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Review 

Nr4a nuclear receptors: markers and modulators of 
antigen receptor signaling
David Bending1 and Julie Zikherman2

Nr4a1–3 encode a small family of orphan nuclear hormone 
receptors with transcriptional activity. Their expression reflects 
both acute and chronic antigen-receptor signaling in T and B- 
cells, and they have been implicated in critical aspects of 
lymphocyte development, tolerance, and function. These 
include roles in regulatory T-cell (Treg), thymic-negative 
selection, humoral responses, anergy, and exhaustion. Here, 
we review recent advances in this field such as functional roles 
in B-cells, transcriptional targets, and mechanism of action. We 
highlight recurrent themes, including integration of antigen- 
receptor signaling with costimulatory input, as well as 
unanswered questions and translational applications of 
this work.
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Introduction
The nuclear receptor subfamily 4A (Nr4a) receptor family 
members Nur77, Nurr1, and Nor1 (respectively encoded 
by Nr4a1–3) are a unique group of nuclear receptors that 
are rapidly upregulated in T and B-cells following antigen- 
receptor signaling. They are orphan nuclear receptors with 
a highly conserved DNA-binding motif but are not 
thought to rely upon endogenous ligands for their activity 

[1]. Structural studies suggest that the ligand-binding 
pocket of Nr4a receptors is physically obscured [1,2]. 
While originally linked to the induction of apoptosis in T- 
cell hybridomas [3,4], Nr4a receptors have been shown to 
play many critical roles in lymphocyte development, 
function, metabolism, and in promoting immunological 
tolerance. In this review, we will emphasize recent ad
vances within the field (see reviews [5–7] for greater his
torical depth), focusing primarily on Nr4a receptor 
function in B and T lymphocytes. We aim to identify 
common themes across their biology and highlight ques
tions that remain unanswered. We focus on their func
tional redundancy in T and B-cells and emphasize their 
role in restraining lymphocytes that receive antigen-re
ceptor signaling in the absence of costimulation. This re
view will position Nr4a receptors as key modulators of 
Nuclear factor of activated T-cells (NFAT) and Activator 
protein 1 (AP-1)- driven transcriptional networks, making 
them promising candidates for therapeutic targeting.

Regulation of expression
Nr4a receptors lack well-defined endogenous ligands 
and — as primary response genes — exhibit a dynamic 
expression pattern in response to mitogenic stimulation 
that is unique among nuclear receptors. Therefore, it is 
thought that their function is heavily dependent on their 
transcriptional regulation. Among the three family 
members, Nr4a1 transcript is consistently more abun
dant in B and T-cells compared with Nr4a2 and Nr4a3, 
but all three family members are rapidly induced in re
sponse to B-cell receptor (BCR) and T-cell receptor 
(TCR) stimulation [8–10]. Indeed, their dynamic ex
pression has been exploited to generate informative re
porters of antigen-receptor signaling. The development 
of Nur77/Nr4a1-green fluorescent protein (GFP) Bac
terial artifical chromosome (BAC) Tg reporter mice has 
facilitated the study of lymphocyte signaling in vitro and 
in vivo [11,12]. These tools revealed that Nur77-GFP 
levels can be used as a proxy for antigen-receptor signal 
intensity, linking signal strength to T- and B-cell de
velopmental checkpoints and activation thresholds 
[13–19]. While benefiting from the high transcript 
abundance of Nr4a1, Nur77-GFP reporters (due to the 
long half-life of GFP protein) detect cumulative antigen 
stimulation, but cannot distinguish recent or active sig
naling from prior receptor engagement. Recent devel
opment of fluorescent timer protein (FT) reporters, 

]]]] 
]]]]]]

www.sciencedirect.com Current Opinion in Immunology 2023, 81:102285

http://www.sciencedirect.com/science/journal/09527915
mailto:d.a.bending@bham.ac.uk
mailto:julie.zikherman@ucsf.edu
https://doi.org/10.1016/j.coi.2023.102285
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coi.2023.102285&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coi.2023.102285&domain=pdf


whose short-lived blue fluorescent form can track TCR 
signal changes occurring over 4–7 h [20, (e.g. Nur77- 
Tempo [21] and Nr4a3-Tocky [20]), has revealed rapid 
changes in T-cell activation thresholds following sti
mulation [22]. Comparison of Nur77-GFP and Nur77- 
Tempo reporters with Nr4a3-Tocky mice confirmed the 
higher relative expression of Nur77 during T-cell de
velopment, which may reflect a different (and higher) 
threshold for activation of Nr4a3 compared with Nr4a1 
(Figure 1) [23].

