts are movable railway parts which 
used to define the directions of rolling stocks. One set of a turnout also contains many components such as pairs 
of switch rails, point blades that lie between the stock rails, crossing noses, connection parts, frogs, or guard rails. 
The movement of these parts is lateral. In normal cases, turnouts with the full function will be locked after the 
movements have been done to define the directions of rolling stocks for smooth operations and safety purposes. 
It can be seen that, due to their functions, turnouts are applied by high loads and impacts regularly during the 
operation1–3 and this is a reason why turnouts are one of the weak points in the railway infrastructure4–9. Due 
to the high loads and impacts, turnouts tend to deteriorate relatively fast. In addition, turnout supports are also 
affected by high loads and impacts. After all, forces are transferred from the railway infrastructure to the supports 
underneath because the forces are distributed along with the support layers. For example, ballast used to support 
rails and sleepers deteriorates due to regular operations. Therefore, not only do railway turnouts deteriorate but 
also their supports deteriorate. Besides the regular operations, turnout support can be accelerated the deteriora-
tion of some extreme events such as flooding events.

From previous studies, flooding events were shown to be the most prevalent extreme events. In addition, 
they have caused damage to railway systems all around the world10. In 2003, the Rail Safety and Standards Board 
(RSSB) publishes a report stating that there have been 129 flood-related incidents10. This is because flooding can 
cause damage to railway structures such as bridges, track supports, turnout supports, or electrical and mechani-
cal systems.

Although railway turnouts are not damaged by flooding, they can be damaged by regular operations. Each 
time of damage can disturb railway operations in terms of delays, damages, or even derailment11. Because turn-
outs are sensitive components in the railway infrastructure, railway operators tend to prioritize their maintenance 
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of them. Xin et al.4 reported that over 400 turnouts must be replaced every year. Moreover, two of them are 
required immediate repair every week. The cost of the turnout replacement in the Netherlands is around 6.4 mil-
lion euros each year. From this, it can be concluded that railway turnouts are railway components that must be 
controlled and highly prioritized as well as their supports.

This study focuses on predicting and detecting the deterioration of turnout supports. The objective is to 
develop machine learning models that can anticipate or estimate the deterioration of turnout supports utilizing 
support stiffness as a key signal. Axle box accelerations (ABAs) or vibrations from the front wheels of rolling 
stocks as well as crossing noses displacements are used as features of the machine learning models. The use of 
ABAs or crossing nose displacement to detect and predict the turnout support deterioration seems to have the 
potential to provide a high accuracy when they are integrated with machine learning. Previous studies which will 
be discussed in the literature review normally used only the maximum or average values of ABAs, displacement, 
and other values. However, use of the machine learning can detect a hidden pattern that humans cannot recognize 
and use them to make a prediction with high accuracy. Moreover, the cost of installation is not high because 
only a few sensors are required to be installed and they are not complicated. The study’s expected contribution 
is that the developed machine learning models will be able to detect and predict the deterioration of turnout 
supports which will be useful for railway maintenance planning and management. The developed approach can 
be used to support decision-making for railway maintenance. At the same time, it can reduce the risk of failure 
because the deterioration can be monitored regularly based on regular operations that are used to collect data. 
The detection can provide insight of the current condition of the track structure in advance to avoid critical 
damages that cause relatively high maintenance costs. In addition, this study applies ABAs to predict so only 
accelerometers are required to install which is cheap and simple. The measurement can be done with regular 
operations without disruption. Therefore, this approach will integrate operation and maintenance seamlessly 
which improves the cost-efficiency and smoothness of the railway system. The proposed approach can be used 
to screen the support condition in no time. If the monitoring needs to be more precise, specific tools can be 
allocated after the screening presents results that reach the threshold. An advantage of using ABA from regular 
operations using only service trains is biased because the operations are very limited in terms of speeds, stops, 
and timetable. This will negatively affect the diversity of data which is not desirable. In this stage, the study will 
not include the probability of failure because it requires performance and action functions when the scope of 
this study focuses on the performance function, which relates to asset operations. Based on ISO 31,000:2018 
(Risk management—Guidelines)12, this study tries to develop a tool for risk monitoring or to detect the condi-
tion of the support. After that, further processes of risk management can be done according to the standard 
such as risk assessment and risk treatment. Different railway authorities apply this approach to manage risks 
and uncertainty. Especially for uncertainties, railway authorities rely on inspections and condition monitoring 
to aid asset operations (Fig. 1).

