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ABSTRACT: 50 

The analysis of single motor unit (SMU) activity provides the foundation from which information about 51 

the neural strategies underlying the control of muscle force can be identified, due to the one-to-one 52 

association between the action potentials generated by an alpha motor neuron and those received by the 53 

innervated muscle fibers.  Such a powerful assessment has been conventionally performed with invasive 54 

electrodes (i.e., intramuscular electromyography (EMG)), however, recent advances in signal 55 

processing techniques have enabled the identification of single motor unit (SMU) activity in high-56 

density surface electromyography (HDsEMG) recordings. This matrix, developed by the Consensus for 57 

Experimental Design in Electromyography (CEDE) project, provides recommendations for the 58 

recording and analysis of SMU activity with both invasive (needle and fine-wire EMG) and non-59 

invasive (HDsEMG) SMU identification methods, summarizing their advantages and disadvantages 60 

when used during different testing conditions. Recommendations for the analysis and reporting of 61 

discharge rate and peripheral (i.e., muscle fiber conduction velocity) SMU properties are also provided. 62 

The results of the Delphi process to reach consensus are contained in an appendix. This matrix is 63 

intended to help researchers to collect, report, and interpret SMU data in the context of both research 64 

and clinical applications.  65 



 

 
 

INTRODUCTION 66 

A single motor unit (SMU) is comprised of an alpha motor neuron and the muscle fibers it 67 

innervates; SMUs are the final common pathway by which an activation signal from the central nervous 68 

system is transformed into contractile activity (Sherrington (1906)). Given the one-to-one association 69 

between an action potential generated by a motor neuron and those evoked in muscle fibers, 70 

electromyography (EMG) recordings of SMU activity provide a window into the nervous system 71 

(Merletti et al., 2008).  72 

The first methods introduced to record SMUs included concentric needle and fine wire 73 

electrodes (Adrian & Bronk, 1929; Joynt, 1994; Duchateau & Enoka, 2011). The recordings from 74 

intramuscular EMG electrodes can provide significant information about the discharge characteristics 75 

of SMUs in clinical populations and experimental studies, allowing a direct assessment of the variables 76 

responsible for the control of muscle force. However, such methods are invasive, and therefore not 77 

always feasible. Due to recent developments in signal processing methods, it is now possible to perform 78 

a non-invasive assessment of SMU activity with the aid of high-density surface electromyography 79 

(HDsEMG) electrode grids. Given their higher spatial resolution, HDsEMG recordings have enabled 80 

the concurrent analysis of both SMU discharge characteristics and the conduction velocity of muscle 81 

fiber action potentials on a greater number of SMUs than is possible with conventional intramuscular 82 

EMG techniques (Farina et al., 2016).  Given these advantages, the number of research groups that use 83 

HDsEMG recordings to characterize SMU activity has increased considerably during the last years. 84 

Nonetheless, HDsEMG still presents a number of limitations (i.e., lower SMU yield in women and 85 

difficulty in assessing deeper muscles) that must be acknowledged (Besomi et al., 2019; Gallina et al., 86 

2022).     87 

Despite some differences, when assessing SMU data, several features are common to both 88 

intramuscular and HDsEMG methods. Both require an algorithm that is able to identify and separate 89 

SMUs from an interference EMG signal. Although various semi-automatic SMU decomposition 90 

algorithms have been developed in recent years (Doherty & Stashuk, 2003; McGill et al., 2005; De 91 

Luca et al., 2006; Holobar & Zazula, 2007; Negro et al., 2016b), in most cases the data still must be 92 



 

 
 

edited manually to ensure accurate results. Once the data have been reviewed, the discharge times of 93 

SMU action potentials can be characterised in terms of such variables as the average number of action 94 

potentials discharged per second by a single motor unit (mean discharge rate), the variability in the 95 

number of action potentials discharged per second by a single motor unit, the force at which a motor 96 

unit begins to discharge action potentials repetitively (recruitment threshold), and the speed at which 97 

an action potential propagates along a muscle fiber (conduction velocity). However, there is no 98 

consensus yet on the specific ways in which these parameters should be calculated and reported. This, 99 

has compromised the quality of the knowledge in the field.  100 

The aim of this matrix is to describe the main uses, advantages, and limitations of both 101 

intramuscular EMG and HDsEMG SMU recordings, and to provide indications on the recommended 102 

use of these techniques to characterise SMU action potentials. This matrix was developed by an 103 

international consensus of experts as part of the Consensus in Experimental Design in 104 

Electromyography (CEDE) Project using a Delphi process (Besomi et al., 2019). 105 

METHODS 106 

The method used for expert group selection and the process employed for the development of 107 

the CEDE matrices can be found in previous CEDE articles (Besomi et al., 2019; Besomi et al., 2020; 108 

Hodges, 2020; McManus et al., 2021; Gallina et al., 2022). As with the previous CEDE matrices, the 109 

steering committee and the lead investigator prepared a draft of the matrix, which was then sent to the 110 

other CEDE members to reach consensus of the content following a Delphi process. All participants of 111 

the Delphi process are listed as co-authors. The Human Research Ethics Committee of The University 112 

of Queensland, Australia provided ethical approval for this project. 113 

Development of the draft 114 

The steering committee (RME, AH, DFar and KM), the coordinator of the project (MB) and 115 

the lead investigator (EM-V) prepared a first draft of the matrix. The matrix is arranged in nine sections: 116 

1) Electrode type used to identify SMUs, 2) SMU decomposition techniques, 3) Contraction type used 117 

to assess SMU activity, 4) Longitudinal SMU tracking, 5) Analysis of SMU decomposition results, 6) 118 

SMU discharge characteristics, 7) Measures of assocation between discharge times, 8) Peripheral SMU 119 



 

 
 

properties estimated with surface EMG grid electrodes, and 9) SMU action potential amplitude. Each 120 

section comprised various combinations of the following content: reporting, recommendations, 121 

advantages, limitations, considerations, cautions and definitions.  122 

Delphi process 123 

The Delphi process is a widely accepted method to achieve consensus (Waggoner, Carline and 124 

Durning, 2016). The approach used in our matrix was similar to the one employed in previous CEDE 125 

projects and is described in detail elsewhere (Besomi et al., 2019, 2020; McManus et al., 2021). In the 126 

first round, 17 members of the CEDE team were invited to review the first draft of the matrix and 127 

provide feedback. Two members withdrew from the process because they mentioned that this matrix 128 

was not within their expertise. The criteria to obtain consensus are described in previous CEDE project 129 

matrices (Besomi et al., 2019; Besomi et al., 2020; McManus et al., 2021; Gallina et al., 2022). The 130 

steering committee, coordinator and lead investigator oversaw the project and integrated comments but 131 

did not participate in the Delphi process. The Delphi questionnaires were sent online using a centrally 132 

supported survey tool (Checkbox Survey Software; www.checkbox.com) from the University of 133 

Queensland. The percentage of participants rating each item as either appropriate (score 7–9), uncertain 134 