NFAT1 Chromatin immunoprecipitation followed by 
sequencing (ChIP-seq) experiments revealed that the 
regulatory region of all three Nr4a genes can bind 
NFAT1 [23,24]. Based on analysis of T-cells expressing 
constitutively active NFAT complexes in T-cells [24]
and NFAT pathway inhibitor studies [23,25], the NFAT 
pathway is necessary and sufficient for Nr4a2 and Nr4a3 
but largely redundant for Nr4a1 transcription. NFAT 
binding to AP-1 is not required for induction of Nr4a3 in 
CD4+ and CD8+ T-cells [24], suggesting that chronic 
antigen stimulation may lead to enhanced Nr4a2/3 ex
pression. In common, however is that acute induction of 
all Nr4a gene transcripts is attenuated by inhibition of 
the Extracellular signal-regulated kinase (Erk), c-Jun N- 
terminal kinase (Jnk), and Protein Kinase C (PKC) 
pathways [12,21]. The dependency of Nr4a3-Tocky re
porter on the NFAT pathway has been exploited to use 
expression of Nr4a3 as a switch-like readout for agonist- 
driven T-cell activation [22], while Nur77 may be suited 
to study not only T-cell but also B-cells undergoing both 
tonic and activating signaling [12]. Beyond the scope of 
this review, signal-dependent post-translational mod
ifications of the Nr4a family members can regulate pro
tein stability, function, and localization with implications 
for lymphocyte biology.

Expression and function in T-cells
In this section, we discuss the biology of Nr4a receptors 
in thymic and peripheral T-cell function. Given the 
profound defects observed in regulatory T-cell 

development (Treg) in double and triple Nr4a knock out 
(KO) mice, the functions of Nr4a receptors in Treg must 
be considered first before their functions on other T- 
cells can be elucidated.

Role of Nr4as in regulatory T-cells
Perhaps, the clearest illustration of functional re
dundancy among the Nr4a family members is evident in 
their impact on Tregs. Both germline and T-cell-specific 
deletion of Nr4a1 and Nr4a3 (+/- Nr4a2), but not in
dividual family members, results in near-complete loss 
of Treg and a severe scurfy-like inflammatory disease in 
mice [10,26]. Nr4as link agonist selection to Treg fate in 
the thymus in part by reinforcing Foxp3 expression in 
‘labile’ precursors and promoting expression of other 
Treg-defining transcripts [27]. The Nr4as are required 
not only for Treg generation, but also for Treg main
tenance; conditional deletion of Nr4a family members 
with Foxp3-cre results in loss of Foxp3 expression and 
production of inflammatory cytokines [28]. Finally, 
Nr4as promote peripheral Treg induction while repres
sing Th1 and Th2 fate by engaging similar transcrip
tional targets in naive CD4 T-cells differentiated under 
polarizing conditions [29]. Both Assay for Transposase- 
Accessible Chromatin using sequencing (ATAC-seq) 
and CHIP-seq approaches argue that at least some of 
these effects are mediated by direct transcriptional reg
ulation of Foxp3 expression by Nr4a nuclear receptors, 
although which family members mediate these effects 
may be context-specific. For example, Treg differentia
tion in the setting of calcineurin inhibitors requires 
Nur77/Nr4a1 because of exclusive NFAT dependence 
of Nr4a2 and Nr4a3 [25]. Nur77/Nr4a1 (but not Nr4a2 or 
3) has been proposed to mediate Treg induction by a 
bacterial bile acid metabolite, isoalloLCA, in a manner 
that requires the CNS3 enhancer of Foxp3 [30]. Whether 
isoalloLCA may directly interact with Nr4a1 as an ago
nist ligand of this ‘orphan’ receptor remains to be de
termined. In summary, Nr4a receptors play essential but 
individually redundant functions in Treg development 
and function.

