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Fault-tolerant control for sensor faults
affecting an electromechanical railway track
switch
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Abstract
A fault-tolerant control scheme (FTCS) was developed for a novel mechatronic track switch for the first time. The FTCS was
first developed and tested on a simulation model of the system, before being applied to an experimental actuation system in
the laboratory. Both the simulation and experimental results show that this FTCS works as expected and allows the switch to
continue operating as desired under sensor failure, preventing damage to the switch.
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Introduction

Track switches (or points in the UK) are usually a railway
network’s only method of transferring rolling stock between
routes. Little changed in their basic function since the in-
ception of the railways nearly 200 years ago,1 they are a
disproportionately large maintenance burden in comparison
to the track distance that they occupy.2 They are also a key
operational constraint on the network. The major concern
with these switches is the large number of ways in which
they can have single-aspect critical failures. These failures
are currently prevented by costly over-design and bur-
densome maintenance regimes.2

There have been many attempts to address these fun-
damental issues3 with the support of UK and European rail
industry initiatives,4 including the addition of a high-
redundancy actuator (HRA) to a traditional switch to
improve its reliability.5 One such effort has been the
REPOINT (Redundantly Engineered Points) project that
transferred safety-critical concepts from the nuclear-power
and aerospace sectors,6 chiefly concepts about bi-mode
failure and redundancy of actuation and sensing, to track
switches. Work over a number of years culminated in both
lab-scale demonstrators and a full-scale switch that was
installed in a railway and could handle rolling-stock
loads.7 At its core, the REPOINT concept uses multiple
actuators to replace the single one present in most oper-
ational switches.8

With this arrangement, a more complicated control
system is required to co-ordinate several feedback position-
control systems, rather than the more traditional ‘single
open-loop stall current’ detection control methods.9 This
newer system includes several feedback signals, each with
its own inherent failure mode, requiring robust fault de-
tection, isolation and fault-tolerant control.

Previously, fault-tolerant control (FTC) with fault de-
tection and identification (FDI) has been applied to railway
traction machines10 and drives,11,12 a permanent magnet
assisted synchronous reluctance motor (PMA-SynRM),13

heavy-haul trains,14 an actively controlled railway wheel-
set15 and a magnetic levitation train.16,17

Previous work by Boghani et al.3 focussed on methods to
enable the design of these new mechatronic railway
switches. Other work on these railway switches focussed
only on closed-loop (not fault-tolerant) control5 and full-
scale testing7 rather than fault tolerant and redundant ac-
tuation, which are the focus of this paper.

Outside of a railway context, FTC with Kalman filters has
been applied to air-fuel ratio control of combustion engines,18

joints of a robotic manipulator19 and quadcopters.20–22

However, these methods have never been applied to a
mechatronic railway switch before.

This new actuation paradigm with its redundant actua-
tors and multi-input multi-output nature requires a new FTC
approach to ensure safety and actuation requirements are
met. This work was motivated by this confluence of factors,
and was driven by a desire to devise a FTC system (FTCS)
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for sensor faults within this unique mechatronic railway
switch.

Therefore, the novelty in this paper is the application of
online FDI to a mechatronic railway switch. This has not
been attempted before, nor has it been implemented in
practice to show that the FTCS works as modelled. This
paper is formed of four main sections: The Sensor fault
detection section covers the fault detection methodology
and modelling; The Simulation section covers the simu-
lation results; The Experimental system section demon-
strates the experimental validation; with conclusions drawn
in The final section.

Sensor fault detection

The mechatronic switch uses sensor feedback to operate
the switch, rather than the simpler ‘bang-bang’ control
based on limit switches and detection of ‘stall current’ at
physical limits used in the control of traditional switches.
This results in a reliance on the integrity of these
sensors – if sensor faults occur, these could lead to er-
roneous control action or in extremis instability and
catastrophic failure.