(score 4–6), or inappropriate (score 1–3) were determined and the median and interquartile range (IQR) 135 

were calculated. 136 

RESULTS 137 

From the 15 experts who agreed to participate in the Delphi process, 14 (93.3%) replied to the 138 

first-round questionnaire. Version 1 comprised 39 items. After round one, four sections were ranked 139 

with insufficient consensus, and another three sections were substantially modified based on feedback 140 

and these were included in the second-round questionnaire. Round two, which was resubmitted to the 141 

15 original experts comprised seven sections. Fourteen experts (93.3%) completed the second-round 142 

questionnaire. A summary of the results of the Delphi consensus process is presented in Appendix 1. 143 

The final SMU matrix endorsed by the CEDE project team is presented in Table 1 (SMU recordings), 144 

Table 2 (SMU decomposition techniques: processing, analysis, contraction type and longitudinal motor 145 



 

 
 

unit tracking), Table 3 (SMU discharge characteristics), Table 4 (measures of association between SMU 146 

discharge times) and Table 5 (SMU peripheral properties and MUAP amplitude). 147 

DISCUSSION 148 

This matrix provides a number of recommendations related to the recording, reporting, and 149 

interpretation of SMU data. We focused on the details that are most commonly reported across SMU 150 

studies: 1) electrodes used to record SMU activity, 2) algorithms used to identify SMUs, 3) conditions 151 

in which SMUs can be recorded, 4) analysis of SMU results and reporting of SMU discharge 152 

characteristics, 5) measures of association between discharge times, and 6) muscle fiber properties and 153 

SMU action potential amplitude. It is important to note that the purpose of this matrix is not to replace 154 

formal training with SMU recordings and decomposition techniques. It, should however serve as a guide 155 

to promote standardized application of the procedures and reporting of SMU data. 156 

SMU recordings have evolved over the years, from the use of intramuscular electrodes to that of surface 157 

EMG (Rau & Disselhorst-Klug, 1997; Duchateau & Enoka, 2011). Given the advantages and popularity 158 

of grid electrodes, it might be tempting to assume that this technique should be the current standard for 159 

the analysis of SMUs. However, this matrix demonstrates that intramuscular recordings still have an 160 

important role to play in the analysis of SMU activity. As clearly shown in this matrix, there are a 161 

number of conditions and analyses in which intramuscular methods are preferred over HDsEMG, such 162 

as the assessment of activity in deep muscles, recordings from individuals with thick subcutaneous 163 

tissue, and the analysis of near-fiber potentials. Therefore, the preferred recording method depends on 164 

the research question. Moreover, the two techniques can also be used concurrently; for example, grid 165 

electrodes combined with intramuscular EMG (Yavuz et al., 2015; Thompson et al., 2018) and thin-166 

film high-density intramuscular EMG (Muceli et al., 2015; Negro et al., 2016a). 167 

The development of signal processing algorithms to identify SMUs from the interference intramuscular 168 

and surface EMG signals has also evolved over time. As summarized in this matrix, the most important 169 

aspect to consider is the validity and accuracy (ability to distinguish between true SMU discharges and 170 

falsely detected SMU discharges) of these algorithms in identifying the discharge times of SMUs. Due 171 



 

 
 

to their higher selectivity, decomposition methods applied to intramuscular EMG enable the accurate 172 

identification of SMU discharge times employing semi-automatic decomposition tools, such as 173 

EMGlab (McGill et al., 2005). These algorithms first identify SMUs automatically and then allow the 174 

user to add or remove SMU discharges that were not detected by the software. With the emergence of 175 

decomposition algorithms for HDsEMG recordings, such as those that use blind source separation 176 

(Holobar & Zazula, 2007; Negro et al., 2016a), this process has been automated, but the quality of the 177 

analysis requires careful evaluation. To address this need, we provide recommendations on how to 178 

check the accuracy of the data both when intramuscular EMG and HDsEMG are used, and we also offer 179 

advice on the way in which these accuracy measures should be reported. It is possible that future 180 

developments in artificial intelligence techniques may be able to decrease the computational load 181 

required for the SMU decomposition algorithms and make it possible to perform a fully automatic 182 

decomposition without the need to edit the output manually. This will ultimately decrease the time 183 

required to perform SMU analyses, which is crucial in clinical applications. 184 

Another important issue that was considered for the development of this matrix was the conditions in 185 

which SMU recordings could be performed. In the past, SMU recordings were mostly limited to low 186 

force isometric contractions, which facilitate the identification of SMU action potentials. More recent 187 

studies have examined more challenging conditions, such as strong and fast isometric contractions (Del 188 

Vecchio et al., 2019b) and dynamic contractions (Glaser & Holobar, 2019; Oliveira & Negro, 2021) in 189 

addition to tracking weakness in patients diagnosed with neurodegenerative disease (Howells et al., 190 

2018). Greater care needs to be taken under these conditions as it is more difficult to satisfy the 191 

requirements necessary for the identification of SMU discharge times. For example, the activity of 192 

multiple SMUs can merge into one SMU spike train and dynamic changes in action potential waveforms 193 

can reduce the ability of the decomposition algorithm to discriminate the activity of SMUs. Despite 194 

these challenges, it is likely that further development of decomposition algorithms, such as the 195 

implementation of real-time updating of SMU filters (Wen et al., 2021), will improve the separation of 196 

SMUs from the interference signal.  197 



 

 
 

In this matrix we also acknowledge the lack of standardization in the reporting of SMU data. Besides 198 

issues with terminology, which are addressed in the terminology matrix (McManus et al., 2021), 199 

investigators tend to calculate and report the discharge characteristics of SMUs in different ways, which 200 

complicates the comparison of data between studies (Elgueta-Cancino et al., 2022). We provide 201 

recommendations on how to calculate and report most time-domain discharge characteristics, such as 202 

recruitment and de-recruitment thresholds, mean, median, and peak discharge rates, and double 203 

discharges (doublets).       204 

Measures of association (correlation and coherence) between SMU discharge times provide important 205 

information about the sources of common and independent synaptic input to SMUs within and across 206 

muscles (Laine et al., 2015; Negro et al., 2016b). As with the reporting of discharge characteristics, 207 

these measures have sometimes been treated as interchangeable, despite their means of calculation 208 

dictating that they reflect different physiological processes. Here we provide recommendations on how 209 

to report, calculate, and when to employ both time-domain (i.e., short-term synchrony) and frequency-210 

domain (i.e., coherence) associations in SMU discharge times. We refer the reader to the terminology 211 

matrix (McManus et al., 2021) for a more detailed definition of each of these measures.     212 

We also discuss muscle fiber properties that can be obtained from SMU recordings. With the emergence 213 

of HDsEMG, it is now possible to estimate SMU territories and conduction velocities. Although this 214 

information was also covered in the HDsEMG matrix (Gallina et al., 2022), it is important to emphasise 215 

the utility of these approaches and the caution that is required when using surface EMG data to infer 216 

properties at the level of the muscle fibers. This is particularly true for the estimation of SMU territories, 217 

for which further studies are required to validate this approach.  218 

Finally, we also acknowledge the limitations of amplitude estimates to infer SMU properties. 219 

Knowledge of these limitations is important for those who aim to use intramuscular EMG recordings 220 

of SMU action potential amplitude and area as a diagnostic aid in, for example, neuromuscular disorders 221 