Role of Nr4a receptors during T-cell development in the 
thymus
Nr4as are upregulated by TCR signaling in thymocytes 
at the positive selection checkpoint, and both en
dogenous Nr4a and reporter expression are highly in
creased among thymocytes destined for negative 
selection [11,31–33]. Despite differences in transcript 
abundance, studies reveal remarkable functional re
dundancy between Nr4a1 and Nr4a3 receptors during 
negative selection. By contrast, Nurr1/Nr4a2 protein is 
reported to be undetectable in stimulated thymocytes 
[31]. Indeed, one of the earliest roles identified for the 
Nr4a family was as mediators of antigen-induced cell 
death in T-cells; overexpression of full-length Nr4a fa
mily members triggered apoptosis in both T-cell 

Figure 1  
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Comparison of Nr4a reporter mice. Expression levels are a reflection of 
the published reporter intensity levels in the respective T- and B-cell 
subsets. (Figure created in BioRender.com).  

2 Lymphocyte development and activation 

www.sciencedirect.com Current Opinion in Immunology 2023, 81:102285



hybridomas and thymocytes, while a dominant-negative 
construct of Nur77 harboring an n-terminal truncation 
but retaining the DNA-binding domain blocked an
tigen-induced cell death in both settings [3,31,34,35]. 
Strikingly, when Nr4a1-/- mice were first characterized, 
no defect in thymic deletion in the H-y antigen (H-Y) 
and AND TCR Tg models could be identified, sug
gesting profound redundancy among the family mem
bers. Subsequent studies did identify modest defects in 
negative selection of Nr4a1-/- (s)KO and Nr4a3-/- (s)KO 
thymocytes in response to membrane-bound form of 
OVA under the control of the rat insulin promoter 
(RIPmOVA) transgene [36,37], suggesting that reduced 
stringency of deletion and/or mTEC-dependent dele
tion pathways were more dependent upon the Nr4a fa
mily. Nevertheless, discrepancy between phenotypes of 
(s)KO models and dominant-negative Nur77 constructs 
remained. The study of thymic selection in mice lacking 
multiple Nr4a members was hampered by severe Treg 
deficiency, systemic inflammation, and associated 
thymic atrophy. Recently, a competitive chimera 
strategy was deployed to reconstitute Treg of WT origin 
to unmask the role of Nr4a1/3 redundancy during thymic 
selection [10]. This revealed a profound defect in ne
gative selection of polyclonal (d)KO thymocytes at the 
SP stage in response to endogenous antigen.

Although Nr4as and BIM/Bcl2l11 are among the few 
confirmed ‘executioners’ of self-reactive thymocytes, the 
mechanism by which Nr4as mediate negative selection 
and how they link to BIM remains an important open 
question. Early on, Nr4a-mediated deletion was found to 
be Fas-independent [31,35]. Dominant-negative Nur77 
constructs inhibit negative selection to stringent ubi
quitous model antigens; because these constructs retain 
DNA-binding domain and block the transcriptional ac
tivities of other Nr4a family members, it was presumed 
that the mechanism by which they evade deletion is 
transcriptional [31,34,35]. However, the transcriptional 
target(s) that mediate this phenotype remain unclear 
[38]. Bcl2l11 expression is reduced in negatively se
lecting Nr4a1-/- (s)KO thymocytes but only twofold, 
leaving open the question of whether Nr4as function 
upstream of BIM [37]. Moreover, genetic epistasis stu
dies of Nr4a1 and Bcl2l11 have not resolved this con
undrum [37,39,40]. In parallel, Nr4as were shown to 
translocate to mitochondria and induce a conformational 
change in Bcl-2 through direct interaction, exposing its 
BH3-only domain and triggering apoptosis in a non
transcriptional manner [41,42]. Circumstantial, but in
direct, data link this mechanism to thymic-negative 
selection [43]. Transcriptional targets that definitively 
mediate Nr4a-dependent cell death in the thymus might 
yet be revealed by deletion of both Nr4a1 and Nr4a3 to 
overcome functional redundancy. How this mechanism 
is influenced by stringency of the deleting signal as well 
as context and stage at which the antigen is presented 

(e.g. medullary thymic epithelial cell (mTEC), other 
antigen presenting cells (APCs)) remains to be de
termined.