Literature review
As mentioned, flooding events are one of the most common extreme events in the railway industry. However, 
they are not prioritized as the most significant ones10. However, the railway system must be capable of effec-
tively managing floods. That means not every flooding occurrence may be avoided. In order to handle railway 
preventative maintenance, risk management is the critical approach used to deal with these incidents. Because 
flooding cannot always be avoided, being able to detect and predict the damage it does will be useful for railway 
maintenance. Hasnayn et al.13 investigated the performance of the railway subgrade during and after floods. 
They discovered that flooding had a considerable influence on track stiffness because of settlement and water 

Figure 1.   Risk management process12.
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content that changed from the desirable conditions. They also proposed that following floods, railway support 
should be thoroughly studied.

Hamarat et al.14 explored the dynamic behavior of railway turnout supports in the case of floods. They con-
ducted the study using a finite element method (FEM). From their study, flooding had an important role in the 
deterioration of track geometry and railway defects. some of their findings were that the superelevation could not 
be maintained at the same level as the design after flooding and both short twists and long twists twist tended to 
be extremely poorer after the flooding incidents. It can be seen that flooding tends to accelerate the deteriora-
tion of track supports. Therefore, in case of flooding, the strengths of turnout supports have to be investigated 
although the incidents are not severe or the water levels are not high.

To be able to detect and predict the deterioration of turnout supports, there are different parameters that can 
be used as indicators. Li and Berggren15 discovered that global track stiffness was related to the track’s perfor-
mance. In that study, they considered the dynamic responses as the representatives of the track performance. 
They applied both static and dynamic methods to study the relationships. They stated that railway and turnout 
support stiffness were directly related to dynamic responses such as sleeper accelerations, wheel-rail forces, or 
rail moments. Their findings can be applied to this study. To identify the turnout support deterioration, this study 
will use support stiffness as the indicator used to measure the turnout support deterioration.

To measure the stiffness of track supports, the current techniques can be categorized into two groups, on-
board approaches and track-side approaches. Examples of the onboard approaches are the application of the Swiss 
track stiffness measuring vehicle, the rolling stiffness measurement vehicle of the Swedish railway16, or other 
measurement vehicles which are also used in different countries such as China and the USA. The main disadvan-
tage of using onboard approaches is that special vehicles are required to measure the interesting parameters so 
the capital cost and operation cost are relatively high. Moreover, the running of these measurement vehicles can 
also disrupt regular operations if the speed of measurement vehicles is not equal to the speed of regular opera-
tions. In addition, due to the high cost, the measurement and inspection cannot be done frequently so severe 
deteriorations can be overlooked in some cases. Another limitation of the onboard approach is low accuracy17. 
For the track-side approaches, examples of them are track deflection techniques, cameras, accelerometers18, 
laser arrays, and geophones19. Like the on-board approaches, the track-side approaches also have disadvantages. 
Examples are the high cost of installed equipment and sensor including software that have to be purchased. This 
study aims to propose alternative approaches to inspect the track or turnout support stiffness to overcome these 
limitations while the accuracy of the detection is acceptably high. The authors obtain some ideas from both on-
board and track-side approaches. This study proposes to use axle box accelerations (ABAs) and crossing nose 
displacement to detect and predict railway turnout support deterioration. It has been proven that the use of ABAs 
provides a satisfying outcome while the crossing noses are the weak point in the railway turnout structure4 so 
this location can be used to detect and predict deterioration. These techniques tend to be more interesting in the 
present because they are relatively cheap, do not disrupt the regular operations because the measurement can 
be done together with the regular operations, they are fast because the measurement is done at the same speed 
as the regular operations, and only a few sensors need to be installed. However, the use of only ABAs and cross-
ing nose displacement might not provide a satisfying performance if only maximum values or average values 
are used because different defects can result in the same maximum and average values. Moreover, the load and 
speed of rolling stock also affect the maximum and average values of both ABAs and crossing nose displacement. 
A potential approach to make this concept comes true is the use of machine learning when it is used to do the 
prediction using raw data with the benefit of machine learning to detect patterns hidden in the data.