(Tankisi et al., 2020). As discussed in the current matrix, the amplitude normalization matrix (Besomi 222 

et al., 2020), and in multiple studies assessing the validity of EMG recordings to infer changes in SMU 223 

properties (Del Vecchio et al., 2017; Martinez-Valdes et al., 2018), EMG amplitude is influenced by a 224 



 

 
 

number factors unrelated to SMU size and recruitment (Farina et al., 2004). This applies to both 225 

intramuscular EMG and HDsEMG recordings. Therefore, the CEDE team decided to not recommend 226 

that amplitude estimates be used for the assessment of changes in SMU properties, but instead 227 

acknowledge that future studies are needed to assess the validity of these measurements.  228 

CONCLUSION 229 

SMU recordings provide the most direct information about the neural drive strategies used by the central 230 

nervous system to control muscle force. However, great care is needed when determining the discharge 231 

times of SMUs from interference EMG signals to ensure that the analysis yields physiologically 232 

meaningful data. Moreover, adequate reporting and unified criteria are required to allow comparison of 233 

findings across studies. The aim of the present matrix is to tackle these issues by providing 234 

recommendations on how to record, report, analyse, and interpret SMU data. The matrix is intended to 235 

serve as a guide for the standardized application of such measurements in both research and clinical 236 

applications. Due to the continual development of SMU recording and signal processing techniques, we 237 

expect that some of our recommendations will need to be updated in future versions of this matrix.  238 
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Table 1. Considerations for single motor unit recordings  259 

Electrode type Surface grid of electrodes (High-density 

surface EMG; HDEMG)  

Intramuscular fine-wire electrode  Intramuscular needle electrode  

Electrode design 

reporting  

- Number of electrodes 

- Shape of the grid (i.e., rectangular, square, 

linear), with the number of rows and columns.  

- Diameter of each electrode 

- inter-electrode distance (specify center-to-

center or edge-to-edge) 

- Reference electrode 

- Pre-amplification  

- material (e.g., Ag/Cl, gold) 

- Use of a dry linear array to determine the 

propagation direction of motor unit action 

potentials (MUAPS) to align the grid 

electrode with the orientation of the muscle 

fibres 

- Location of grid electrodes relative to 

innervation zones, if measured 

- Report anatomical landmarks used to 

position the grid electrode 

- Wire type  

- Materials used to construct the electrode 

- Length of exposed conductor (wire) 

- Approximate separation between electrodes 

- Insertion guidance method 

- Depth of insertion  

- Recording montage (bipolar, monopolar) 

- Muscle region where the wire was inserted 

- Report anatomical landmarks used to 

position the electrode 

- Mention if placement was verified, such as 

with ultrasound imaging 

- Needle type (e.g., monopolar, concentric, 

quadrifilar). 

- Materials used to construct the electrode 

- Needle size/gauge 

- Perpendicular insertion 

- Depth of insertion 

- Electrode recording area 

- Muscle region where the needle was inserted 

- Mention if the needle was held in place or 

stabilized 

- Report anatomical landmarks used to 

position the electrode 

 

Electrode design 

recommendations 

- ≥ 32-channel grid is recommended to 

increase single motor unit (SMU) 

identification accuracy 

- Inter-electrode distance ≤ 10 mm to increase 

selectivity of recordings and allow 

interpolation 

- Grid positioning over the innervation zone is 

recommended in order to maximize the 

diversity of MUAP shapes and improve the 

discriminative power of SMU identification 

algorithms  

 

- Multichannel signals can be recorded using 

separate electrodes or wires placed at different 

muscle locations. 

- Multichannel intramuscular signals (i.e., 

quadrifilar wire or thin-film electrodes) can 

generally be decomposed more reliably, as 

MUAPs that are difficult to distinguish in one 

channel can often be distinguished more easily 

in another channel 

- Multichannel signals can be recorded with a 

quadrifilar needle (4 electrodes) or using 

separate electrodes at different muscle 

locations.  

- Multichannel intramuscular signals can 

generally be decomposed more reliably, 

as MUAPs that are difficult to distinguish in 

one channel can often be distinguished more 

easily in another channel. 



 

 
 

General principles 

for reporting SMU 

recording procedures 

 

 

 

- Sampling rate in space and time (Merletti & 

Muceli, 2019) 

- Gain   

- Time-domain filter: High-pass and low-pass 

cut-off frequencies, filter order, and type (e.g., 

Butterworth) 

- Was a notch filter (50 Hz or 60 Hz) used? 

- Type of spatial filter (e.g., monopolar, 

differential, Laplacian, principal component 

analysis (PCA), double differential, 

quadrupolar) 

- Sampling rate  

- Gain 

- Time-domain filter: High-pass and low-pass 

cut-off frequencies, filter order and type (e.g., 

Butterworth). 

- Was a notch filter (50 Hz or 60 Hz) used? 

- Sampling rate  

- Gain  

- Time-domain filter: High-pass and low-pass 

cut-off frequencies, filter order and type (i.e., 

Butterworth). 

- Was a notch filter (50 Hz or 6 0Hz) used? 

General principles 

for recording single 

motor unit activity 

(recommendations) 

- Sampling rate ≥2000 Hz 

- High signal-to-noise ratio. Remove any 

channels with low signal to noise ratio before 

running the decomposition algorithm  

- Adjust gain to avoid clipping and saturating 

signals, especially in amplifiers with 

analogue-digital converters with lower 

resolution (i.e., <16-bit) 

- Gain should allow clear MUAP visualization 

at low force magnitudes   

- Filter EMG signals with a 3 db band-pass of 

at least 10-500 Hz 

- Analog low-pass filter should be set at half 

of the sampling rate or less 

- Consider increasing high-pass cut-off 

frequency (e.g., 20 Hz) if movement artefacts 

are present. 

- Record monopolar signals to maximize 

flexibility during offline analysis 

- If signals are going to be processed 

(decomposed) in single differential mode, it is 

recommended to record these signals in single 

differential mode so that the recording 

amplifier can provide a higher common-mode-

rejection-ratio (CMRR) compared with the 

differentiation made by signal processing 

software (due to imperfections in channel-to-

channel gain matching)  

- Sampling rate ≥10000 Hz 

- Oversampling (>10000 Hz) provides greater 

temporal resolution without the need for 

interpolation, but at the cost of increased 

storage requirements. 

- High signal-to-noise ratio 

- Adjust gain to avoid clipping and saturating 

signals, especially in amplifiers with 

analogue-digital converters with lower 

resolution (i.e., <16-bit) 

- Different filters can be considered depending 

on the application, please see (Tankisi et al., 

2020) for specific information about filtering 

in different conditions.  

- 3 db analog band-pass filter between 500 Hz 

and 5000 Hz is commonly applied. 

- Analog low-pass filter should be set at half 

of the sampling rate or less 

- Consider increasing high-pass cut-off 

frequency (e.g., 20 Hz) if movement artefacts 

are present. 

 

- Sampling rate ≥10000 Hz 

- Oversampling (>10000 Hz) provides greater 

temporal resolution without the need for 

interpolation, but at the cost of increased 

storage requirements. 

