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Abstract 

The Smagorinsky subgrid model remains popular in large-eddy simulation (LES) modelling 

despite its failure to reproduce mean velocity shear within the atmospheric surface layer. 

Over-predictions as large as 100% are not uncommon, leading to local simulation 

degradation and potentially infecting scales further from the surface. Mason and Thomson 

achieved significant reduction in excessive velocity shear by adding stochastic accelerations 

on top of the Smagorinsky model to account for backscattered energy from the subgrid 

scales. However, neither this model nor its later implementation by Weinbrecht and Mason 

are able to ensure a physically appropriate spatial structure for the backscatter acceleration 

fields throughout the domain: with the Mason and Thomson model, the backscatter length 

scale and anisotropy depend on the local grid spacing and aspect ratio; with the Weinbrecht 

and Mason model, the backscatter is unavoidably isotropic with uniform length scale. We 

propose a new method for the generation of stochastic backscatter acceleration fields which 

utilises a grid-adaptive filter (GAF) capable of controlling spatial variations in the 

backscatter length scale and anisotropy, independently of the model grid. When applied to 

the atmospheric surface layer, this allows for the backscatter length scale to be reduced 
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towards surfaces in an appropriate manner, and the backscatter anisotropy to be varied in 

accordance with the physical anisotropy of the subgrid scales. The GAF model also has wider 

applicability; it may be used when the LES filter width, and hence the backscatter length 

scale, varies spatially with local 3-D grid refinement. The GAF model is initially tested for 

the case of LES of the neutral atmospheric boundary layer, for grid aspect ratios ranging from 

         1 to 10, and found to give a reduction in maximum excessive mean velocity 

shear (from that obtained without backscatter) of around 80%, that is largely independent of 

 . 

Keywords: Discrete filter; Large-eddy simulation; Near-wall modelling; Neutral surface 

layer; Refined grids; Stochastic backscatter. 

1. Introduction 

Parameterisations that impose stochastic fluctuations in the subgrid-scale (SGS) stresses, in 

order to model backscatter from the unresolved scales, are now used by a wide range 

atmospheric models due to their associated benefits. For example, in general circulation 

models, they have led to improvements in Rossby wave and baroclinic flow simulations as a 

result of better representation of energy spectra (Zidikheri and Frederiksen, 2009, Frederiksen 

and Davies, 1997). In ensemble numerical weather prediction models, they remove the need 

for arbitrary perturbation of the initial condition in order to generate ensemble member 

spread, and may even lead to improvements in forecast skill (Palmer et al., 2009, Shutts, 

2005). In large-eddy simulation (LES) modelling, Leith (1990) found that his random 

fluctuations provided the natural seeds from which large-scale turbulent structures grew, and 

Mason and Thomson (1992) later used a similar scheme to significantly improve the 

prediction of mean velocity shear within the atmospheric surface layer. 
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The forward scatter (towards smaller scales) and backscatter (towards larger scales) of energy 

within a turbulent flow are often large and comparable in magnitude (Westbury et al., 2004). 

Despite this, the majority of SGS parameterisations used in LES modelling are purely 

dissipative, implying that they seek to represent the net energy transfer rather than the 

forward and backward scatter separately (Leslie and Quarini, 1979). This is typically 

achieved through a „net‟ eddy-viscosity, whose magnitude follows from a local energy 

balance equation in which quantities on the smallest resolved scales are used to facilitate 

closure, e.g. the Smagorinsky (1963) model. In well resolved cases the energy carried by the 

subgrid turbulence scales accounts for a small portion (the value of which depends on the 

grid resolution adopted) of the total available energy and previous studies have indicated that 

simulation performance is largely unaffected by the choice of SGS model in such cases 

(Mason, 1994). In less well-resolved cases, however, the SGS model carries a more 

appreciable fraction of the available energy, and the potential consequences of a lack of 

modelled backscatter can be more severe. Poorly resolved LES should therefore be avoided. 

However, with limited computational resources, this is not always possible, for example in 

simulations of strongly stable flow or flow close to solid surfaces, where the characteristic 

length scale of the largest eddies is small (Mason, 1994). 

Numerous LES studies of the atmospheric boundary layer (ABL) have shown that SGS 

models that do not account for backscatter almost invariably lead to over-prediction of near-

surface velocity shear (Michioka and Chow, 2008, Kirkil et al., 2012, Mason and Thomson, 

1992, Talbot et al., 2012). In the neutral surface layer, this is seen as a deviation from the 

expected logarithmic velocity profile. Brasseur and Wei (2010) refer to this as the 

“overshoot” issue, and provide several further examples of studies in which this issue has 

been observed. Despite being localised to the near-surface region, any associated simulation 

deficiencies can be fed up into, and subsequently infect, the larger turbulent length scales 
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away from the surface, leading to further deterioration in simulation accuracy (Chamecki, 

2010). In the surface layer itself, these errors will directly affect the transportation and 

dispersion of fluxes and scalars, to the detriment of, for example, pollution dispersion models 

driven by LES fields. This has led to the formulation of a variety of SGS models in which 

backscatter is considered. These models may be categorised into one of two types: 

deterministic and stochastic. 

Deterministic models that consider the effect of backscatter include those from the „dynamic‟ 

family, pioneered by Germano et al. (1991), which allow the constant in an eddy viscosity 

model to vary in space and time depending on the local flow behaviour of the smallest-

resolved scales. A reduced model constant close to the surface essentially allows for more 

mixing of momentum and a corresponding reduction in vertical velocity shear. However, 

„true‟ backscatter can only be explicitly represented in such models through a locally 

negative eddy-viscosity, whereas this is typically prohibited in practice as it can lead to the 

growth of flow instabilities (Kirkil et al., 2012). Dynamic models might therefore be said to 

allow for „partial‟ rather than „full‟ energy backscatter, which cannot be simulated with 

reduced eddy viscosities alone (Schumann, 1995). Other deterministic models allowing for 

backscatter have also been formulated (Chow et al., 2005, Kosovic, 1997, Domaradzki and 

Saiki, 1997); however their ability to fully remove discrepancies in the turbulence statistics of 

wall-bounded flows remains elusive. 

Stochastic models, on the other hand, are able to model backscatter directly by imposing 

random fluctuations in the subgrid stresses that inject energy into the flow at the smallest 

resolved scales, e.g. Schumann (1995). Leith (1990) simulated a plane shear mixing layer by 

superimposing non-divergent random accelerations on top of the Smagorinsky SGS model. 

The stochastic backscatter model of Mason and Thomson (1992) (hereafter, MT92) extended 

this idea to be more applicable to LES of the ABL. This model proved remarkably successful 
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in reducing the excessive velocity shear within the neutral surface layer as seen with the 

Smagorinsky model alone. However, the model was initially formulated on the assumption of 

the computational grid mesh being fairly isotropic. When generating the backscatter 

acceleration fields, a 3-D 1:2:1 spatial filter is applied to white-noise fields, generated on the 

model grid, in order to introduce a backscatter length scale that scales with the LES filter 

width. However, in areas of high vertical grid refinement (for example) the backscatter length 

scale in the wall-normal direction is reduced, which causes an inappropriately high level of 

anisotropy to be introduced into the backscatter acceleration fields. Practically, this adds 

disproportionately large backscatter signals to the flow-field in the horizontal, and little in the 

vertical, leading to a reduction in the ability of the backscatter model to enhance vertical 

momentum flux so as to smooth out vertical velocity gradients within the surface layer. To 

alleviate such issues, Weinbrecht and Mason (2008) (hereafter, WM08) later proposed a 

modification to the MT92 model, in which the white-noise fields are instead generated and 

filtered on a secondary isotropic grid, with resolution scaled on the LES filter width in the 

interior of the simulated ABL, and then linearly interpolated onto the anisotropic model grid. 