Kaewunruen20 used the dynamic wheel and rail interaction to estimate the structural deterioration of railway 
turnouts. They used the average maximum accelerations to identify the deterioration of turnouts. This finding 
is also support by Cao et al.21. Sysyn et al.22 applied the machine learning concept to develop a model to detect 
railway turnout defects. They developed the binary-class machine learning model or the developed model could 
classify only whether the interesting section had defects. In their study, ABAs were used as the feature to develop 
the machine learning model. The highest accuracy that they could achieve was 90%.

Other examples of the use of ABAs in the railway maintenance purpose are In 2021, the use of ABAs to detect 
and classify the severity of wheelflats23, to detect and classify the railway combined defects24, different railway 
defect detection25–28, defect severity classification29–33 or railway operation34,35. Moreover, machine learning also 
has the potential in different areas such as geoengineering and geoscience36–39.

From the literature review, the ability to detect and predict the turnout support deterioration is critical, 
especially in the case of flooding and although different approaches seem to have some limitations, the machine 
learning approach tends to be able to overcome those limitations while the delivered accuracy is still accept-
able, especially machine learning modes that have an ability of pattern recognition such as convolutional neural 
network (CNN). In addition, from the literature review, there has not been any previous study studying railway 
switches and crossings under flooding conditions applying machine learning. Therefore, this study aims to 
explore the potential of the use of a machine learning approach to detect and predict railway turnout support 
deterioration through support stiffness when ABAs and crossing nose displacement are used as the key features 
to develop the machine learning models.

Methodology
Finite element model development and validation.  This study uses the FEM concept to develop 
a nonlinear FEM model to mimic flooding events. In addition, using the FEM model can also enrich the data 
sets in diverse situations which is suitable for machine learning model development. It is worth noting that it 
can remove a critical negative characteristic of data which is biases due to the data diversity. In some cases, data 
with high biases can yield nearly 100% accuracy which is undesirable in the machine learning field. With data 
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diversity, machine learning will be capable of dealing with situations outside normal service conditions. The 
nonlinear FEM models are developed based on the model developed by Hamarat et al.40. The FEM models are 
developed as the 3D vehicle-slab model which is shown in Fig. 2. In the models, rolling stocks are modeled using 
the concept of multi-body simulations. The FEM models are developed using LS-DYNA software which is a 
popular FEM software.

In the FEM models, railway turnouts are modeled using a 1:9 crossing angle turnout as a case study. The roll-
ing stock models consist of a car body, two bogies, four wheelsets, primary suspension, and secondary suspen-
sion. The ballast track models consist of rail, rail pads, sleepers, and ballast. Rails are modeled using the Euler 
beam concept. The rails are supported by rail pads which are imitated by using a series of springs and dampers. 
After that, rail pads are supported by sleepers which are also modeled using the Euler beam concept. Under the 
sleepers, the ballast bears the sleepers and it is modeled using the springs and dampers to imitate the behaviors. 
S01-SPRING_ELASTIC and S02-DAMPER_VISCOUS are the LS-DYNA keywords that are used to imitate the 
series of the stiffness and damping for rail pads and ballast.

The vertical wheel-rail contact stiffness is also changed to mimic the real-world situation in which the track 
stiffness is not consistent. In LS-DYNA, the built-in keywords *Rail_Track and *Rail_Train are used to model the 
interaction between the wheel and the rail. To mimic the dynamic behavior of rolling stock and railway structure 
as much as possible, different bounties in LS-DYNA are defined to limit movements in some directions of the 
railway infrastructure such as the bottom of the ballast which the boundary is set to have non-vertical displace-
ment or the ends of rails that cannot have the displacement in any directions.

The developed FEM models are verified with the filed measurement data which is open-source41,42. The field 
measurement consists of the measurement of accelerations. This conforms to the interesting outputs from FEM 
models that will be used in this study because ABAs are forms of accelerations that are measured by using accel-
erometers. To be able to compare the outputs from the developed FEM models and the field measurement data, 
parameters in the FEM models are set to be the same as the field measurement by Wan et al.41. The maximum 
accelerations from the developed FEM models and the field measurement data are 201.6 m/s2 and 214.05 m/s2 
respectively. It can be seen that the difference is about 5% which is acceptable. Therefore, it can be concluded 
that the developed FEM models can be used to generate numerical data.