- High signal-to-noise ratio  

- Adjust gain to avoid clipping and saturating 

signals, especially in amplifiers with 

analogue-digital converters with lower 

resolution (i.e., <16-bit) 

- Different filters can be considered depending 

on the application, please see (Tankisi et al., 

2020) for specific information about filtering 

in different conditions.  

 

Common filters applied for motor unit 

recordings:    

- 3 db analog band-pass filter between 2 Hz 

and 10000 Hz for monopolar and concentric 

needles (Tankisi et al., 2020) 

- 3 db analog band-pass filter between 500 Hz 

and 10000 Hz for single-fibre EMG  (Tankisi 

et al., 2020) 

- Analog low-pass filter should be set at half 

of the sampling rate or less 

- Consider increasing high-pass cut-off 

frequency (e.g., 20 Hz) if movement artefacts 

are present 



 

 
 

- For SMU identification with blind source 

separation algorithms, non-linear pre-

processing methods should be avoided as they 

alter the linear mixing model of EMG which 

is assumed by many blind source separation 

methods (Holobar & Zazula, 2007; Negro et 

al., 2016a) 

 

General 

considerations for 

selection of electrodes 

(based on SMU 

properties to be 

studied) 

PROS 

- Non-invasive 

- Depending on the number of electrodes, the 

concurrent activity of up to tens of MUs can 

be identified  

- Analysis of 2D MUAP distribution    

- Measurement of peripheral muscle fibre 

properties, such as conduction velocity 

- Recordings are possible during 

anisometric/slow dynamic muscle 

contractions, but caution is required as MU 

identification in these conditions can be 

challenging 

- Potential to identify MUs at high force 

magnitudes, including 100 % MVC and fast 

isometric contractions 

PROS 

- Selective electrode that allows real-time 

identification of single MUs 

- Both superficial and deep muscles can be 

assessed 

- Signal quality does not depend on 

subcutaneous tissue thickness 

- Electrodes move with the muscle fascicles 

and, unlike solid needles, wires are flexible 

and stronger contractions can be performed 

without too much discomfort 

PROS 

- Selective electrode that allows real-time 

identification of single MUs 

- Analysis of near-fibre action potentials 

(examination of contributions 

from fibres located close to the recording 

needle electrode) to assess jiggle and jitter, 

which provide information about 

neuromuscular transmission stability (Piasecki 

et al., 2021) 

- Can be moved to record from different 

muscle regions  

- Standard EMG method for diagnosis in 

clinical neurophysiology/neurology [see 

(Tankisi et al., 2020) for technical details of 

clinical use] 

- Both superficial and deep muscles can be 

assessed 

- Signal quality does not depend on 

subcutaneous tissue thickness 

General 

considerations for 

selection of electrodes 

(based on SMU 

properties to be 

studied) 

CONS 

- It is not possible to identify MU activity 

from deep muscles 

- Accuracy and number of identified MUs 

depends on subcutaneous tissue thickness and 

muscle architecture. This limitation 

significantly constrains the recruitment of 

study participants and the muscles that can be 

studied.  

 

CONS 

- Invasive, and therefore special skills are 

required to insert electrodes 

- Can only identify a few MUs from a small 

region of the muscle 

- Electrode can be repositioned only slightly 

once inserted  

- Potential to discriminate MUs during strong 

contractions depends on the selectivity of the 

electrode and is difficult at force magnitudes 

close to the maximum 

CONS 

- Invasive 

- Can only identify a few MUs from a small 

region of the muscle  

- Potential to discriminate MUs at high-

intensity contractions depends on the 

selectivity of the electrode and is unlikely to 

be possible at force magnitudes close to the 

maximum 

- Discomfort/pain at high force magnitudes  

-  Discomfort /pain may occur when inserted 
through fascial layers and into deeper muscles  



 

 
 

- Some discomfort/pain is possible at high 

force magnitudes 

- Discomfort /pain may occur when inserted 

through fascial layers and into deeper muscles 

- Movement artefacts can limit accuracy of 

MU discrimination during dynamic tasks, 

particularly in deep muscles 

- Risk of infection if sterilization and 

contamination protocols are not followed 

- Generally, not suitable for 

anisometric/dynamic contractions due to 

needle movement 

- Risk of infection if sterilization and 

contamination protocols are not followed 
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Table 2. Single motor unit decomposition techniques: processing, analysis, contraction type and longitudinal motor unit tracking 261 

SMU decomposition 

techniques 

High-Density surface EMG SMU 

decomposition techniques 

Intramuscular EMG SMU 

Decomposition techniques 

General principles 

for processing of 

EMG signals for 

motor unit 

identification 

(Reporting) 

- Report electrode grid position 

- Indicate the removal of any channel prior 

to decomposition 

- List any spatial filter used to process the 

signals (e.g., monopolar or differential) 

- Mention any time-domain filtering  

- Report decomposition technique (e.g., 

Blind-source separation, template 

matching, principal/independent 

component analysis) 

-  List the decomposition software; for 

example, Precision decomposition (Nawab 

et al., 2010), DEMUSE (Holobar & 

Zazula, 2007), DECOMPONI (OT 

Bioelettronica, Torino, Italy), dEMG 

Analysis Software (Delsys, Inc., Natick, 

MA), Convolutive Blind Source Separation 

(Negro et al., 2016a), Custom. 

- Describe any constraints on acceptable 

data, such as maximal and minimal inter-

spike intervals (ISIs), discharge rates or 

maximal discharge variability 

- Report any time-domain filtering 

- Describe the spatial filter used (e.g., monopolar or differential) to process the signals recorded 

with multiple intramuscular electrodes (i.e., quadrifilar, thin-film) or in conjunction with surface 

EMG.  

- List the technique used to decompose SMU activity (i.e., Template matching, spike sorting) 

- Indicate whether the decomposition was automatic, semi-automatic, or manual  

- State the software employed to decompose signals, such as Spike [Cambridge Electronic Design 

(CED), Cambridge, UK], Precision Decomposition (Mambrito & De Luca, 1984), Decomposition-

Based Quantitative Electromyography (Doherty & Stashuk, 2003), EMGLab (McGill et al., 2005), 

Fuzzy Expert algorithm (Erim & Lin, 2008), EMG Long-term Decomposition (Zennaro et al., 

2003) 

- Acknowledge the use of an algorithm that includes the use of probability of SMU discharge (e.g., 

precision decomposition) 

- Mention the number of channels used for identification 

- Indicate if gradual changes in SMU identification template over time was allowed 

- Describe any constraints on acceptable data, such as maximal and minimal ISIs or discharge rates 

and maximal discharge variability 

- Report any manual inspection and editing performed on the results of automatic decomposition 

- List the method used to assess superpositions (Etawil & Stashuk, 1996; Marateb & McGill, 2009) 



 

 
 

- Mention the use of SMU spike train 

cross-correlation or similar methods to 

reduce the repeated identification of the 

same SMU 

- Indicate the use of accuracy indexes, such 

as Silhouette (SIL) threshold (Negro et al., 

2016a), pulse-to-noise ratio (PNR) 

(Holobar et al., 2014), decompose-

synthesize-decompose-compare (DSDC) 

(Nawab et al., 2010) 

- Acknowledge any manual inspection and 

editing performed on the results of 

automatic decomposition 

- In case of long EMG recordings, report 

the length of the EMG epochs that were 

decomposed  

General principles 

for pre-processing of 

EMG signals for 

SMU identification 

(Recommendations) 

-  Remove channels that have excessive 

noise (i.e., signal noise should be no more 

than one half of the power of the signal 

(Del Vecchio et al., 2020))  

- A band-pass filter with corner frequencies 

at 10 and 500 Hz is recommended 

- The zero-phase filtering by second or 

higher order IIR notch filter with cut-off 

frequencies adjusted to the region (50 Hz: 

Europe, Asia, Pacific; or 60 Hz: USA) is 

recommended for monopolar recordings. 