This method imposes that the backscatter length scale is fixed and spatially isotropic, which, 

unlike the MT92 model, ensures a largely grid-independent reduction in excessive velocity 

shear. However, as discussed below, such spatial uniformity in the backscatter acceleration 

fields is not always physically appropriate; furthermore, the applicability of the model is 

limited to simple grid geometries in which the LES filter width is assumed fixed throughout 

the domain. 

LES is based on the assumption that the filter operation separates the large anisotropic eddies, 

responsible for most of the turbulent energy transport, from the small isotropic eddies, 

responsible for most of the turbulent energy dissipation. With the Smagorinsky SGS model, 

the LES filter width is assumed to scale with the local grid mesh size. Thus in well-resolved 
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interior regions of the flow, one can expect the backscatter from the unresolved scales to be 

fairly isotropic and grid-scale. However, as the surface is approached, the local turbulence 

production length scale approaches (and eventually falls below) the LES filter width, and the 

assumption of isotropy in the subgrid scales is no longer appropriate. In this near-surface 

region, one would also expect the backscatter anisotropy to vary in accordance with the 

physical anisotropy of the subgrid scales, and the backscatter length scale to reduce with the 

turbulence production length scale once it falls below the grid scale. Unfortunately, the lack 

of control over the local backscatter length scale and anisotropy with the MT92 and WM08 

models means that such a characteristic spatial structure is unachievable, prompting an 

alternative method to be sought for the generation of the backscatter acceleration fields. 

At the same time, the ability to control the backscatter length scale would also widen the 

applicability of the backscatter model to LES studies of more complex flow geometries, for 

example in many urban or engineering flow setups, which make use of local 3-dimensional 

grid refinement (in contrast to vertical grid stretching alone) in order to ensure 

computationally efficient resolution of the most important turbulence length scales. Indeed, 

even the comparatively simple geometries associated with horizontally homogeneous 

boundary-layer flow require the resolution of a multitude of scales for accurate simulation, 

and adaptive mesh refinement techniques have often been adopted in such cases (Vanella et 

al., 2008). Since, with the Smagorinsky model, a locally refined grid mesh implies a spatially 

varying LES filter width, the backscatter length scale should also vary in accordance with the 

local LES filter width. Whilst this requirement is fairly well met with the MT92 model‟s 

filtering procedure, with the WM08 model, the backscatter length scale remains fixed at the 

scale of the secondary isotropic grid. For nested grids (i.e. sudden grid refinement) it might 

be possible to define a separate isotropic grid within each sub-domain; however, in order to 

minimise associated commutation errors, the LES filter width is typically varied gradually, 
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either by employing gradual grid refinement (Kravchenko et al., 1996) or by using an explicit 

filter to decouple the LES filter width from the grid mesh size, which can then be varied 

smoothly across grid discontinuities (Piomelli et al., 2006). In this case, the WM08 model 

could not ensure a physically appropriate backscatter length scale everywhere. 

In this paper, we develop a new method for generating stochastic backscatter acceleration 

fields that allows the local backscatter length scale and anisotropy to be controlled 

independently of the model grid. The backscatter length scale can then be reduced 

appropriately towards surfaces, and, if necessary, varied to reflect any spatial variations in 

LES filter width, and the backscatter anisotropy can be specified in relation to the physical 

anisotropy of the subgrid scales. The advantages of the new model, and the corresponding 

limitations of the MT92 and WM08 models, are illustrated in the schematic diagram in 

Figure 1, which shows an example case in which the LES filter width decreases towards the 

bottom right corner of the domain as drawn (as a result of smooth grid refinement). It can be 

seen that in the flow interior, the backscatter is appropriately grid-scale and isotropic for all 

three models, except for the MT92 model in areas of horizontal grid refinement, where the 

backscatter becomes unphysically anisotropic due to the dependence of the 1:2:1 filter 

operation on the local grid spacing. Closer to the surface, the backscatter anisotropy with the 

new model is increased gradually in accordance with an assumed profile of the physical 

anisotropy of the subgrid scales. With the MT92 model, however, the dependence of the 

anisotropy on the grid spcaing results in regions of unphysically high or unphysically low 

anisotropy, and with the WM08 model, the backscatter remains isotropic at all distances from 

the surface. With the new model, the backscatter length scale is reduced towards the surface 

in accordance with the local subgrid turbulence length scale, and further reduced in refined 

grid regions to reflect the reduced LES filter width, whereas the length scale remains fixed at 
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the local grid scale with the MT92 model, and fixed at the coarse grid scale with the WM08 

model (resulting in particularly unphysically large structures in the highest refined region). 

This paper is structured as follows. Section 2 gives details of the stochastic backscatter model 

and the new method for generating the backscatter acceleration fields. The new model is then 

tested along with the MT92 and WM08 models for the case of LES of the neutral 

atmospheric boundary layer, on a number of different grid meshes with varying degrees of 

vertical grid refinement (more complex grid geometries will be tackled in future work), with 

assessment of the prediction of mean velocity shear within the surface layer; Section 3 

describes the various LES configurations and Section 4 presents the results and provides 

discussion. Finally, conclusions are drawn in Section 5. 

2. The stochastic backscatter model 

2.1. Foundations 

The stochastic backscatter model is based on the concept of imposing pseudo-random 

acceleration fields on top of the LES acceleration fields obtained using the Smagorinsky SGS 

model (Mason and Thomson, 1992): 

    
  

   
 

   
      

   
   

 
   

   
       (1) 

sum over        , where            is the LES (filtered) velocity field,   is time, 

           is a Cartesian coordinate system,       is a subgrid-scale  eddy-viscosity, 

              is a backscatter acceleration field, and the ellipsis signifies all the other 

terms in the adopted LES momentum equation (advection, pressure gradient, Coriolis force, 

etc.) 
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Each backscatter acceleration field must be appropriately scaled to inject the desired amount 

of energy into the LES field, and should ideally be divergence-free. The general procedure 

for obtaining a backscatter acceleration field is as follows: 

(i) Generate three gridded fields of uniformly distributed random numbers with zero 

mean and unit variance,             . 

(ii) Apply a discrete grid-adaptive filter (GAF) to each field in order to introduce an 

appropriate backscatter length scale and level of anisotropy into the final acceleration 

field,                  - this procedure is described in Section 2.2. 

(iii) Scale each field to ensure the appropriate energy backscatter rate throughout the 

domain,              - a new scaling procedure is described in Section 2.3. 

(iv) Take the curl of the three fields to produce a divergence-free (since            

acceleration field,             . 

Each backscatter acceleration field lasts for a time period   , before a completely new 

(independent) field is generated. There are no gaps in-between each field, i.e. the backscatter 

accelerations are added to the LES field at every timestep within each    time period. The 

ensemble-average (denoted by an overbar) change in resolved kinetic energy due to the 

backscatter accelerations is well approximated by                      
   

      
   

   (sum over  ); the expanded terms involving      vanish since    has zero mean 

and is uncorrelated with   . Dividing through by    and noting that   
  is simply the variance 

of   , we thus define a modelled energy backscatter rate,    , as 

 
    

  
 
    

     
     

    (2) 
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Mason and Brown (1994) demonstrated empirically that, despite having unrealistically high 

frequency, a value of    on the order of the model timestep,   , still gives significant 

reduction in excessive velocity shear, whilst also ensuring Galilean invariance. We use a 

theoretical energy backscatter rate,    , based on an estimation of fluctuating stress gradients 

within the LES fields (Mason and Thomson, 1992): 

 
      

 

  
 
 

  (3) 

where    is the backscatter coefficient, which typically takes a value within the range 0.6 – 

1.4 (Weinbrecht and Mason, 2008, Chasnov, 1991, Mason and Thomson, 1992),   is the 

dissipation rate and   is the subgrid-scale mixing length in the Smagorinsky model, with 

maximum value    in well-resolved interior regions of the flow. Combining Eqs. (2) and (3), 

our aim is thus to scale each backscatter acceleration field such that 

 
   
     

     
  

   
  

 
 

  
 
 

   (4) 

We take       , where    is the Smagorinsky coefficient and   is the grid scale. For 

anisotropic grids, the „equivalent grid scale‟ (Deardorff, 1970) is used, namely       

           . For grids with vertical refinement only,     is assumed spatially uniform, with 

   taken as a typical value in the flow interior. For   we use the following equation to match 

the near-surface mixing length – which scales on         , where   is the von-Kármán 

constant and    is the surface roughness – to the mixing length in well-resolved regions 

(Mason and Thomson, 1992): 

 

   
 

  
  

 

         
  

  
  

 (5) 
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where the exponent   controls how sharply the near-surface mixing length is matched to the 

value in the well-resolved flow interior.  