Figure 1 shows the proposed layout of the FTCS for
the mechatronic switch. The main closed-loop control
system is based upon rotary position feedback of the
actuator cams in the embedded bearers, this is a cascaded-
loop control system system with inner speed and cur-
rent loops. Details of the sensors can be found in9,23,24

and details of the controllers applied and tested can be
found in.9 To ensure the integrity of the system in the
presence of sensing faults, the additional algorithms re-
quired are: residual generation (using input and output
measurements – discussed in a later subsection); residual
evaluation (using the residuals and measured outputs); and
fault accommodation (used to modify the controller for-
mat if faults are present).

This paper focusses on faults in the velocity and position
feedback signals. However, the approach is sufficiently
general and has been extended to include motor current

signals and one or more sensor faults, further details of
which are given in.25

Fault type definitions

Sensor faults, fs(t), affect actual outputs, yr(t), to produce
measured outputs, y(t). The effects of sensor faults on the
measured output can be characterised as either additive

yðtÞ ¼ fsðtÞ þ yrðtÞ (1)

or multiplicative

yðtÞ ¼ fsðtÞyrðtÞ (2)

depending on the type of fault.26,27 This paper will discuss
disconnect faults, which are multiplicative faults where
fs(t) = 0 for the duration of the fault, as a case study to prove
the viability of the novel FTCS.

Residual generation fundamentals

The residuals ry are defined here as the difference between a
measured signal y and the value of an estimated synthetic
signal, by.

ryðtÞ ¼ yðtÞ �byðtÞ (3)

If conditions are ideal, the residuals are nominally zero
during normal operation and become non-zero in the event
of faults, modelling errors or noise.28 In this paper, a bank of
Kalman-Bucy filters was used to estimate the outputs of the
system, and these were compared to measured signals to
give the residuals, which were used to determine the
presence of a fault.

Kalman filter construction

The Kalman filters use state-space models to estimate the
states of the switch

_x ¼ Axþ BuþGw (4)

Figure 1. FTCS overview for mechatronic switch.
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y ¼ Cxþ v (5)

where x is the vector of states, u is the system input, y is the
system output, w and v are zero-mean uncorrelated
Gaussian process and measurement noise, G is the process
noise matrix and A, B and C are matrices defining the
evolution of the system. In this case the states used are

x ¼
h
i _θm xr

iT
(6)

where i is the motor current, _θm is the motor velocity and xr
is the rack position. The state transition and input matrices
are defined as

A ¼
24�Ra=La �Kv=La 0
Kt=Jsum Dsum=Jsum 0

0 Rg

�
n 0

35,B ¼
24 1=La

0
0

35 (7)

where Ra is the armature resistance, La is the armature
inductance, Kv is the motor’s back emf constant, Kt is the
motor’s torque constant, Jsum is the total rotational inertia of
the system,Dsum is the total damping in the system, Rg is the
radius of the gearhead and n is the gear ratio of the pinion.
The output matrix, C will be defined later. The values for
these parameters are given in Table 1.

In an ideal case, where the noise characteristics are
known, the process noise covariance, Q, and measurement
noise covariance, R, are given by

Q ¼ W
�
wwT

�
(8)

R ¼ E
�
vvT

�
(9)

In this case, as the noise characteristics were not known,
the Q and R weighting matrices were heuristically tuned.
The values for these matrices were

Q ¼
24 111:11 × 103 0 0

0 0:005 0
0 0 180 × 103

35,R ¼ 50 (10)

The Kalman gain, L, uses the known input u and the
output measurements y to generate system output and state
estimates by and bx, described as

b_x ¼ Abxþ Buþ L
�
y� by� (11)

where the optimal estimate of the system outputsby is given by

by ¼ Cbx (12)

and L is given by

L ¼ PCTR�1
n (13)

where the covariance matrix P is the solution to an algebraic
Ricatti equation.29

The residuals were generated independently for each of
the outputs: velocity, rvel and position, rpos, using a Kalman
filter for each

rvel ¼ yvel � Cvelbx (14)

rpos ¼ ypos � Cposbx (15)

where Cvel ¼ ½0 1 0� and Cpos ¼ ½0 0 1�.