When power line noise is substantial, 

higher harmonics can be also removed by 

decomposition software  

- Limit the duration of the decomposed 

signal to ≤100 s (for low fatiguing 

contractions) or shorter (for high fatiguing 

contractions). Due to changes in MUAP 

shapes over long time intervals, longer 

contractions should be decomposed as 

multiple overlapped segments followed by 

matching of SMU discharge times by cross 

- If signals were recorded with a wide bandwidth to retain SMU architectural information, SMU 

detectability can often be enhanced by digitally high-pass filtering at 1 kHz prior to 

decomposition. 

- Limit the duration of the decomposed signal to ≤100 s (for low fatiguing contractions) or 

shorter (for high fatiguing contractions). Due to changes in MUAP shapes over long time 

intervals, longer contractions should be decomposed as multiple overlapped segments 

followed by matching of SMU discharge times by cross correlation across the epochs 

(Martinez-Valdes et al., 2020).  

- If updated MUAP templates were used to follow a SMU over time (long contractions), is 

important to confirm that this represents a gradual change in MUAP morphology rather than 

recruitment of a new unit.    



 

 
 

correlation across the epochs (Martinez-

Valdes et al., 2020).  

- If updated MUAP templates were used to 

follow a SMU over time (long 

contractions), this should be stated.    

General 

considerations 

regarding 

decomposition 

methods 

 

PROS 

- Fast automatic decomposition 

- Spatial 2D MUAP representation allows 

the longitudinal tracking of individual 

SMUs when care is taken in placing the 

electrode across sessions (Martinez-Valdes 

et al., 2017) 

- Spatial 2D maps show innervation areas 

and muscle fibre properties, such as 

conduction velocity in muscles with 

fascicles parallel to the skin 

- Up to tens of SMUs identified per 

contraction 

- Wide range of force magnitudes and 

conditions can be assessed  

PROS 

- Most accurate EMG decomposition of MUAPs 

- Activity from deep and superficial SMUs can be detected 

- Real-time identification of MUAPs 

 

General 

considerations 

regarding 

decomposition 

methods 

 

CONS 

- Limited to superficial muscles and SMUs 

- Quality of the decomposition varies 

across participants and muscles 

- Fewer SMUs can be identified in muscles 

with fascicles parallel to the skin due to 

less spatially distinct waveforms (e.g., 

biceps brachii and vasti) 

- Difficult to assess accuracy of the 

decomposition 

- Automatic decomposition can add and 

miss ISIs  

- Decomposition algorithms can merge two 

different SMUs into one 

- Experienced operators are required to 

evaluate the ISIs   

- Signals recorded during strong 

contractions are difficult to decompose  

CONS 

- Few SMUs can be identified (generally <10 per channel) 

- Generally limited to low-to-moderate force magnitudes  

- Signals recorded during strong contractions are difficult to decompose  

- Template-matching decomposition methods require extensive editing of ISIs  

- Visual inspection and editing of spike trains is time-consuming 

- Identification of multiple SMUs from these recordings is time consuming 

- MUAPs cannot be tracked across sessions 

 



 

 
 

- Visual inspection and editing of spike 

trains is time-consuming 

- Biased to subjects with low subcutaneous 

fat 

Contraction type used to identify motor units 

Submaximal 

isometric 

contractions 

Yes. 

Explanation: Source separation techniques 

enable the reliable identification of SMU 

discharge times from low force magnitudes 

up to MVC in a wide range of isometric 

contractions (e.g., trapezoidal, triangular, 

or sinusoidal excitation profiles, fast and 

slow contractions).    

Yes. 

Explanation: SMU identification with intramuscular electrodes is commonly performed during 

submaximal isometric contractions. Due to high selectivity, the number of identified SMUs is 

usually less than that obtained with surface grid electrodes, but the decomposed spike trains are 

usually more reliable than surface recordings. As these signals are decomposed with template-

matching approaches from a single channel (or multiple selective channels), decomposition is 

commonly limited to low to moderate submaximal force magnitudes. Decomposition is possible at 

higher force magnitudes but requires extensive editing of SMU spike trains.      

Submaximal 

isometric contraction 

until task failure 

Caution. 

Explanation: Long contractions are 

difficult to decompose due to increases in 

SMU recruitment and changes in MUAP 

shapes. These contractions can be analysed 

either by decomposing different segments 

of the contractions and calculating the 

average population activity for each 

segment, or by decomposing overlapped 

segments and then matching discharge 

times belonging to the same SMU by cross 

correlation techniques (Martinez-Valdes et 

al., 2020).    

Caution. 

Explanation: As with surface electrodes, long contractions are difficult to decompose due to 

increases in SMU recruitment and changes in MUAP shape. More selective electrodes (needle) can 

help to follow the activity of a single SMU during this type of contraction. Nevertheless, it is 

difficult to control the position of needle. Wire electrodes can be taped with slack on the wire, 

allowing movement of the electrode with the muscle during the contraction and therefore, might be 

better suited to record submaximal fatiguing contractions. Nevertheless, as with HDEMG 

recordings, recruitment of new SMUs may impede the ability to follow a SMU continuously 

throughout the contraction.  

 

  

Maximal isometric 

contractions 

Caution. 

Explanation: It is difficult to discriminate 

among multiple SMU sources (e.g., 

different MUAP waveforms) during 

maximal contractions. However, it is 

possible in some muscles (e.g., tibialis 

anterior and gastrocnemius medialis) due 

to less spatially correlated recordings. 

Nevertheless, caution is required as it is 

difficult to test the accuracy of the 

Caution. 

Explanation: The same limitations mentioned for surface electrodes apply for intramuscular 

electrodes during maximal contractions. The identification of SMU activity in this condition is 

extremely difficult with intramuscular electrodes. However, more selective recordings (e.g., needle, 

subcutaneous electrodes and quadrifilar electrodes) can isolate SMUs and follow their discharge 

times throughout the contraction. Discomfort and pain with solid-needle electrodes may limit the 

maximality of a contraction. Although wire electrodes are well tolerated during maximal isometric 

contractions, the integrity of wires inserted to deep muscles can be compromised at maximal force 

magnitudes.    



 

 
 

decomposition at these contraction 

intensities.    

Submaximal dynamic 

contractions 

Caution. 