2.2. Grid-adaptive filter (GAF) 

This section outlines the new filtering procedure used in the generation of the backscatter 

acceleration fields, which allows the local backscatter length scale and anisotropy to be 

controlled independently of the model grid. The procedure utilises a discrete 3-D “grid-

adaptive” filter that is applied directly on the model grid, thus removing the need for any 

interpolation from a secondary grid as with the WM08 model. We start by imposing that the 

3-D filter is separable, i.e. that it can be constructed from a sequence of convolutions in the 

three lower dimensions (Wirjadi and Breuel, 2005): 

                            (6) 

where, e.g.,       is the 1-D filter kernel in the  -dimension. The 3-D 1:2:1 filter is an 

example of a separable filter; the filtered field can be obtained by applying a 1-D filter with 

weights             in the   then   then   dimension (the coefficient   determines the 

variance of the resulting field). However, rather than fixing the filter weights (and thus the 

number of grid points used in the calculation of each filtered value), we instead define a 

physical length scale (which may vary spatially) for each 1-D filter. The number of grid 

points used in the calculation of any filtered value is then dependent on the local grid spacing 

in each dimension.  

To decide upon the shape of each 1-D filter, we may be guided by the choice of previous 

models. On an isotropic grid with resolution  , it can be shown that the 3-point 1:2:1 filter 

(used in the MT92 model) and the 5-point 1:4:6:4:1 filter (used in the WM08 model) are both 

close approximations to the discrete Gaussian filter, with a filter width equal to      and  , 

respectively. These choices of filter reflect the fact that the implicit filtering imposed by the 
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Smagorinsky model on the smallest resolved scales is Gaussian in nature (Sullivan et al., 

2003). We therefore also choose a Gaussian filter shape, which also facilitates comparison of 

our results with those obtained using the MT92 and WM08 models. Defining the filter width 

to be the standard deviation of the Gaussian function (Geurts, 2004), the continuous 1-D filter 

kernel for the general dimension   is given by 

 

             
  

    
 
 
   (7) 

where        is the distance away from the filter centre at   ,   
 

 is the filter width for 

dimension  , and the coefficient   controls the variance of the filtered field. For a discrete 

Gaussian filter, with which weights are only applied at a finite number of grid points, the 

weight at a grid point a distance   away from the filter centre-point,   , may be calculated as 

the integral over the part of the Gaussian function for which that grid point is closest 

(between    and   , say), i.e.: 

 
           

  

  

      
  

 

 
     

  

  
 
  

      
  

  
 
  

   (8) 

where     is the error function, which must be approximated numerically. For a grid with 

variable grid spacing, we take            and           , where    and    are the 

distances between the given grid point and the adjacent grid points in the negative and 

positive   direction, respectively. For computational efficiency, we restrict the number of grid 

points at which the filter weights are calculated to those for which        
 
, which ensures 

that at least 95 % of the area under the Gaussian function is accounted for. 

For most applications, the coefficient   is chosen to normalise the filter (i.e. make its full 

integral equal to 1), which ensures that a constant region of an unfiltered flow-field is 
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unchanged after filtering. This is not important here, since there is no useful information 

contained within the initial random fields, and we may instead choose    to control the 

variance of the filtered fields. At this stage, we choose to maintain unit variance everywhere, 

and will apply an appropriate re-scaling of the fields at a later step (see Section 2.3). Given 

that the unfiltered fields are a random sample of values from the uniform distribution with 

zero mean and unit variance, then in order to maintain unit variance after filtering, we require 

 

      
 

 

 

 
 
 

 (9) 

where        . 

We must now decide upon the width of each 1-D filter. This should be guided by the 

expected local backscatter length scale,   . As we are modelling backscatter from the 

unresolved scales, we aim to scale the backscatter length scale on the LES filter width,   , in 

well-resolved regions. However, the Smagorinsky SGS model assumes an implicit LES filter, 

and defining    is not trivial. It is commonly assumed that the filter width scales with the grid 

mesh size, i.e.       , where again,                 is an estimate of the effective grid 

resolution (Deardorff, 1970), with    is taken as a typical value in the flow interior for 

vertically stretched grids.  To allow a degree of flexibility, we define the backscatter length 

scale in well-resolved regions as                , where the parameter    can be used to 

fine-tune   , but should be of order of unity. Closer to the surface, the local turbulence 

production scale eventually reduces below the LES filter width; in this region, we assume 

that the backscatter length scale decreases with the ratio of the local subgrid mixing length,  , 

to the subgrid mixing length in well-resolved regions,   . Thus, the backscatter length scale is 

fully defined as 
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                             (10) 

We further note that the local level of anisotropy in the backscatter acceleration fields can be 

controlled through the local ratio between the three backscatter length scale components:   
 , 

  
 

, and   
 . To ensure the overall backscatter length scale remains at   , we enforce the 

following constraint everywhere: 

    
    

 
   
  

   
     (11) 

The physical anisotropy of accelerations at the subgrid scale may be estimated from coarse-

grained higher-resolution LES / lower-Reynolds-number direct numerical simulation (DNS). 

We may also attempt to infer the acceleration variances from (more readily available) 

velocity variance data. To do this, we first use      
     , where    is a constant and   is 

the turbulent kinetic energy, as an estimate for the dissipation rate in Eq. (4) to obtain 

   
     

     
        

          . Since          
    

    
  , then in isotropic 

turbulence, we have that the backscatter acceleration fluctuations and the velocity 

fluctuations are related by   
    

 . We then make the assumption that in anisotropic 

turbulence, this relationship also holds for the individual components, and thus that the 

acceleration variance ratios are related to the velocity variance ratios by: 

    
 

   
 
 
   
 

   
  (12) 

With the assumed local ratios of acceleration variance,    
     

     
 , in place, it is possible to 

calculate the local values of   
 ,   

 
, and   

  for the 1-D filters (see APPENDIX A1). 

The use of the discrete grid-adaptive Gaussian filter is demonstrated in Figure 2, for the 

example case of          (at all heights) and    
     

     
        everywhere (i.e. fully 
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isotropic backscatter). Figure 2(a) shows the filter weights in the  -dimension when the filter 

is centred on a grid point at     , on a grid with a fixed horizontal-to-vertical grid aspect 

ratio, for four separate grids with                and   respectively. Figure 2(b) shows 

the filter weights in the  -dimension when the filter is centred on three separate grid points on 

a stretched vertical grid; it can be seen that the filter width remains fixed, whilst the number 

and size of the filter weights adapt accordingly to ensure that the variance of the filtered 

fields remains unity everywhere. 