To mimic the railway turnout support deterioration under flooding events, ballast stiffness and damping 
coefficients are modified depending on water levels14. Table 1 shows the range of variance based on water levels 
ranging from 0–114%14. Please be noted that the stiffness of the interesting section is not the same for the whole 
section. This study will use the stiffness at the turnout support as the key indicator. The stiffness of every part in 

Figure 2.   The 3D vehicle-slab FEM model40.

Table 1.   Ballast stiffness and damping coefficient variations.

Parameters Units Ranges Class

Stiffness MN/m

More than 12.8 1

10.5–12.8 2

8.1–10.5 3

Less than 8.1 4

Damping coefficient kNs/m

Less than 1.2 1

1.2–1.5 2

1.5–2.0 3

More than 2.0 4

Weights of rolling stocks Tons 32–48 n/a

Speeds of rolling stocks Km/h 135–225 n/a
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the section is varied based on the water level as mentioned. In addition, various parameters such as rolling stock 
weights and speeds are modified to provide data variance. Table 1 includes these as well. In addition, Table 1 
includes the class for the classification of the machine learning model. The classes for the prediction are sepa-
rated based on the turnout support deterioration or stiffness and damping coefficient as shown in the table. As 
mentioned, this study will use ABAs and crossing nose displacement are featured to train the machine learning 
models. Examples of outputs from the FEM models are shown in Figs. 3 and 4 respectively. Both of them are 
outputs from the simulation when the speed of the rolling stock is 135 km/h, the weight of the rolling stock is 
46.4 tons, the stiffness of the turnout support is 14.6 MN/m and the damping coefficient of the turnout support 
is 1.3 kNs/m. From Fig. 2. , it can be seen that the location of the turnout is about the end of the section. There-
fore, the ABAs tend to be high at the end of the simulation as shown in Fig. 3. At the same time, from Fig. 4, the 
displacement of the crossing nose is 0 until the rolling stock passes through it at about the end of the simulation. 
Then, after the rolling stock completely passes, the displacement is back to 0 again.

Data preparation and machine learning model development.  There are 1936 simulations in total. 
As mentioned, this study applies the FEM method to generate the numerical data. Outputs exported from simu-
lations are used to train the machine learning models. The outputs are used in the form of raw data or time-series 
data of ABAs from two front wheelsets and/or displacement of the crossing nose. Both outputs from simulations 
are used together and separately to explore the performance of the machine learning models. Stiffness is used 
as the key indicator to identify the conditions of railway turnout supports. Irregularities of tracks are included 
in the finite element model. Not only reflecting the real condition of the tracks, but irregularities also represent 
uncertainty in the railway system’s nature. To train the machine learning model, there are three forms of features; 
(1) two sets of time-series data from ABAs, (2) time-series data from crossing nose displacement, and (3) the 
combination of (1) and (2). The outputs from FEM models are different in shape based on the speed of rolling 
stock when the length of the experimental section is approximately 45 m.

A convolutional neural network (CNN) is a machine learning technique that is utilized to create the predictive 
model in this study. Data in its raw form are supplied into the CNN model. This machine learning technique is 
chosen because it is a powerful deep machine learning technique that can be utilized to tackle a wide range of 
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problems and it is proven that the performance of the model is satisfying. CNN is a common pattern recognition 
algorithm that is appropriate for the difficulties in this study. Two outstanding properties of the CNN model 
are it can extract significant features from inputs via the feature extraction part in the model’s architecture. In 
other words, this ability is called smart filtering which makes CNN outstanding in terms of pattern recognition.

The machine learning models are developed based on two problems in this study. The first one is the clas-
sification when the classes of predictions are referred to in Table 1. The railway turnout support deterioration 
is classified as a class when the ranges of stiffness are shown in the table. From the table, there are four classes 
according to the severity of the deterioration. The second one is the regression model when the machine learning 
model is developed to predict the current stiffness of railway turnout supports.