Explanation: The relative movement of the 

electrodes over the skin and changes in 

muscle length during dynamic contractions 

change MUAP shapes and compromise 

decomposition algorithms. New 

approaches based on blind-source-

separation techniques (i.e., cyclostationary 

convolution-kernel-compensation (CKC) 

(Glaser & Holobar, 2019)) have been 

developed to compensate for changes in 

MUAP shape during shortening and 

lengthening contractions, and have been 

able to identify SMUs under these 

conditions. However, this technology 

requires more extensive testing.   

Caution. 

Explanation: Even when intramuscular wire electrodes can move with the muscle during changes 

in length, MUAP shapes change, and this challenges template-matching methods. Although 

previous studies have only assessed SMUs  during slow shortening and lengthening contractions 

over a limited range of motion (Pasquet et al., 2006), discrimination of MUAPs during dynamic 

contractions is possible by adjusting templates for some tasks and muscles.  

 

 

Maximal dynamic 

contractions 

No. 

Explanation: Contractions at maximal 

intensities in both small and large ranges of 

motion are not currently possible due to the 

extensive recruitment of SMUs and high 

discharge rates along with large changes in 

MUAP shapes.  

 

No. 

Explanation: Contractions at maximal intensities in both small and large ranges of motion are not 

currently possible due to the extensive recruitment of SMUs and high discharge rate along with the 

large changes in MUAP shapes.  

Longitudinal motor unit tracking  

Real-time SMU 

tracking within a 

session 

Caution. 

Explanation: Although blind-source 

separation methods (Convolution-Kernel-

Compensation, CKC) have been used for 

real-time decomposition, these techniques 

require an offline calibration phase 

(contraction) to learn SMU filters. 

Yes. 

Explanation: The selectivity of intramuscular and subcutaneous electrodes makes it possible to 

isolate the discharge times of a single SMU without the aid of any decomposition method. These 

discharge times can be visualized or heard in real time and the feedback can be used to control a 

contraction and detect the activity of a specific SMU in various conditions (e.g., fatiguing 

contractions, pain, or electrical stimulation). However, this approach requires participants to exert 



 

 
 

Afterwards, SMU filters can be applied to 

new EMG recordings to yield SMU 

discharge times (providing that the muscle 

geometry and position of electrodes have 

not changed). (Glaser et al., 2013). Other 

methods are also being currently explored 

(Chen et al., 2020; Wen et al., 2021)  

low force magnitudes (to record a single unit) or that the MUAP shapes clearly differ between 

units. Nevertheless, manual checking is required for a reliable result. 

Real-time SMU tracking is commonly used in clinical practice.  

  

Tracking within a 

session (across 

different repetitions) 

Yes. 

Explanation: When the recording 

conditions are kept constant in a session 

(e.g., similar target force magnitude and 

muscle length), decomposition of HDEMG 

signals can identify similar populations of 

SMUs across trials. When the same SMU 

needs to be identified at different target 

force magnitudes, then cross-correlation of 

the spatial 2D representation of MUAPs (or 

similar quantifications of SMU match 

between contractions) is recommended. 

(Martinez-Valdes et al., 2017) 

 

Yes. 

Explanation: It is possible to track the same SMU within a session with intramuscular and 

subcutaneous fine wire electrodes and with needle electrodes.  However, it is not possible to track 

the same SMU across trials when intramuscular electrodes are repositioned 

Across sessions Yes. 

Explanation: HDEMG provides a 2D 

spatial sampling of the electrical activity of 

MUAPs. The large number of channels 

makes it possible to discriminate between 

different SMUs.  The spatial distribution of 

each MUAP enables the longitudinal 

tracking of single SMUs in the absence of 

significant changes in muscle morphology 

or architecture (Del Vecchio et al., 2019a). 

However, tracking accuracy of training 

interventions that last >4 wks or for 

neuromuscular diseases needs to be 

verified. Tracking accuracy increases with 

the number of channels. (Martinez-Valdes 

et al., 2017) 

No. 

Explanation: Due to high selectivity and the small recording area, it is almost impossible to detect 

the same SMU across sessions with intramuscular, subcutaneous, and needle electrodes. This 

limitation explains the high variability of intramuscular SMU recordings during longitudinal 

studies.  

Analysis of decomposition results 



 

 
 

Details that should be 

reported following 

decomposition 

- Number of SMUs identified per 

contraction and participant  

- Number of discarded SMUs and why they 

were discarded. Mention criteria used (see 

below). 

- SMU decomposition accuracy threshold 

(Pulse-to-noise ratio, Silhouette, two-

source method, Decompose-Synthesize-

Decompose-Compare). 

- If the discharge times were edited, 

mention how this was done and by whom 

- Report the number of SMUs and 

discharges that were edited 

- Report any limits on ISIs, such as 

removal of values below or above fixed 

thresholds. 

- In muscles with few synergists (e.g., 

tibialis anterior, first dorsal interosseous) 

show examples of common fluctuations in 

force and low-pass filtered discharge rates 

(when possible). 

- In longitudinal studies, report the 

consistency of the placement of the 

electrode grid (e.g., marking skin across 

sessions, transparent paper, consistency in 

participant’s position). 

- Number of SMUs identified per contraction and participant.  

- Number of discarded SMUs and why they were discarded. Mention criteria used (see below). 

- SMU decomposition accuracy (Inter-operator agreement, self-consistency, rotated signals, a 

posteriori accuracy assessment). 

- If the discharge times were edited, indicate how and by whom. 

- Report the number of SMUs and discharges that were edited 

- Indicate any limits on ISIs, such as removal of values below or above fixed thresholds. 

- In muscles with few synergists (e.g., tibialis anterior, first dorsal interosseous) show examples of 

common fluctuations in force and low-pass filtered discharge rates (when possible) 

 

 

Recommendations 

following 

decomposition 

- Quantifying accuracy  

* for convolution kernel compensation 

(CKC) a  Pulse-to-noise ratio > 30 dB is 

recommended (Holobar et al., 2014) 

* for convolutive blind-source separation a 

Silhouette > 0.9 is recommended (Negro et 

al., 2016a) 

* for precision decomposition a 
Decompose-Synthesize-Decompose-

Compare >95% is recommended (Nawab 

et al., 2010) 

- Editing of erroneous ISIs is strongly 

recommended; however, it is important to 

- Several methods for quantifying accuracy have been proposed, although none has so far gained 

universal acceptance. Among the intramuscular methods for decomposition accuracy we can find: 

 

*Inter-operator agreement: When semi-automatic or manual decomposition is used, two expert 

operators compare results and assess agreement between identified discharge times (Pilegaard et 

al., 2000)  

*Rotated signals: The intramuscular signal and a time-rotated version of this signal are 

decomposed independently and the rate of agreement between the results is calculated (Zennaro et 

al., 2002) 

*Self-consistency: MUAP train accuracy based on discharge time and shape consistency (Parsaei 

& Stashuk, 2013) 



 

 
 

consider the task performed (e.g., isometric 

or anisometric contraction), condition 

assessed (e.g., pain, fatigue) and the 

population under study (e.g., 

neuromuscular disorders, older adults). If 

possible, check ISI editing results with 

fluctuations in force to avoid deleting or 

adding discharges incorrectly as changes in 

discharge rate usually follow fluctuations 

in force.  