Nr4a receptor function in peripheral T-cells
Because Nr4as have redundant functions during thymic 
selection, defining their roles in peripheral T-cells has 
been challenging. Nr4a1-sKO mice have revealed that 
Nur77 can act as a brake on the remodeling of metabolic 
pathways during T-cell activation [44], a result con
sistent with a role for Nur77 in regulating enzymes in
volved in glycolysis [37]. Nr4a3-sKO mice display 
alterations in early CD8+ T-cell differentiation [45]. 
Much stronger phenotypic differences have been ob
served with double (d)KO and triple (t)KO T-cells, but 
require complex conditional and chimera strategies to 
overcome developmental impacts on Treg and thymic 
selection. Analysis of competitive chimeras containing 
both wild type and Nr4a1/3 (d)KO bone marrow re
vealed WT-derived Treg compartment with highly self- 
reactive (d)KO peripheral T-cells that escaped negative 
selection and instead acquired phenotypic and tran
scriptional hallmarks of anergy — albeit with an in
creased inflammatory gene signature and a heightened 
propensity to make IL-2 upon stimulation [10]. A 
common theme across all KO studies is the suppression 
of early effector cytokines such as IL-2 [8,10] and IFN-γ 
[8,44,45], indicating an immediate early negative feed
back role for Nr4a receptors on the T- cell activation 
process.

Nr4a family receptors have also been linked to chroni
cally Ag-stimulated T-cells. Nur77 expression marks 
self-reactive arthritogenic T-cells in mice and humans 
[15]. Nr4a3 is also persistently expressed in MOG-re
active T-cells within the conserved non-coding se
quence (CNS) of mice during EAE onset [20]. Using 
Nur77-GFP levels as a proxy for relative basal TCR 
signaling in CD4+ T-cells in vivo reveals that the most 
strongly signaled CD4+ T-cells produce less IL-2 and 
express PD1 and anergy-associated markers such as Cbl- 
b [46]. In addition, chronic stimulation of CD8+ T-cells 
or strong tolerogenic stimulation of CD4+ T-cells has 
also been linked to the development of reduced TCR 
signal responsiveness in vivo (as evidenced by reduced 
Nur77 or Nr4a3 expression), which can be partially re
stored by the blockade of coinhibitory receptors such as 
PD1 or PD-L1 [22,47].

Not only do Nr4a transcripts, proteins, and reporters 
mark chronically stimulated T-cells, but endogenous 
Nr4as contribute to functional hyporesponsiveness as
sociated with this state. The most highly signaled naive 
CD4+ T-cells exhibit an accessible chromatin pattern 
enriched for Nr4a-binding sites [48]. In response to 
chronic antigen stimulation, Nr4a1 contributes to T-cell 
‘dysfunction’ — promoting expression of both anergy 
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and exhaustion-associated genetic programs — and may 
do so by localizing at AP-1 transcription factor-binding 
sites and repressing AP-1-induced effector genes, 
thereby enhancing NFAT-only directed tolerogenic 
gene expression [8]. A similar mechanism was invoked 
to account for the impact of Nr4as on Th differentiation 
[29]. Conversely, deletion of all three Nr4a receptors in 
chimeric antigen receptor T-cell (CAR T) cells evades 
the NFAT-induced exhaustion program, facilitating 
tumor clearance, and is associated with enrichment for 
accessible bZIP (AP-1) and Nuclear factor kappa B (NF- 
kB)-binding sites rather than NFAT and Nr4a sites 
that are normally more accessible in exhausted cells [49]. 
This role entails a feedforward loop between Nr4as and 
Thymocyte selection-associated high mobility group box 
(TOX) transcription factor (TF)s [50]. More recently, 
deletion of Nr4a3 together with Blimp1/Prdm1 was 
shown to promote Tcf7-associated ‘stemness’ and limit 
terminal exhaustion of CAR T [51]. These findings 
suggest that an important function of Nr4a receptors in 
peripheral T-cells may be to abrogate AP-1 activity — 
directly or indirectly — such that high and sustained 
Nr4a receptor expression augments the NFAT exhaus
tion program in cooperation with, and redundantly with 
a network of other TFs [24].