70% of the data are utilized to train the machine learning model, while the remaining 30% are used to test the 
model. In the data splitting process, the proportions of each class are maintained the same in both training data 
and testing data using stratified sampling. From Table 1, there are four classes. It is initially planned that each 
class will have a proportion of about 25% so this proportion will be maintained in both training data and testing 
data. To ensure that each model produces the best possible performance, hyperparameter tuning via grid search 
is applied. Hyperparameter tuning is used to improve the performance of the machine learning model because 
not every parameter in the machine learning architecture is tuned during the training process. The parameters 
that are tuned are weights and biases while other hyperparameters such as the number of nodes, filters, or lay-
ers are fixed. Therefore, hyperparameter tuning has an important role to explore the optimized combination 
of hyperparameters providing the best performance. The concept of grid search is the machine learning model 
will try every combination that is defined by the grid search. For example, if two hyperparameters are aimed to 
be tuned and there are three values to be tried for each, the total number of combinations is nine. To ensure the 
performance of the machine learning model, the range of each hyperparameter has to be comprehensive and 
based on the characteristic of the data. In the study, the hyperparameter tuning is performed using the loop crea-
tion in the code during the machine learning development stage. In each loop, one hyperparameter is defined 
within the selected range. The number of the loop will be equal to the number of hyperparameters that are tuned. 
Then, the indicators used to measure the performances are recorded using an array. After that, the performance 
of each hypermeter combination is compared to find the combination providing the best performance. Table 2 
presents the list of the tuned hyperparameters for the CNN model.

The novelty of the developed machine learning model is the machine learning model in this study uses raw 
data or time-series data that previous studies have never done before. Normally, defect detection in the railway 
system uses only the maximum value of the accelerations or displacement only. On the other hand, this study 
tries to create novelties and dominate the state of the art’s performance by using raw data because this study aims 
to take the benefit of the CNN model that contains the feature extraction part. In other words, previous studies 
tend to use maximum and/or average values as inputs together with the speed or weight of rolling stock. By using 
this, machine learning model training can be misleading because other incidents such as irregularities can also 
cause the same value with target deterioration. The feature extract part will search for insight into the data and 
pattern to do a prediction without the requirement of feature engineering. Therefore, the selection of features is 
not required to be done by humans but the machine will discover itself and there is no loss in the data process-
ing process. In addition, this study stacks raw data as layers. for example, if the features are ABAs, the shape or 
dimension of the features will be [2 × 1 × timestep]. The first number (two) is the number of feature layers which 
is two consisting of the first and second sets of ABAs. One means the number of rows of features which is one 
representing 1-d time series data. The last number of the shape is the number of columns or timesteps which 
represents the ABAs or crossing nose displacement. If the features are crossing nose displacement, the number 
of layers of feature is only one because there is only one set of data. At the same time, if both ABAs and crossing 
nose displacement, the number of layers will be three consisting of two ABAs and one crossing nose displacement. 
The cost functions used to train machine learning models are depended on the type of problems. Accuracy is 
used for the classification and root mean square error (RMSE) is used for the regression.

To assess the performance of the machine learning models that have been developed, different indicators 
are used based on the characteristics of the problems. The indicators used to evaluate the performance of the 
classification model are accuracy, precision, and recall. The indicators that are used to evaluate the performance 
of the regression model are mean absolute error (MAE), root mean square error (RMSE), R2, mean percentage 
error (MPE), precision, recall, and accuracy. Equations used to calculate each indicator are shown in Eq. 1-Eq. 7 
where yi is a true value, xi is a predicted value, n is the number of samples, y is the mean of true values, TP is a true 
positive value, FP is a false positive value, TN is a true negative value, and FN is a false nagetive value. From the 
mention indicators, the lower values of MAE, RMSE, and MPE represent the better performance of the models 

Table 2.   List of hyperparameter tuning.

Hyperparameters

Number of convolutional layers Activation function

Filter Batch size

Kernel size Optimizer

Number of pooling layers Number of hidden layers

Dropout Number of hidden nodes

Pool size



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2106  | https://doi.org/10.1038/s41598-023-29292-7

www.nature.com/scientificreports/

while the higher values of R2, precision, recall, and accuracy represent the better performance of the models. 
It is to be noted that the highest possible values of R2, precision, recall, and accuracy are 1.00 which means the 
models can predict every value correctly.