- Report how ISI editing was done and by 

whom (e.g., manually, semi-automatic, by 

one operator, or two blinded operators) 

- Report number/percentage of SMU 

discharges that were added/removed 

- Report the discharge characteristics of 

discarded SMUs  

- Show examples of the concurrent 

fluctuations in SMU discharge rates (single 

SMUs or cumulative spike train) and force 

(more evident at high force magnitudes). If 

possible, report the level of correlation 

between the associated fluctuations. 

- Observe and report if doublets are present 

(particularly during dynamic contractions)  

- Longitudinal tracking of SMUs requires 

high cross-correlation coefficient of 2D 

MUAP signatures (typically >0.80 for 64 

EMG channels). When double matches are 

found, the SMU pair with the highest 

correlation coefficient should be selected. 

Nonetheless, an experienced operator 

should always visually inspect MUAPs to 

verify the match.   

*A posteriori accuracy assessment: Bayesian framework analysis based on the estimated statistical 

properties of the MUAP trains and background noise that considers all the shape- and time-related 

information in the signal (McGill & Marateb, 2011) 

 

- It is recommended that at least one of these methods be employed to check decomposition 

accuracy. 

 

- Editing of erroneous ISIs is strongly recommended; however, it is important to consider the task 

performed (e.g., isometric or anisometric contraction), condition assessed (e.g., pain, fatigue) and 

the population under study (e.g., neuromuscular disorders, older adults). Check ISI editing with 

fluctuations in force to avoid deleting or adding discharges incorrectly.  

- Report how ISI editing was done (e.g., manually, semi-automatic, by one operator, or two blinded 

operators) and by whom. 

- Report number/percentage of SMU discharges that were added/removed 

- Report the discharge characteristics of discarded SMUs  

- Show examples of the concurrent fluctuations in SMU discharge rates and force (more evident at 

high force magnitudes). If possible, report the level of correlation between the associated 

fluctuations. 

- Observe and report if doublets are present (particularly during dynamic contractions) 
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Table 3. Reporting of single motor unit discharge characteristics 263 

SMU discharge 

characteristics 

Recruitment and 

derecruitment 

thresholds 

Mean/average firing 

rate/discharge 

rate/rate coding 

Discharge rate at 

recruitment and 

derecruitment 

Peak discharge rate  Variability (SD 

interspike interval 

(ISI), coefficient of 

variation (CoV) for 

ISI, SD discharge 

rate, CoV for 

discharge rate) 

Double discharges 

or doublets 

Reporting SMU 

discharge 

characteristics 

Report: 

  

- Force [%MVC, 

Newtons (N)] or 

torque [Nm] at which 

the SMU began and 

ended discharging 

action potentials 

repetitively 

[(discharge times 

separated by <200 ms 

(Farina et al., 2009)]. 

- The rate of change 

in force/torque during 

the task in which the 

thresholds were 

measured 

- The contraction 

velocity and type 

(e.g., 

shortening/concentric 

or 

lengthening/eccentric

) for dynamic 

contractions 

 

Report: 

 

- The period over 

which the mean was 

calculated (e.g., 

ascending ramp, 

plateau) 

- The duration of the 

period over which the 

mean was estimated 

- If discharge rate 

was quantified 

directly from 

discharge times, ISIs, 

mean of inverse ISI 

(1/ISI) or from a 

smoothed signal. If 

the latter, report the 

filter or windowing 

used on the time-

series of ISIs.  

- Median discharge 

rate with interquartile 

ranges (IQRs) when 

the data have a 

skewed distribution  

Report: 

 

- The number of 

discharges or ISIs 

used in the 

calculation 

- If discharge rate 

was quantified 

directly from 

discharge times, ISIs, 

mean of inverse ISI 

(1/ISI) or from a 

smoothed signal. If 

the latter, report the 

filter or windowing 

used on the time-

series of ISIs 

- Median discharge 

rate at 

recruitment/derecruit

ment with 

interquartile ranges 

(IQRs) when the data 

have a skewed 

distribution 

Report: 

 

- The number of 

discharges or ISIs 

used in the 

calculation 

- The period over 

which peak discharge 

rate was calculated 

(e.g., peak force 

signal) 

- If peak discharge 

rate was quantified 

directly from 

discharge times, ISIs, 

mean of inverse ISI 

(1/ISI) or from a 

smoothed signal. If 

the latter, report the 

filter or windowing 

used on the time-

series of ISIs. 

 

Report: 

 

- The period over 

which variability was 

calculated (e.g., 

ascending ramp, 

plateau) 

- The duration of the 

period over which 

mean variability was 

estimated 

- If variability was 

quantified directly 

from discharge times, 

ISIs, mean of inverse 

ISI (1/ISI) or from a 

smoothed signal. If 

the latter, report the 

filter or windowing 

used on the time-

series of ISIs. 

- Provide information 

on how coefficient of 

variation for 

discharge rate/ISI 

was calculated (i.e. 

CoV for ISI = (SD 

for ISI / mean ISI) x 

100), SD of DR = 

ISI for doublets has 

been usually defined 

as 2.5–20 ms. 

However, it has been 

recently suggested 

that doublets need to 

be defined as ISIs 

that are significantly 

shorter than the mean 

ISI for a given 

motoneuron 

(McManus et al., 

2021) 

 

- Report when they 

occur, the number of 

doublets observed, 

and consistency 

across repetitions 

 

  



 

 
 

SQRT [(SD of ISI)2 / 

(mean ISI)3] 

- Interquartile ranges 

(IQRs) of ISI when 

the data have a 

skewed distribution 

 

SMU discharge 

characteristics, 

recommendations  

- Exclude ISIs > 200 

ms when estimating 

recruitment and 

derecruitment 

thresholds (Farina et 

al., 2009) 

- Calculate discharge 

rate during a 

sustained steady 

contraction (i.e., 

where force 

magnitude or muscle 

activity (EMG) are 

relatively constant) 

- Before smoothing, 

resample ISI time 

series to a constant 

sampling period (ISIs 

are calculated at 

SMU discharge 

times, therefore their 

sampling frequency 

varies in time)(Berger 

et al., 1986)  

- Report discharge 

rate as median and 

IQR in conditions 

where the data have a 

skewed distribution 

- Use the first or the 

last few discharges 

[e.g., 6 (Farina et al., 

2009)] or ISIs to 

determine discharge 

rate at recruitment 

and derecruitment 

- Exclude ISIs >200 

ms    

(Farina et al., 2009)  

- Calculate discharge 

rate at 

recruitment/derecruit

ment as median and 

IQR in conditions 

where the data have a 

skewed distribution 

- Use gradual ramp-

contractions or brief 

fast contractions to 

measure peak 

discharge rate 

- It can be quantified 

as the average rate 

over ≤ 6 discharges 

or as the average of 

the 5 shortest ISIs or 

estimated from a 

function fitted to the 

ISIs  

(Farina et al., 2009) 

- Calculate peak 

discharge rate as 

median and IQR in 

conditions where the 

data have a skewed 

distribution 

- Requires high 

decomposition 

accuracy (>90% 

sensitivity), with 

edited ISI trains.  