Expression and function in B-cells
As in T-cells, acute antigen-receptor stimulation induces 
Nr4a family expression in B-cells, evident via en
dogenous transcript, protein, and reporter expression 
[9,12,52]. Among the family members, Nr4a1 is again 
most abundant at rest and after stimulation, followed by 
Nr4a3, while Nr4a2 expression is extremely low [9]. 
Chronic Ag stimulation of both naturally occurring and 
BCR Tg self-reactive B-cells is marked by Nur77-eGFP 
reporter expression [12,19]. Unlike T-cells, B-cells are 
responsive to many mitogenic stimuli apart from antigen, 
including pathogen-associated molecular patterns 
(PAMPs) such as LPS and these stimuli also induce 
Nr4a expression in B-cells [12,53]. Nr4a1 and Nr4a3 play 
additive roles restraining survival and proliferation of B- 
cells that acutely receive signal 1 (Ag) in the absence of 
signal 2 (costimulation via T-cell help or PAMPs) [9]. 
Similarly, Nr4as expressed by self-reactive B-cells in 
response to chronic signal 1 reduce survival when the 
supply of the B-cell survival factor B-cell activating 
factor (BAFF) is limiting [19]. Conversely, provision of 
abundant signal 2 bypasses this restraining mechanism. 
Batf and Myc are among key transcriptional targets of 
Nr4as that mediate this negative feedback loop down
stream of BCR stimulation [9]. Surprisingly, Nr4as also 
dampen BCR-induced upregulation of CD86, ICAM1, 
and the T-cell chemokines CCL3 and CCL4, and this is 
associated with an advantage for Nr4a-deficient B-cells 
in competition for a limiting supply of T-cell help [9]. 
Indeed, Nr4as function to restrain immunodominant B- 

cell clones at early timepoints in a polyclonal immune 
response, and thereby promote participation of lower- 
affinity/avidity subdominant clones [54]. This may be an 
important mechanism to preserve lower-affinity but po
tentially neutralizing antibody responses elicited by in
fection. Such a negative feedback loop operating in B- 
cells may also preserve clonal diversity in the germinal 
center reaction, which would be predicted to optimize 
affinity maturation in the long run. Indeed, BCR-de
pendent Nur77-eGFP reporter expression is also evident 
among light zone (LZ) Germinal centre (GC) B-cells 
encountering follicular Dendritic Cell (FDC), antigen, 
and Tfh [13,54]. It remains to be formally determined 
what role the Nr4a family may play during the GC re
sponse, but a role in mediating Ag-induced cell death 
could serve to delete self-reactive clones that arise de 
novo or have been recruited into the GC. Regulation of 
targets such as Batf, Myc, and CD86 by Nr4as in acutely 
activated B-cells might predict functional significance 
for the Nr4as in LZ GC B-cells.

Discussion
Common themes
Across developmental stages and spanning both acute 
and chronic antigen stimulation, the Nr4as play co
herent, tolerogenic roles during thymic-negative selec
tion, in Treg, in peripheral T- and B-cell anergy/ 
exhaustion, and following acute antigen stimulation of 
naive lymphocytes. A common theme is that Nr4as re
strain lymphocytes that receive signal 1 in the absence of 
signal 2 — a well-appreciated trigger for a gene expres
sion program that imposes anergy/unresponsiveness 
mediated by NFAT signaling in the absence of AP-1 
(Figure 2). Recent work has begun to uncover a tran
scriptional ‘logic’ that incorporates Nr4as as modulators 
of this network downstream of NFAT. Indeed, Nr4a 
targets across multiple contexts include induction of 
checkpoint molecules and suppression of effector cyto
kines.

Unanswered questions
Nevertheless, many questions about Nr4a function in 
lymphocytes remain to be addressed. Although Nr4a1 
transcript is much more abundant than Nr4a3, these two 
family members exhibit substantial redundancy in Treg 
and during thymic selection. By contrast, the Nr4as 
display more additive effects in peripheral T and B-cells. 
Why do family members compensate for one another in 
certain settings but not others? What are the unique 
characteristics of individual Nr4a proteins and their tar
gets that may account for these discrepancies? Another 
unexplored function of Nr4as relates to their role 
downstream of mitogenic receptors other than antigen 
receptors, and particularly in innate-like lymphocytes 
that rely more heavily on such pathways. For example, 
the role of Nr4as downstream of TLRs in B-cells has yet 
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to be uncovered, and functions downstream of im
munoreceptor tyrosine-based activation motif (ITAM)- 
containing receptors in NK cells and innate lymphoid 
cells (ILCs) are unknown.