2.3. New scaling procedure 

When modelling horizontally homogeneous flow with a vertically refined grid only, then, of 

two variables (  and  ) on the right hand side of Eq. (4),    varies only with height, and 

gradients in   are much greater in the vertical than in the horizontal. Thus, when scaling the 

backscatter acceleration fields, it seems reasonable to apply a scaling factor that varies only 

in the vertical, and ensures that the variance on any horizontal grid level, with index  , is 

equal to 

 
    

     
     

  
 
 
   
  

 
  
  
 
 

      (13) 

where the subscript   denotes a quantity at grid level  , and angled brackets denote a 

horizontal average. The MT92 and WM08 models both employ a point-wise scaling factor 

rather than one based on a horizontally averaged dissipation rate. However we have tested 

both types of scaling factor (not shown) and found they give very little difference in output 

flow statistics. This was also found to be the case in the simulations performed by Mason and 

Brown (1994). We therefore choose the simpler vertical scaling factor option, as not only 

does it save on computational cost, but it also allows for analytical solutions to Eq. (13). 
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We denote    as the vertical scaling factor at grid level  . In APPENDIX B1 we show that 

each    is the solution of a quadratic equation (Eq. (22)), involving the theoretical 

backscatter rate as well as terms that depend on the local grid spacing and filtering procedure 

used. We have found that the discriminant,       , of this quadratic equation can become 

negative near the surface, where the theoretical energy backscatter rate falls sharply to zero, 

indicating that no real solutions exist for   . When this happens, we set the discriminant to 

zero to allow a real value of    to be calculated. This modifies the imposed backscatter rate 

away from the intended theoretical value. To correct this, we must apply another scaling 

factor at these grid levels after the curl operation, which is calculated empirically. This „post-

curl‟ scaling factor has the unwanted effect of reintroducing divergences into the backscatter 

acceleration field at these grid levels. Although these divergences are immediately removed 

by the pressure solver, this action results in a small but unwanted reduction in the 

backscattered energy (Weinbrecht and Mason, 2008). Fortunately, our testing shows (see 

Section 4.1) that this only affects a very small region close to the surface;         , where 

  is the boundary layer scaling height.  

When employing a grid with horizontal and vertical grid refinement, it is necessary to use a 

point-wise scaling factor. A point-wise scaling is also necessary when the turbulent flow-field 

is not horizontally homogeneous, since the use of a horizontally averaged dissipation rate, 

    , is no longer appropriate in this case. We denote        as the point-wise scaling factor at 

the grid point with discrete indices       in the       direction, respectively. In this case, an 

equation for        (see APPENDIX B2) follows from the assumption that local gradients in 

the point-wise scaling factor are small. In reality, non-zero local gradients cause deviations 

away from the intended point-wise backscatter rates in the curled field. As with the vertical 

scaling factor procedure, the biggest problems occur very near the surface where the 

theoretical backscatter rate drops rapidly. To help correct this, an empirically calculated 
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vertical scaling factor again is applied after the curl operation to ensure that Eq. (13) is 

satisfied at each grid level, i.e. that the horizontally averaged backscatter rate is at-least 

always recovered. The resulting divergences introduced into the acceleration field are 

typically comparable in size to those seen with the vertical scaling factor procedure for the 

same case. 

3. Large-eddy simulation configuration 

This paper focuses on the methodology of the new backscatter model; in particular, the new 

grid-adaptive filter (GAF) described in Section 2.2. However, we also aim to validate the 

GAF model for the case of LES of the neutral ABL over flat, homogeneous terrain. This 

allows us to compare the results obtained with the GAF model against those obtained with 

the MT92 and WM08 models, since such a case can be sufficiently modelled using a grid 

with vertical stretching only and thus all three backscatter models remain applicable. The 

wider applicability of the GAF model to more complex cases involving local 3-D grid 

refinement is left for future work. 

Colorado State University‟s Regional Atmospheric Modelling System (RAMS) is used in the 

present study. Further details of the model specification can be found in Cai (1999). The 

Smagorinsky SGS model is used, with coefficient        . The specified initial profiles are 

for a neutral boundary layer, with a constant potential temperature of 300 K throughout the 

entire depth of the domain, and a wind profile based on the Ekman spiral at latitude 45° with 

a geostrophic wind speed of      m s
-1

. Other selected parameters include a von-Kármán 

constant of       , following the analysis by Businger et al. (1971) of the ABL 

observations carried out in Kansas in 1968, a surface roughness of        m and a model 

timestep of        s. A Monin-Obukhov boundary condition is applied at the first grid 

level above the surface (at     ) which, for the neutral case, enforces a horizontal wind 
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speed of                        , where    is the friction velocity. This is common 

practice in rough-wall geophysical flows, including in studies that (like the current one) also 

test the ability of LES to reproduce Monin-Obukhov similarity theory above the first grid 

level (e.g., Lu and Porté-Agel (2014), Kirkil et al. (2012), Sullivan et al. (1994)). However, 

as Sullivan et al. (1994) points out, we note that this approach is only justified if the grid 

mesh is refined enough that at least part of the surface layer is explicitly resolved by the LES 

model. The depth of the neutral boundary layer scales with        , where   is the Coriolis 

parameter (Garratt, 1994). In our simulations,        is a typical value for    and   

        ; we thus define a scaling height of         , which we use to scale   in plots. 

The performance of the backscatter model should not be significantly affected by the chosen 

grid aspect ratio. Large aspect ratios are common in LES studies of the ABL, often in order to 

match the physical anisotropy of surface layer turbulence with the anisotropy of the near-

surface grid. Typical grid aspect ratios tested for LES studies of the neutral ABL fall within 

the range         1 to 10 (Mirocha et al., 2012, Chow et al., 2005, Sullivan et al., 

1994). Thus here we test the backscatter models on four different model grids that cover this 

range. We use       grid points in the  - and  - directions with       = 50 m.  For the 

vertical grid, we define     as the height of the lowest grid point above the surface, and apply 

a constant vertical grid stretch factor,     = 1.03, such that              , until 

            m, after which    remains fixed at       up to the top of the domain, at 

around 2500 m in all cases. This is summarised in Table I. 

LES output obtained with the new stochastic backscatter model (GAF) are compared against 

results obtained using the Smagorinsky model alone (SMAG), as well as the MT92 and 

WM08 models, which have also been implemented into the LES code. To allow a direct 

comparison of the results obtained with each backscatter model, the following model 
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parameters are set constant over each model, and are potentially different from those used in 

the original papers for the MT92 and WM08 models. For the GAF model, we use     in 

Eq. (10), which defines a discrete Gaussian filter that is well approximated by the 1:4:6:4:1 

filter on an isotropic grid; we thus use the 3-D 1:4:6:4:1 filter for both the MT92 and WM08 

models. We take     for the mixing length exponent in Eq. (5). The backscatter coefficient 

is set to       . A new backscatter acceleration field is generated every other model 

timestep, thus we take the time scale of the backscatter acceleration fields to be       . 

Finally, as the influence of backscatter is minimal far enough above the near-surface region, 

computational expense can be spared by defining a maximum height,      
, below which the 

backscatter accelerations are added to the LES field. Here we take      
     m, which 

corresponds to a height of around 0.2 . This is summarised in Table II. 

With the GAF model, we attempt to relate the backscatter anisotropy to the physical 

anisotropy of the subgrid scales by using measured velocity variance data. We use the 

velocity variance profiles reported by Grant (1986) (his Figure 5) in near-neutral conditions. 

We note that the reported variances encompass a wide range of turbulence length scales, and 

it must be assumed that the variance ratios are characteristic of the variance ratios at the 

subgrid scales. We simplify the data somewhat by taking the two horizontal variance 

components to be equal (to be consistent with the MT92 and WM08 models for the sake of 

later comparison) and fit a smooth exponential curve roughly through the data points, such 

that the velocity variance ratios at the surface are taken as   
    

    
       , and are 

essentially isotropic above 0.2H. Using Eq. (12), the imposed backscatter acceleration 

variance ratios are thus taken as    
     

     
        at the surface – the full variance ratio 

profiles are plotted in Figure 3(a). We emphasise that these ratios might be considered as an 

example, used to demonstrate the GAF model, and that any other ratios (that allow for 
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realizable solutions of   
 
) could be applied. Figure 3(b) shows the resulting profiles (on grid 

G4) of the normalised backscatter length scale components,   
 
    , where     is the backscatter 

length scale in the isotropic flow interior. This plot also shows how the backscatter length 

scale decreases close to the surface with the GAF model, in line with the subgrid mixing 

length scale. 