Fault identification using residuals

Previous research has investigated residual evaluation for
fault detection.26,30,31 In this case, thresholding of the root-
mean-square error (RMSE) was chosen to identify faults in
a given signal. For each signal, the RMSEwas generated for
each signal as

rRMSE, jðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼k�n � r2j ðiÞ
n

s
(16)

where j is a sensor type (vel, pos) and rj(k) is the value of that
residual at sample time k. The residuals from eachKalmanfilter
were fed into the thresholding logic for each measurement.

When a residual RMSE is above a given threshold, then
a fault flag is raised. Two thresholds were used in this case –
an adaptive threshold and a fixed threshold. The fixed
threshold Tf is determined using the noise variance, σ2, of
the outputs when operating in steady state.

A second adaptive threshold, Ta first introduced in,32 is
also used to reduce the occurrence of false resets of the fault
flag. Choosing Tf requires compromise, as a threshold that
is too low will increase the possibility of false faults being
flagged due to noise. If it is too high, then legitimate faults
may not be identified. The adaptive threshold is used to
reset the fault flag when the system is changing state, in
order to reduce the occurrence of false flags. Fault flag
generation is based on the logic in Table 2.

Simulation

The techniques as outlined in the previous section were first
applied in simulation to determine an ideal level of perfor-
mance. More details of the dynamic model of the laboratory
demonstrator system are given in9,23,25 and a diagrammatic
overview is given in Figure 2. The simulation results shown

Table 1. Model parameter values.

Variable Value

Ra 1.97 V

La 7.9 × 10�3 H
Kv 0.490 Vs/rad
Kt 0.8 Nm/A
Jsum 0.625 × 10�3kgm2

Rg 0.04 m
n 70
Dsum 1.4 × 10�3 Nms/rad

Table 2. Thresholding logic for RMSE evaluation.

Fault flag value Criteria

1 rRMSE ≥ Tf AND rRMSE ≥ Ta
0 rRMSE < Tf AND rRMSE < Ta

Mwongera et al. 3



here focus on multiplicative disconnect faults affecting the
position and velocity sensors, as discussed above.

Position fault simulation results

The closed-loop system was set to follow a series of step
inputs, moving the actuation system between two positions,
repeating every 12s. A position sensor disconnect fault is
injected at time t = 1s and the fault is removed at t = 8s,
when the sensor is reconnected. The results of this test,
without the FTCS active, are given in Figure 3. As a result
of the fault, the peak position of the switch is 0.6 m, which is
more than 5 times larger than the commanded position of
0.094 m. At t = 8s, the sensor is reconnected and the system
quickly moves the rack into the desired position. The
middle and lower plots in Figure 3 show that the sensor
disconnect fault is quickly identified by the Kalman Filters
and the threshold logic and is removed once the sensor is
restored.

Results from the same simulation, with FCTS activated
are given in Figure 4. The FCTS detects a fault, due to the
growing residual, within 1 ms and replaces the faulty
signal with the position estimated by the Kalman filter to

allow the switch to continue normal operation. After 8s the
sensor is reconnected and the residual drops below the
threshold value. Note the dip in the RMSE as the Kalman
filter estimate of position crosses over the zero position
input from the sensor. This is not low enough to clear the
fault flag, and the system continues to use the Kalman filter
estimate.

The centre plot in Figure 4 shows that the fault flag
continues, and therefore the FTCS continues to use the
Kalman estimate in place of the sensor signal, after the
position estimate has been replaced with the now-
reconnected sensor. An active control signal – a position
change command – is required to disable the fault flag. This
occurs at t = 12swhen the system returns to a fault-free state
and reverts to using the sensor signal.

Velocity fault simulation results

The simulations in the previous section were re-run, re-
placing the position sensor disconnect fault with a velocity
sensor disconnect fault. The velocity sensor disconnect
fault is injected from t = 7s to t = 15.5s. The results of these

Figure 2. Schematic showing an overview of the system.