Results and discussion
From the machine learning model development, the performances of the models according to the characteristics 
of problems are shown in Section “Model performances” and the set of optimized hyperparameters is shown in 
Section “An optimal set of hyperparameters”.

Model performances.  Classification model.  The severity of the turnout support deterioration is shown in 
Table 1. There are four classes as shown in the table ranging from class 1 to 4. Class 1 represents the best condi-
tion of the turnout support while class 4 represents the worst condition of the turnout support. As mentioned, 
this study explores the potential of the use of features in three different formats, two time-series data of ABAs, 
displacement of crossing noses, and the combination of both. The performances of the classification model are 
shown as confusion matrixes and model reports in Tables 3, 4 and 5.
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∑
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Table 3.   Classification model’s performance when features are ABAs.

Pred. class 1 Pred. class 2 Pred. class 3 Pred. class 4 Recall

True class 1 130 0 1 1 0.98

True class 2 8 125 7 0 0.89

True class 3 0 0 160 0 1.00

True class 4 0 0 0 149 1.00

Precision 0.94 1.00 0.95 0.99 0.97

Table 4.   Classification model’s performance when features are crossing nose displacement.

Pred. class 1 Pred. class 2 Pred. class 3 Pred. class 4 Recall

True class 1 142 7 0 0 0.95

True class 2 14 133 1 0 0.90

True class 3 0 13 131 2 0.90

True class 4 0 0 2 136 0.99

Precision 0.91 0.87 0.98 0.99 0.93
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From the above tables, it can be seen that the use of both ABAs and displacements of the crossing nose pro-
vides the best performance followed by the use of ABAs. The best accuracy that the model can achieve is 0.98 
which is satisfyingly high. However, if the installation is too high for some situations, the option to install only 
one sensor also provides acceptable accuracy. From the model trained with the crossing nose’s displacement, the 
accuracy is 0.93 which is good enough to support the decision-making in railway maintenance and it requires 
only one sensor to install at the crossing nose. The sensor can be laser-based or a camera to track the movement 
of the crossing nose. On the other hand, the installation of accelerometers at axle boxes of rolling stocks provides 
more accuracy. In addition, data from accelerometers (ABAs) can be used to detect other defects when rolling 
stocks are operated. However, the use of any approaches presented in this study can provide a satisfying perfor-
mance of the detection and prediction. When considering precisions and recalls, the outcomes are accorded to 
the accuracy that the use of both ABAs and crossing nose’s displacement tends to provide the best values. It can 
be seen that, when both features are used, precisions and recalls of all classes are higher than 0.97. That means 
the developed machine learning model can detect the turnout support deterioration accurately referred to high 
recall. At the same time, the predictions of every class are highly reliable referring to the high precision.

Regression model.  As mentioned in Section “Data preparation and machine learning model development”, the 
indicators used to identify the performance of the regression model are MAE, RMSE, R2, and MPE. The compa-
rable parameters are turnout support stiffness. The performances of the regression models are shown in Table 6.

From the above table, it can be seen that the performances of the regression model conformed to the per-
formance of the classification model. The prediction performance is the best when ABAs and displacement of 
the crossing nose are used to train the machine learning model followed by the use of ABAs. For the best per-
formance, the MAE is 0.21 MN/m which is relatively low compared to the actual data shown in Table 1. At the 
same time, the MPE is only 1.95% and the accuracy of the regression model is 98.05%. From the result, it can be 
concluded that the developed machine learning model has the potential to detect and predict railway turnout 
support deterioration because of the high accuracy. The actual data and prediction from the regression model 
can be shown in Fig. 5. The trend is clearly demonstrated in the figure which means the developed machine 
learning model can do the prediction very well.

An optimal set of hyperparameters.  As mentioned in the methodology, grid search is used to tune 
hyperparameters. Table 7 presents the optimized combination of tuned hyperparameters.