4. Results and discussion 

We first analyse the characteristics of the backscatter acceleration fields in isolation (Section 

4.1) and then look at their effects on the LES fields (Section 4.2). Finally, we assess the 

additional CPU time required by the backscatter model and compare this to simply increasing 

the grid resolution with the Smagorinsky model (Section 4.3). 

4.1. Backscatter acceleration fields 

Figure 4 shows surface layer contour plots through three example backscatter acceleration 

fields, generated using (a) the MT92 model, (b) the WM08 model, and (c) the GAF model, 

respectively, on grid G4 (which has a near-surface grid aspect ratio of        10). Each 

plot shows point-wise acceleration magnitudes, i.e.      
    

    
 , normalised by the 

maximum value within that field. The dissipation field used to calculate the local backscatter 

rate was taken from a quasi-steady LES, without backscatter, on the same grid. It can be seen 

that the backscatter is most significant within the lower part of the surface layer. With all 

three models, the characteristic length scale of individual backscatter structures away from 

the surface scales reasonably with the horizontal grid spacing, and thus with the scale of the 

LES filter width. Nearer the surface, the backscatter length scale can just be seen to begin to 

decrease with the GAF model in line with the subgrid mixing length scale, though this is 

hidden very close to the surface by the small acceleration magnitudes there. With the MT92 

model, the backscatter anisotropy can be seen to depend on the local vertical grid spacing. 
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Consequently, the field is excessively anisotropic on the highly refined near-surface grid. 

With the WM08 model, the backscatter looks to remain locally isotropic (with individual 

structures as tall as they are wide) at all grid levels, as expected from the interpolation 

method used to generate the acceleration fields. There are apparent discontinuities in the field 

at some grid levels, where individual backscatter structures seem to be slightly misaligned. 

However, this doesn‟t appear to affect the time-averaged LES statistics at these levels (shown 

later). The anisotropy within the backscatter acceleration field generated using the GAF 

model falls somewhere in-between the MT92 and WM08 models; it is neither fixed to the 

vertical grid spacing, nor spatially uniform, but looks to follow the imposed profile shown in 

Figure 3(a), with modest anisotropy close to the surface, becoming gradually more isotropic 

with distance from the surface. This is more formally verified next. 

The spatial anisotropy within the backscatter acceleration fields described above is quantified 

in Figure 5, which shows, for each model, normalised surface-layer profiles of the three 

variance components,    
 ,    

  and    
 , and their sum, which should equate to the target 

backscatter variance profile as given by the right hand side of Eq. (13) (also plotted for 

comparison). The data are normalised by the maximum of the target profile. The plots show 

that the target profile of summed variance components is well met by all three backscatter 

models. With the MT92 model, however, the vertical variances are considerably smaller than 

the horizontal variances at all grid levels, as a result of the application of the 3-D 1:4:6:4:1 

filter on the vertically refined grid. Taking       in Eq. (21), and assuming that        

(and thus that        ), it follows that the ratio of the vertical variance to either of the 

horizontal variance components in MT92 the backscatter acceleration fields is 

    
 

   
 
 
   
 

   
 
 

 

    
  (14) 
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where          is the local horizontal-to-vertical grid aspect ratio. Setting      in Eq. 

(14), we can approximate the vertical variance component to be around 2 % of the horizontal 

variance components near the surface. Such large anisotropy in the acceleration fields is 

detrimental to the performance of the backscatter model (as shown in later results) since, 

from a pragmatic point of view at least, the inclusion of backscatter is intended to reduce the 

excessive velocity shear in the surface layer, which can only be achieved through an 

increased vertical mixing of momentum. When horizontal variances dominate, the mixing of 

momentum is only largely increased within horizontal planes, and thus the effectiveness of 

backscatter acceleration fields in smoothing out the velocity shear profile is reduced. With the 

WM08 model, the backscatter is largely isotropic at all grid levels as a result of linearly 

interpolating the accelerations from an isotropic grid, as can be understood by setting     

in Eq. (14). With the GAF model, the observed backscatter anisotropy matches well with the 

imposed (target) anisotropy profile (shown by the dashed lines) at all grid levels. This 

confirms that the new filtering procedure is able to control spatial variations in the 

backscatter anisotropy, allowing for physical consistency with the anisotropy of the subgrid 

scales. 

The backscatter model should also aim to generate acceleration fields that contain minimal 

divergences. A divergence-free backscatter acceleration field ensures that there are no force 

sources or sinks within any finite sub-volume of the domain. Conversely, any divergences in 

the backscatter acceleration fields may leave simulations prone to unphysical small-scale 

behaviour, and also lead to an unwanted reduction in the backscattered energy (Weinbrecht 

and Mason, 2008). The curl operation that is performed during the generation of the 

backscatter acceleration fields removes all divergences from the fields. However the 

application of the „post-curl‟ vertical scaling factor, required a grid levels where real 

solutions to the „pre-curl‟ scaling factor    (Eq. (22)) do not exist, reintroduces divergences 
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at those grid levels.  Figure 6 summarises, for each backscatter model, the magnitude of the 

grid-cell divergences (calculated as    
       

   
     

         
       

   
     

     

   
       

   
     

     ) within the surface layer, for the same three example backscatter 

acceleration fields described above (generated on grid G4). The plots show normalised root-

mean-square (RMS) values at each grid level (equivalent to the standard deviations, since 

their mean is zero). The accelerations have been normalised by       , where    is the 

square root of maximum of the target backscatter variance profile (given by the right hand 

side of Eq. (13)) and     is 50 m in this case – this normalising factor scales with the 

magnitude of spatial variations of the largest backscatter accelerations. The plots show that 

real solutions of    exist throughout most of the surface layer, but the post-curl scaling factor 

is required at the lowest 4 or 5 grid levels (within the region         ) in each case, 

introducing divergences there as a consequence. The largest divergences exist within the 

backscatter acceleration fields generated with the WM08 model. The divergences are around 

half the size with the GAF model, and considerably smaller with the MT92 model. The 

magnitude of the divergences corresponds to the level of anisotropy within the backscatter 

acceleration fields, and is related to the use of the curl operator in the region where the 

backscatter rate profile falls sharply to zero at the surface from its maximum at around 0.2H; 

as the operator involves differences between adjacent grid levels, it is easier to accommodate 

such a sharp vertical gradient as the autocorrelation between the two adjacent grid levels is 

reduced. With the GAF model, the magnitude of divergences within backscatter acceleration 

fields thus depends on the imposed level of anisotropy. As would be expected, the GAF 

model divergence profiles are almost identical to the MT92 and WM08 model profiles when 

the anisotropy level is set to match that of the respective model (not shown). 
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4.2. LES fields 

We assess the performance of the GAF backscatter model, as well as the previous models, 

from the surface-layer profiles of mean nondimensional velocity shear, for the set of LES 

runs outlined in Section 3. The profiles are normalised such that the expected value is equal 

to 1 within the neutral surface layer, and follows from differentiation of the neutral 

logarithmic wind profile (Von Kármán, 1931) assuming zero displacement length (Lu and 

Porté-Agel, 2014): 

  
     

  
 
   

    
  

  

    
  

  

       

  
   

(15) 

in which    is the friction velocity. In 3-dimensional flow, we take        

                   . Each profile is the result of a horizontal average over all grid 

points on a given grid level and over 3 hours of simulation time, after a quasi-steady state is 

adjudged to have been reached. The resulting profiles are shown in Figure 7. 