Agonist-selected lymphocyte populations such as Treg 
express high levels of Nr4as and depend on them, but 
other agonist-selected T-cell populations such as NKT 
express high levels of Nr4as, yet the function of the Nr4as 
is not fully explored in these cell populations [11,55,56]. 
Moreover, since Nr4as mediate both agonist-dependent 
deletion of self-reactive thymocytes and their diversion to 
the Treg lineage, how are these nuclear receptors directed 
toward one or the other of these roles with presumably 
distinct transcriptional targets and/or cytosolic mechan
isms? B1a cells are an innate-like B-cell population with a 
fetal origin that are selected for self-reactivity with high 
expression of Nur77-eGFP reporter [14]. In B1a cells, 
Nur77 restrains differentiation into IgM plasma cells, but 
the transcriptional mechanism is unknown as are the roles 
Nr4as may play in MZ B-cells that also exhibit high 
Nur77-eGFP expression [12,14,57].

Recently, Nr4a expression in human B-cells has been 
identified both in Systemic lupus erythematosus (SLE) 
patients and among ectopic lymphoid structures in RA 
synovium [58,59]. It will be important to understand 
whether Nr4as mark self-reactive human lymphocytes, 
and whether their transcriptional targets and functions 
mirror those defined in mice. Finally, although common 
genetic variants in Nr4as are not among well-recognized 
loci identified in GWAS for immune-mediated diseases, 
rare genetic variants that impact Nr4a family member 
genes could play a role in human immune-mediated 
diseases and will be of interest to identify as larger and 
more well-characterized human datasets become avail
able [25].

Ligands and translational applications
Although the Nr4as do not appear to depend upon en
dogenous ligands for their transcriptional activity and 
regulation, modulators have been reported (recently re
viewed in [60]), including putative endogenous ligands 
such as prostaglandins [61,62], as well as exogenous li
gands such as cytosporone B (Csn-B) [63]. Some ligands 
are proposed to bind at noncanonical sites with a broad 
range of KD and to influence protein–protein association 
rather than transcriptional activity as conventional hor
mone receptor ligands do. Both agonist and antagonist 
compounds, particularly those with selective affinity for 
specific Nr4a family members, might find numerous 
applications. For instance, brief inhibition of Nr4as 
could function as adjuvants for T-cell independent (TI) 
vaccines, while Nr4a agonists could enhance clonal di
versity in response to T-cell dependent (TD) im
munizations. Similarly, Nur77 agonists could promote T- 
and B-cell tolerance in the setting of transplant and au
toimmunity. Indeed, active efforts are underway to 
identify new Nur77 ligands with small-molecule screens 
[64]. As proof-of-principle, Nur77 agonist Csn-B has 
been studied across a range of animal models of in
flammatory disease (reviewed in [65]). Exploiting Nr4as 
as drug targets is no longer limited to bona fide ligands; 
with the advent of CAR T-cell engineering and design 
of ubiquitin ligase-based degraders, Nr4as could be 
eliminated in specific cell types for cancer im
munotherapy to reinvigorate exhausted T-cells. Future 
work to refine our understanding of Nr4a functions in 
mouse and human lymphocytes will pave the way to
ward targeted therapeutic applications.
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Figure 2  
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Regulation and function of Nr4a receptors in T-cells. T-cell receptor 
signaling leads to the nuclear translocation of NFAT, which is required 
for the activation of Nr4a2 and Nr4a3 but is redundant for Nr4a1 gene 
expression. Nr4a receptors can under certain conditions bind and 
directly promote Foxp3 expression. Nr4a receptors directly repress Il2 
and Ifng transcription and in situations of chronic antigen stimulation 
can co-opt the NFAT-induced gene exhaustion program. We propose 
that costimulation enhances AP-1 activity that will compete with Nr4a 
receptors for access to AP-1-binding sites and therefore promote T-cell 
effector gene expression. Nr4a receptors can also interact with Bcl-2, 
causing a change in its BH3 domain and triggering apoptosis. Csn-B is a 
chemical agonist that could be used to increase Nr4a receptor function. 
(Figure created in BioRender.com).  
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