Conclusion
This study develops new intelligent automation based on a machine learning pattern recognition model to 
detect and predict the railway turnout support deterioration which can be used in different situations especially 
flooding situations. Nonlinear finite element models which are validated by actual field measurements are used 
to imitate the flooding and train the machine learning models. The key parameter used as a representative of 
the deterioration is stiffness. The machine learning technique that is used to develop the predictive model is 
CNN. Data used to train the model is numerical data obtained from LS-DYNA as FEM model simulations. The 
numerical models are verified with the field measurement to make sure that the outputs from simulations are 
reliable. Outputs from FEM models that are used to train the machine learning model are ABAs and crossing 
nose displacement. Outputs from FEM models are used in three forms to investigate the performance of the 
machine learning model. It is found that the use of both ABAs and crossing nose displacement provides the 
best performance when the accuracy of the prediction is higher than 0.98 followed by the use of ABAs when the 
accuracy is higher than 0.97. The use of crossing nose displacement provides provide a lower accuracy which 

Table 5.   Classification model’s performance when features are ABAs and crossing nose displacement.

Pred. class 1 Pred. class 2 Pred. class 3 Pred. class 4 Recall

True class 1 127 2 1 0 0.98

True class 2 0 143 3 0 0.98

True class 3 1 1 148 0 0.99

True class 4 0 0 1 154 0.99

Precision 0.99 0.98 0.97 1.00 0.98

Table 6.   Regression model’s performance.

Indicators ABAs Crossing nose’s displacement ABAs and crossing nose’s displacement

MAE 0.28 MN/m 1.08 MN/m 0.21 MN/m

RMSE 0.36 MN/m 1.45 MN/m 0.30 MN/m

R2 0.98 0.70 0.99

MPE 2.54% 11.56% 1.95%
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is 0.93. It can be seen that adding one more sensor does not provide a significant improvement in prediction. 
Therefore, the consideration should be carefully made compared to the cost of additional installation. However, 
the accuracy of every approach is high. It is to be noted that the features of the machine learning model are in 
time-series data form. CNN model seems to be well dealing with this format of data because it can detect the 
pattern hidden in the time-series data. For the deterioration prediction or regression problem, the developed 
machine learning model provides the highest accuracy of 0.98 when the error is less than 0.21 MN/m which is 
very accurate and good enough in practice.

The contribution of the study is the developed machine learning model can be used to detect and predict 
the severity of the railway turnout support deterioration. At the same time, it can be used to predict or estimate 
the current exact condition of the turnout support. Parties responsible for railway maintenance will be able to 
improve the railway maintenance plan for better management in terms of time, cost, and quality. The railway 
operations will be better in the aspect of availability because the severe damages tend to less occur. After all, the 
maintenance is performed well and the operation will not be disturbed by the heavy damage and long mainte-
nance because the inspection and measurement can be done at the same speed as regular operations and at the 
same time as regular operations. In addition, the cost of the installation of sensors is relatively cheap compared to 
other approaches such as the use of specific track measurement cars. In the practice, railway operators can install 
accelerometers at axle boxes of rolling stocks to measure the ABAs or cameras to measure the displacement of 
the crossing nose or both. Then, they can use the raw data collected by sensors and feed them into the machine 
learning model. The machine learning model will detect and predict the deterioration of turnout support dete-
rioration. Then, they can apply the prediction from the machine learning model to the maintenance standard to 
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Figure 5.   Actual data and prediction.

Table 7.   Optimized combination of tuned hyperparameters.

Hyperparameters Values

Number of convolutional layers 2

Filter 64 (conv1) and 32 (conv2)

Kernel size 1

Number of pooling layers 0

Pool size N/A

Dropout 0.5 (conv2)

Activation function ReLu

Batch size 64

Optimizer Adam

Number of hidden layers 2

Number of hidden nodes 100
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see the priority of the maintenance. For example, if the deterioration is at the normal level, the maintenance can 
be done based on the scheduled maintenance plan. If the deterioration is at the priority level, the maintenance 
needs to be done within the timeframe according to the defined urgent level such as within one month. It can 
be seen that if the measurement can be done together with regular operations, the data will be collected almost 
all the time and the deterioration can be tracked and known at every stage of the operation. Therefore, railway 
operators will know the current conditions of their tracks and respond promptly and properly. This will be a high 
benefit in terms of railway maintenance because the cost can be managed more efficiently and the availability of 
the whole system can be improved.

Data availability
The data that support the findings of this study are available from Brazilian Railway Authority but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not pub-
licly available. Data are however available from the authors upon reasonable request and with permission of the 
Brazilian Railway Authority.
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