The profiles show that the GAF model is able to significantly reduce the maximum of the 

„overshoot‟ in    (from that obtained without backscatter, i.e. with the Smagorinsky model 

alone) towards the expected value of 1. Importantly, this reduction appears to be largely 

independent of the level of vertical grid refinement, at least for the cases tested here, which 

span a grid aspect ratio range of          1 to 10.  The    maximum is reduced from 

2.27 to 1.27 on grid G1, from 2.35 to 1.38 on grid G2, from 2.19 to 1.23 on grid G3, and from 

2.11 to 1.21 on grid G4, thus giving a typical reduction of around 80%. The height of the    

maximum is also brought closer to the ground with the backscatter model, occurring at 

around 1/3 of the surface-layer depth without backscatter and around 1/6 of the surface-layer 
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depth with backscatter (though the vertical resolution is too coarse to confirm this for grid 

G1). The performance of the GAF model is fairly similar to that of the WM08 model; 

however there is a further improvement of around 5% with the GAF model in reducing 

maximum excessive    on 3 of the 4 grids tested (G1, G3 and G4). Conversely, the 

reduction in the    overshoot with the MT92 model is shown to depend heavily on the grid 

aspect ratio. On an isotropic grid (G1), the model is essentially as effective as the other two 

backscatter models; this is not surprising, since the MT92 backscatter acceleration fields are 

fully isotropic in this case. The model appears to remain effective for grids with modest 

anisotropy, i.e. on grid G2 with    . However, for larger aspect ratios (grids G3 and G4), 

the reduction in    becomes less pronounced as the vertical grid refinement within the 

surface layer increases. This illustrates how an overly-large level of anisotropy within the 

backscatter acceleration fields can act to reduce the effectiveness of the backscatter model 

due to a reduction in the downward mixing of momentum from the upper part of the surface 

layer. Mirocha et al. (2010) found that the expected similarity solution for wind speed within 

the surface layer is best reproduced by the Smagorinsky model for grid aspect ratios of 

around    ; we thus reason that the range of grid anisotropies over which the MT92 model 

remains effective is too small. 

There are two key reasons for the justification of the new GAF backscatter model, despite the 

relatively small difference in performance from the WM08 model for the simulations 

performed here: 

i. Improved physics – The GAF model is able to control the backscatter length-scale 

(eddy-size) and anisotropy (eddy-shape). This means that the inclusion of backscatter 

can be implemented in a manner that is more physically consistent with reality. One 

of the principles of backscatter theory dictates that the dominant backscatter length 
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scale from the unresolved (SGS) to the resolved scales should match the local grid-

scale (Mason and Thomson, 1992). The GAF model follows this principle closely 

from the middle of the boundary layer down through the surface layer. The WM08 

model, however, violates the principle in the surface layer, since the backscatter 

length-scale is fixed everywhere at the grid-scale of the flow interior. Thus, within the 

surface layer, where eddy sizes are smaller and turbulence structure is known to be 

anisotropic with smaller vertical than horizontal extent (Kaimal et al., 1972), the 

vertical length-scale is unphysically large. From a spectral point of view, this 

corresponds to energy being added at inappropriately large wavelengths (or small 

wave-numbers). The WM08 model thus induces an unfairly high degree of vertical 

mixing, bringing higher momentum flow down towards the region of excessive 

velocity shear and smoothing out the overshoot there. It is therefore to the GAF 

model‟s credit that it performs at least as well as the WM08 model despite this – we 

offer reasons for why this might be the case in the next paragraph. 

ii. Wider applicability – The simulations performed in this paper (of a fully neutral ABL 

over homogeneous, flat terrain) require LES grids with vertical stretching only, thus 

allowing us to test and compare both models (GAF and WM08), which are both 

applicable on such grids. However, the WM08 model is not applicable in more 

complex modelling cases in which local 3-D grid refinement is utilised, since the 

backscatter length-scale is fixed and so cannot be varied spatially to account for local 

changes in the LES filter width, whereas the GAF model is capable of doing this. 

One might have expected a monotonic relationship between the reduction in maximum    

and the level of anisotropy within the backscatter acceleration fields, on the presumption that 

larger anisotropy (with smaller vertical variances than horizontal) results in less vertical 

mixing of momentum and thus a larger maintained velocity gradient within the surface layer. 
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However, the results obtained with the GAF model e.g. on grids G3 and G4 show that this is 

not the case. We propose two possible reasons for this. Firstly, we note that with increasing 

anisotropy in the backscatter acceleration fields, there are smaller near-surface divergences 

which will thus result in smaller associated losses of the backscattered energy, and this may 

initially outweigh the reduction in performance associated with reduced vertical mixing. 

Secondly, it is hoped that when the backscatter length scale and anisotropy are more closely 

matched to grid-scale turbulence length scale and anisotropy within the LES flow-field, the 

backscatter accelerations will be more readily „taken up‟ by the grid-scale flow structures, 

and consequently more effective in reducing the    overshoot. Either way, the results 

demonstrate that by controlling the spatial structure of the backscatter acceleration fields, the 

GAF model is, in some cases, able to further reduce excessive    over that which is possible 

with fully isotropic backscatter. 

It is encouraging to note the similarity between the WM08 and MT92 profiles in Figure 7(c) 

and the equivalent profiles in the Weinbrecht and Mason (2008) paper (their Figure 1, left), 

which were plotted from runs on a similar model grid and in neutral conditions. Although the 

maximum absolute value of    within the surface layer is slightly larger in our simulations 

than in theirs, this is also true for the profiles without backscatter (i.e. with the Smagorinsky 

model alone), and the percentage reduction in excessive    remains similar. We therefore 

reason that the absolute differences are simply a result of the different LES codes used in 

each study. We also note that it is possible to reduce the excessive velocity shear within the 

lower part of the surface layer further towards 1 by increasing either the backscatter 

coefficient,   , or the filter width (i.e. increasing   in the GAF model). However, we have 

found that this can often lead to an over-reduction in    (i.e. values below 1) in the upper 

part of the surface layer (not shown for brevity). We have not attempted to find the optimal 

„tuning‟ of the model parameters in this study, since we are mainly interested in comparing 
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the relative performance of the GAF model against the previous models for any given set of 

reasonable parameters. 

The backscatter acceleration fields constitute a continuous modification to the LES fields 

which, it is argued, bring the model closer towards reality. Similarly, should the backscatter 

acceleration fields be abruptly removed, we would expect the model to tend back towards its 

original state, further from reality. There should therefore exist a time scale over which this 

change occurs, which we interpret as a physical time scale associated with the effects of 

backscatter at the grid-scale. We attempt to objectify this time scale in the following way. We 

start from a quasi-steady simulation without backscatter; here we use the run performed on 

grid G3. We then turn on each backscatter model in turn and observe the subsequent changes 

to the LES fields. Specifically, we track the value of the maximum nondimensional velocity 

shear within the surface layer,           , or      for short, and plot the resulting time 

series. This is shown in Figure 8, along with a fitted exponential trend-line for each model (as 

described below). The raw time series have been smoothed with a 5-minute moving average 

filter to remove small (high frequency) fluctuations for the benefit of plotting. The relative 

success of a particular backscatter model can again be assessed by examining its ability to 

bring the maximum nondimensional velocity shear towards the expected value of 1. 

The time series suggest the existence of a „backscatter adjustment time scale‟ that is largely 

independent of the chosen backscatter model. We attempt to fit an exponential trend-line to 

each of the time series of the general form: 

              
        (16) 

where    is the initial value of  , and    is the final quasi-steady value of  , which we take to 

be the mean value of   over the last third of the simulation period. It is found that a good fit 

can be obtained for all models with an e-folding time of   ≈ 10-15 minutes. This backscatter 
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adjustment time scale is comparable with the turnover time scale of surface-layer eddies, 

which is of order                       minutes, where     is the depth of the surface 

layer and       is a typical value for the square root of velocity variance within the surface 

layer (which we have approximated from Figure 9). This suggests that the largest surface-

layer eddies are the most important mechanism through which the imposed backscatter 

accelerations eventually redistribute momentum, and thus reduce velocity shear, within the 

surface layer. 