Figure 3. Simulation results for position sensor disconnect
fault – not accommodated.

Figure 4. Simulation results for position sensor disconnect –
accommodated.
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simulations with the FTCS turned off and turned on are
shown in Figures 5 and 6, respectively.

With the FTCS turned off, large oscillations are present
in the simulated velocity when the sensor is disconnected.
This behaviour would be dangerous and damaging to the
real system.

When the FTCS is turned on, the fault flag is raised
within 1 ms of the sensor being disconnected as the RMSE
exceeds the thresholds. When the flag is raised, the Kalman
filter estimate of the velocity is used by the controller in
place of the faulty velocity sensor signal. The RMSE drops
below the fixed threshold at t = 9s as the true velocity of the
system approaches the zero velocity being measured by the
faulty sensor. However, the residual has not dropped below
the adaptive threshold, and therefore the fault flag remains.
Once the sensor has been reconnected and the residuals
have dropped below both thresholds, the system clears the
fault flag after the start of the next position change
command.

The results given in Figures 3–6 show that the FTCS
operates as intended and prevents damaging and possibly
dangerous errors from occurring in the track switch.

Effects of parameters

At this point, some observations about the various pa-
rameters can be made. Firstly, it is clear that the values for
the fixed and adaptive thresholds are important: if they are
set too high, the residuals will not trigger the FTC
mechanism or will trigger it late. If they are set too low,
then small differences between the Kalman filter and the
real-world device will lead to false triggering of the
FTCS.

Secondly, the values for the Q and R matrices are
important for determining the behaviour of the Kalman

filters. If they do not reasonably approximate the true
relationship between the process and measurement noise
covariances then the results of the Kalman filters will be
inaccurate and could cause the FTCS to become active
unnecessarily.

Experimental system

The development of the experimental system is covered in
detail in.25 The main components of the system are: the
computer interface running MATLAB and dSPACE control
software; the dSPACE control board; associated motor
drive cabinet; and the actuator bearer.

Details of the actuator bearer can be seen in Figure 7,
highlighting the sensors and their positions.

Position fault experimental results

A position sensor disconnect fault (emulated via a switch) is
shown in Figure 8. The fault is injected at 128s, the position
fault flag is raised and the reconfigured position estimate
replaces the faulty signal within the control loop. The fault
flag is raised as expected in the presence of a fault and the
fault is accommodated correctly.

Velocity fault experimental results

Faults on the velocity signals can be accommodated in a
similar fashion. A disconnect fault is shown in Figure 9 and
specific details of the response are highlighted in Figure 10.
The velocity sensor signal is switched to zero at 90s and
reconnected at 100s. The velocity fault flag is raised almost
instantaneously at fault injection with the control system
reconfiguring to accommodate this. Again the fault flag
remains high until the position command changes polarity.

Figure 5. Simulation results for velocity sensor disconnect fault –
not accommodated.

Figure 6. Simulation results velocity sensor disconnect fault –
accommodated.

Mwongera et al. 5



Figure 8. Experimental position sensor disconnect fault – accommodated.

Figure 7. REPOINT bearer details.

Figure 9. Experimental velocity sensor disconnect fault – accommodated.
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Comparison to modelling

It can be seen that the results for the constrained failure
cases shown above closely follow those produced in
simulation, and accommodate issues encountered with
noise and modelling variation.

Conclusions

The application of a sensor-fault-tolerant control scheme is
effective at mitigating faults or failures in a track switch
caused by sensor faults.

Fault-tolerant control is critical for the REPOINT track
switch system, due to the closed-loop nature of the control
scheme and the safety-critical nature of the system, unlike
traditionally actuated systems.

Through application of a residual scheme, the developed
fault tolerant control system demonstrated a pragmatic solu-
tion that could be applied to a full-scale system. Themodelling
and demonstration system show good dynamic matching and
the Kalman filter based method detects the faults well and
provides the means to accommodate the fault by using esti-
mates of the faulty states.
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