Figure 9 shows near-surface profiles of resolved velocity variance for the LES runs on model 

grid G4, obtained with the Smagorinsky model and each of the backscatter models. On their 

own, the backscatter acceleration fields provide a direct (positive) source of velocity variance 

to all three components. However, we observe that in all cases, the overall effect of 

backscatter is to redistribute the velocity variance among the three components so as to 

increase near-surface isotropy of the flow-field. This is seen as a reduction of the streamwise 

component and an increase in the crosswind and vertical components. The backscatter 

acceleration fields provide the means by which momentum from the upper part of the surface 

layer is mixed down towards the lower part, thereby reducing the excessive velocity shear 

observed when backscatter is not modelled. These results agree closely with Mason and 

Thomson (1992) who observed a similar redistribution among the three components of 

velocity variance, bringing them closer to the ratios observed in the upper surface layer by 

Grant (1986) in near-neutral conditions. 

4.3. Additional CPU time 

Finally, we report on the additional CPU time required by the GAF backscatter model, over 

equivalent simulations without backscatter, i.e. with the Smagorinsky model alone. For a 

given simulation, this will vary with the backscatter model parameters selected, in particular 
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the height below which the backscatter accelerations are added to the LES fields,      
, the 

filter width parameter   (and the number of standard deviations away from the filter centre 

point used for the discrete Gaussian filter kernel), and the time between each newly generated 

backscatter acceleration field,   . However, as an example, assessing the LES runs 

performed here on grid G3, the simulation with the GAF model required approximately 50% 

additional CPU time than the simulation with the Smagorinsky model alone. Although this 

could be considered a fairly large computational cost, we are able to get a better indication of 

the relative benefit of the backscatter model if we compare the surface-layer profile of mean 

nondimensional velocity shear    obtained with the backscatter model on grid G3 against 

the profile obtained with the Smagorinsky model when the grid resolution is increased such 

that an additional 50% CPU time is required (for the same simulation time period). To this 

end, we tried a simulation in which the horizontal grid resolution was increased from 

         m to around    m and       was reduced to 40 m (whilst the domain extent 

was kept roughly the same in each dimension), and the model timestep was reduced 

accordingly from        s to         s. In fact, this simulation required almost twice as 

long (94% extra CPU time) to complete than with the original grid. Despite this, the results 

are still clear – increasing the grid resolution with the Smagorinsky model does not remedy 

the problem of erroneous velocity shear within the surface layer; it simply acts to shift the 

velocity shear profile maximum towards the surface (compare the solid grey and black lines 

in Figure 7(c)). This result has also been observed in previous studies (Chow et al., 2005, 

Mason and Thomson, 1992). We may thus conclude that the backscatter model adds 

significant worth to the simulation for its computational cost that cannot be achieved by an 

increase in grid resolution with the Smagorinsky model alone. An additional advantage is that 

the imposed backscatter accelerations act to induce fully developed turbulence much faster 

than with the Smagorinsky model alone; thus a statistically steady state was achieved 
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significantly more quickly with the backscatter model (typically around 5 hours) than with 

the Smagorinsky model alone (typically around 10 hours) in our simulations. This again 

corroborates with previous work (Weinbrecht and Mason, 2008). 

5. Conclusions 

In this paper, a new method has been proposed for the generation of stochastic backscatter 

acceleration fields designed to impose fluctuations in the Smagorinsky subgrid stresses in 

large-eddy simulation modelling. The method employs a discrete “grid-adaptive” filter 

(GAF) that allows control of spatial variations in the backscatter length scale and anisotropy. 

Thus, unlike the previous models of Mason and Thomson (1992) and Weinbrecht and Mason 

(2008), with which these properties are either tied to the model grid or spatially uniform, the 

backscatter length scale can be appropriately reduced towards surfaces, and the backscatter 

anisotropy can be chosen to be consistent with the physical anisotropy of the subgrid scales. 

The backscatter length scale may also be varied in accordance with any spatial variations in 

the LES filter width, thus widening the applicability of the GAF model to studies of more 

complex flow geometries that utilise local 3-D grid refinement. 

The GAF backscatter model was tested for the case of LES of the neutral ABL over flat, 

homogeneous terrain, for various levels of vertical grid refinement, and its performance 

analysed, along with the MT92 and WM08 models, in terms of its ability to reduce excessive 

nondimensional velocity shear within the surface layer (as seen with the Smagorinsky model 

alone) towards the expected value of 1. The GAF model was shown to significantly reduce 

the velocity shear „overshoot‟ maximum by an amount that is largely independent of the near-

surface grid aspect ratio, and typically around 80%. Conversely, the effectiveness of the 

MT92 model was shown to depend heavily on the level of grid refinement, with significant 
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reduction in model performance as the vertical resolution is increased, due to an associated 

reduction in the vertical mixing of momentum within the surface layer. 

The level of divergences within the backscatter acceleration fields generated by the new and 

existing backscatter models was also analysed. Divergences leave simulations prone to 

unphysical small-scale behaviour and lead to an unwanted reduction in the backscattered 

energy, and should therefore be minimised. Divergences are reintroduced into the initially 

divergence-free acceleration fields at grid levels very close to the surface (        ) 

where the application of a „post-curl‟ scaling is required in order to ensure the correct 

horizontally-averaged energy input. The magnitude of these divergences was shown to 

correspond to the level of anisotropy within the backscatter acceleration fields; thus the 

smallest divergences were seen with the MT92 model (most anisotropic) and the largest with 

the WM08 model (fully isotropic), with the GAF model divergences falling somewhere in-

between depending on the imposed level of backscatter anisotropy. 

A backscatter adjustment time scale, corresponding to the e-folding time for the rate of 

reduction in excessive velocity shear within the surface layer, was also identified and found 

to be of order 10-15 minutes for all the backscatter models tested. This is also the time scale 

associated with the turnover time of the largest surface-layer eddies, indicating their 

importance as a mechanism through which the imposed backscatter accelerations can 

redistribute momentum, and thus reduce velocity shear, within the surface layer. 

Future work shall initially focus on exploiting the wider applicability of the GAF backscatter 

model to more complex cases utilising local 3-D grid refinement, due to its ability to control 

the structure of the backscatter acceleration fields in accordance with spatial variations in the 

LES filter width. The application of the GAF model to a simulation of street canyon flow is 
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currently being carried out, with preliminary results indicating that the model leads to an 

improved representation of the primary vortex strength within the canyon. 

The model could also be further improved by enforcing a more physically appropriate time 

scale for the backscatter accelerations, rather than one based on the model timestep, in the 

hope that this will bring further reduction in the excessive mean velocity shear within the 

surface layer. With appropriate modification to the theoretical backscatter rate, the model 

might also be applied in non-neutral stability regimes, and at other spatial scales.  

Acknowledgements 

We are grateful to the UK Natural Environment Research Council and the UK Environment 

Agency for their financial support of this research. The computations described herein were 

performed using the University of Birmingham‟s BlueBEAR HPC service 

(http://www.bear.bham.ac.uk). We would also like to thank the referees and Professor Rob 

MacKenzie for their helpful comments.  

APPENDIX A 

Calculation of the backscatter length scale components,   
 ,   

 
, and   

  

To calculate the local values of   
 ,   

 
, and   

  from the assumed local ratios of acceleration 

variance,    
     

     
 , we use Eqs. (21) (for a vertically refined grid and horizontally 

homogeneous turbulence), with the assumption that        (and thus that        ), to 

obtain a set of three simultaneous equations (one for each of    
    

  ,    
    

   and    
    

  ) 

at each grid level,  , with three unknowns; namely,   
  ,    

  
 and   

   . For horizontally 

inhomogeneous turbulence and/or for grids with vertical and horizontal refinement, we 

instead use Eqs. (23) to obtain a set of three equations at each grid point (note that as long as 
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the turbulence field is stationary, these equations need only be solved once, at the beginning 

of the simulation, reducing computational cost dramatically). Now, it can be shown that the 

spatial autocorrelation induced by the application of a continuous 1-D Gaussian filter (Eq. 

(7)) on a continuous 1-D white-noise field in the general dimension   is 

 

          
  

   
 
 

 

   (17) 

We may thus use this equation, along with the constraint imposed by Eq. (11), to solve each 

set of simultaneous equations for   
 ,   

 
 and   

 . We achieve this using the following iterative 

procedure, which is found to give sufficiently accurate solutions after only one or two 

iterations: (i) select a sensible initial guess for   
 , e.g.   

    , and solve Eq. (17) for    ; (ii) 

use this result to solve Eq. (18) for    , which follows from elimination of     from the 

simultaneous equation set, and subsequently obtain   
 

 using Eq. (17); (iii) use this result to 

solve any one of the simultaneous equation set for    , e.g., Eq. (19), and subsequently 

obtain   
  using Eq. (17); (iv) multiply each of   

 ,   
 

 and   
  by the factor      

    
 
   
    to 

ensure that Eq. (11) is satisfied; (v) use the newly calculated value of   
  as the initial guess in 

the iteration process and repeat steps (ii) to (v) until a sufficient level of accuracy has been 

reached. 
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Note that for real solutions of   
 
 to exist with Eq. (17), we require        , which is also 

a requirement on account of     being a (positive) correlation coefficient. We have found 

that this requirement is met as long as the local grid aspect ratios do not differ significantly 

from the intended local ratios of the acceleration variance components. 

APPENDIX B 

Scaling factor derivations 

B1. Derivation of the vertical scaling factor,     

For the vertical scaling factor, we have that            
     , where superscripts     and   

also denote discrete grid-point indices. Choosing the forward-differencing discrete curl 

operator, the point-wise backscatter accelerations will be equal to 

 

                 

      
       

    
     

            
       

      
     

      

        
       

      
     

           
       

    
     

     

      
       

    
     

           
       

    
     

    

  
 
 
 
   (20) 

where            , and, e.g., if    
     

            then    
       

              . 

Since the random fields are filtered such that the variance of    remains unity everywhere, 

then, given that the three fields         and     are uncorrelated with each other, the three 

variance components of the acceleration field at a particular grid level   are given by 

 

    
  

 
 

 
  
 

  
 
   

 

   
     

  
  

 

   
      

    
           

        

 

   
      

    
           

     
   

 

   
     

       

   
 

   
     

    
   

 

   
     

  
     

  (21) 
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where, e.g.,   
   denotes the autocorrelation coefficient between           and      

        for any of         or     at grid level  . These autocorrelations will take a value 

between 0 and 1 depending on the chosen filtering procedure. For example, with the MT92 

model, a 1:2:1 filter is applied to random numbers generated directly on the model grid, and it 

can be shown that                 at every grid level. Similarly, with the WM08 

model, a 1:4:6:4:1 filter (equivalent to a double application of the 1:2:1 filter) is applied to 

random numbers generated on an isotropic grid, and we have                 at 

every isotropic grid level (the values after interpolation onto the anisotropic model grid may 

also be derived, but this is not shown here for brevity). The autocorrelations expected with 

the new GAF model are given by Eq. (17). 

Finally, combining Eqs. (13) and (21) then leads to a quadratic equation for    with solutions 

   
          

  
           

  
 

   
     

    
 

   
     

  
  

 

   
   

   
        

   

   
    

     
 

   
  

   
  

 
  
  
 
 

     

(22) 

In practice, we must first calculate the scaling factor at the top grid level,    say, by 

assuming that        , but then proceed down the grid levels using the full quadratic Eq. 

(22) and taking the larger root (positive sign) when real solutions exist. 
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B2. Derivation of the point-wise scaling factor,        

For the point-wise scaling factor, we have that                
     . Assuming that local 

gradients in the scaling factor are small, i.e. that                in all 3 dimensions, where 

        is the difference between        and the scaling factor at the adjacent grid point in the 

positive direction of a given dimension, leads to the following set of equations for the point-

wise backscatter acceleration variance components: 

 

    
  

     
 

 
 
 
 

 
 
 
       

 

   
     

     

     
       

 

   
          

        

       
 

   
          

     
       

 

   
          

        

       
 

   
          

     
       

 

   
     

     

        

  (23) 

Combining Eqs. (4) and (23) then leads to: 
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Table I – The LES model grids. 

Grid    (m)    (m)           (m)                  (m)    

G1 50 50 64 64 50 1 1.03 50 128 

G2 50 50 64 64 25 2 1.03 50 99 

G3 50 50 64 64 10 5 1.03 50 79 

G4 50 50 64 64 5 10 1.03 50 58 
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Table II – The SGS models. 

Model Reference Filter              
 

SMAG Smagorinsky (1963) - - - - - 

GAF - Equation (8) with   = 1 4 0.6 2   500 m 

MT92 Mason and Thomson (1992) 3-D           4 0.6 2   500 m 

WM08 Weinbrecht and Mason (2008) 3-D           4 0.6 2   500 m 
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Figure 1 – Schematic showing the characteristic length scale and anisotropy of 

backscatter acceleration fields generated using (a) the MT92 model, (b) the WM08 

model, and (c) the proposed new model. Unphysical inconsistencies are noted in italic 

font. See main text for more details. 
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Figure 2 – Weights,  , of the discrete grid-adaptive Gaussian filter in the  -dimension, 

for          and    
     

     
       , when (a) the filter is centred on a grid point 

at     , for four separate grids with               and  , respectively; and (b) 

the filter is centred on 3 separate grid points (shown by inner tick marks on the lower 

axis) on a stretched vertical grid (shown by outer tick marks on the lower axis). 
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Figure 3 – For the GAF model, (a) the imposed anisotropy in the backscatter 

acceleration fields, as shown by the acceleration variance ratio profiles; (b) the resulting 

profiles, on grid G4, of the backscatter length scale components,   
 

, normalised by the 

backscatter length scale in the flow interior,    . 
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Figure 4 – Surface-layer contour plots through backscatter acceleration fields generated 

using each backscatter model: (a) MT92, (b) WM08, (c) GAF, on grid G4 (horizontal 

and vertical grid spacing is shown by outer tick marks on left and upper axes, 

respectively). Each field shows acceleration magnitudes and is normalised by its 

maximum value. 
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Figure 5 - Surface-layer profiles of the three variance components, and their sum, for 

the three backscatter acceleration fields shown in Figure 4 for the (a) MT92, (b) WM08, 

and (c) GAF model. Solid line shows the target backscatter variance profile as given by 

the right hand side of Eq. (13). All values are normalised by the maximum of the target 

profile. For the GAF model, dashed lines show the expected variance profiles resulting 

from the imposed backscatter anisotropy (see Figure 3(a)). 
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Figure 6 - Surface-layer profiles of normalised root-mean-square (RMS) grid-cell 

divergences for the three backscatter acceleration fields shown in Figure 4 for the (a) 

MT92, (b) WM08, and (c) GAF model. See text for more details. 
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Figure 7 – Surface-layer profiles of mean nondimensional velocity shear,   , obtained 

with each SGS model, for each model grid: (a) G1, (b) G2, (c) G3, and (d) G4. The grey 

dashed lines through      corresponds to the theoretical profile for a neutral surface 

layer. The lowest grid point is set by the surface boundary condition and so is not 

plotted. The solid grey line in panel (c) shows the profile obtained with the SMAG 

model when the grid resolution is increased such that the additional required CPU time 

is similar to that required for the backscatter models. 
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Figure 8 – LES time series (thin lines) and fitted exponential trend-lines (thick lines) of 

maximum nondimensional velocity shear,  , within the surface layer, after each 

backscatter model (Mt92, WM08, GAF) is activated from an initially quasi-steady state 

without backscatter (SMAG), on grid G3. 
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Figure 9 – Near-surface profiles of resolved velocity variances,   
 ,   

  and    
 , obtained 

with each SGS model: (a) SMAG, (b) MT92, (c) WM08, and (d) GAF, on grid G4. 

 