- Calculate discharge 

rate variability during 

a   sustained steady 

contraction when 

force magnitude or 

muscle activity 

(EMG) are relatively 

constant  

- Calculate discharge 

rate variability as 

IQR in conditions 

where the data have a 

skewed distribution 

- It is recommended 

to examine for the 

presence of doublets 

when there are large 

variations in force 

magnitude or EMG 

activity (i.e., fast 

contractions with 

steep increases in 

force magnitude). 

However, it is 

important to note that 

doublets might still 

occur during 

sustained 

contractions (Sogaard 

et al., 2001). 

Therefore, caution is 

required when editing 

spike trains to avoid 

eliminating 

physiological 

doublets.   
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Table 4. Measures of association between single motor unit discharge times 267 

Measures of 

association between 

SMU discharge times 

Short-term synchronization Common drive  Coherence  

General principles 

(definitions) 

A tendency for two or more SMUs to 

discharge together or within a few 

milliseconds of one another, with a rate of 

occurrence above that expected due to chance. 

Assessed by cross-correlation peak widths of 

≤10 ms between spike trains of two 

simultaneously recorded SMUs (Sears and 

Stagg, 1976; Kirkwood et al., 1982).   

Measured in the time domain.  

Concurrent fluctuations in discharge rate 

between pairs of SMUs over time. Measured 

in the time domain.  

linear association between the discharge times 

of pairs or populations of SMUs. Measured in 

the frequency domain and calculated with the 

magnitude squared coherence estimate, which 

is the square of the absolute value of the cross-

spectrum of two signals (i.e., discharge times 

of a pair of SMUs or cumulative spike train of 

two groups of SMUs) divided by the power in 

each spectrum. 

  

Reporting of 

measures of 

association 

- Show exemplary cross-correlograms and the 

associated cumulative sum (CUSUM)  

- Show where the CUSUM derivative trace 

exceeds 10 and 90% of the difference between 

its maximal and minimal values. Histogram 

bins within this region represent synchronous 

discharge times. 

 

*Synchronization indexes: 

- Common-input strength (CIS) index 

(Nordstrom et al., 1992);  the number of extra 

counts in the synchronous peak above that 

expected due to 

chance, normalized to the duration of the trial. 

- K’ index (Sears & Stagg, 1976); ratio of the 

number of synchronous spikes relative to the 

number expected by chance divided by the 

average count in the peak region relative to the 

off-peak region. 

- E index (Datta et al., 1991); number of extra 

counts within the peak above that expected 

- Report the filter used to smooth the ISI trains 

and procedure used for ISI resampling to a 

constant sampling frequency before 

smoothing. 

- Report cross-correlation value [(Common 

drive index (De Luca & Erim, 1994)] of each 

motor unit pair with the largest correlation 

coefficient within ± 100 ms of zero lag. 

 

 

- Report the number of SMUs used to 

calculate coherence (e.g., pairs, cumulative 

spike train) and their average discharge rates  

- Indicate the method used to calculate 

coherence [e.g., integral of specific coherence 

in each frequency band (McManus et al., 

2016)] 

- State the windows used (duration, type and 

overlap) to estimate coherence 

- Show examples of coherence spectra with 

the 95% confidence interval 

- Report statistical method used to indicate 

significance of coherence  

(Negro & Farina, 2012). 



 

 
 

due to chance relative to the total number of 

reference unit discharges. 

- Synchronization index (De Luca et al., 

1993); which uses first order recurrence times 

(assesses the nearest forward and backward 

discharge times) to avoid secondary peaks.  

Recommendations 

for measures of 

association 

- Binary conversion of discharge times 

(assigning to each sample of recording either a 

1 when a spike occurred or 0 when a spike did 

not occur) with 1 sample resolution 

- Generate cross-correlation histogram with 

bin size = 1 ms, lags ± 100 ms. 

-  Identify peak region using the CUSUM 

derivative 

- Mean and SD of the off-peak bin counts 

(region outside ±40 ms range) as these 

discharge times are usually attributed to 

chance. 

- Binary conversion of discharge times 

(assigning to each sample of recording either a 

1 when a spike occurred or 0 when a spike did 

not occur) with 1 sample resolution. 

- SMU spike trains are typically convolved 

with a 400 ms Hann window and then high-

pass filtered at 0.75 Hz. 

- Binary conversion of discharge times 

(assigning to each sample of recording either a 

1 when a spike occurred or 0 when a spike did 

not occur) with 1 sample resolution. 

- Use a large number of SMUs and calculate 

pooled coherence (compare all possible pairs) 

(Amjad et al., 1997) or combine discharge 

times from multiple MUs before estimating 

coherence. 

- Significance thresholds should be defined 

and applied. 

- Use the same number of SMUs when 

comparing across conditions. 

 

-Coherence values should be normalized prior 

to making comparisons (since coherence has a 

skewed sampling distribution), therefore:  

1) Convert coherence values into Fisher’s Z-

values (Fz), formula: Fz = atanh√(c), where c 

is coherence. 

2) Transform Z-values into Z-scores Z = 

Fz/√(1/2L), where L is the number of time 

segments used in the coherence analysis. 

3) Remove inherent bias of each coherence 

profile by subtracting the maximal coherence 

value for frequencies >100 Hz. 

 



 

 
 

General 

considerations for 

measures of 

association 

PROS 

- Only one pair of SMUs per muscle is 

required to calculate short-term 

synchronization, however, estimates may vary 

across different SMU pairs (caution).  

PROS 

- Only one pair of SMUs per muscle is 

required to calculate the common drive index, 

however, estimates may vary across different 

SMU pairs (caution).   

  

PROS 

- Provides information about linear 

dependency between a pair or a group of 

SMUs in the delta (0.1-4 Hz), alpha (8-13 Hz), 

beta (14-30 Hz), and gamma (>30-80 Hz) 

bands, which are believed to be related to 

specific sources of modulation (Babiloni et al., 

2020). 

General 

considerations for 

measures of 

association 

CONS 

- The magnitude of correlation that can be 

estimated from the discharge times of two 

motor neurons depends on the frequency 

content of the synaptic input and the 

sampling/discharge rate. Therefore, the 

indexes are biased by average discharge rate 

(even when normalized). 

- Correlation estimates are confounded by 

discharge rate variability. 

- Correlation of SMU pairs provide low levels 

of correlation due to non-linearity of single 

SMU activity (undersampling of population 

activity). 

- Different indexes estimate short-term 

synchronization in different ways. 

- There is high variability among indexes of 

short-term synchronization calculated from 

different SMU pairs. 

 

CONS 

- As with short-term synchronization, CDI 

compares common fluctuation for pairs of 

SMUs, therefore, correlation values tend to be 

small and not representative of the population. 

- The length of the filter (e.g., Hann window 

of 150 or 400 ms) influences the level of 

correlation between SMUs.  

- This index shows high variability across 

different SMU pairs.  

  

CONS 

- Estimates of coherence are influenced by the 

number of SMUs used for the calculation (up 

to a saturation point). 

- Coherence measures derived from one pair 

of SMUs are not representative of the 

population. 

- Average coherence in different bandwidths 

can be influenced by discharge rate, but less 

than for the indexes of short-term 

synchronization. 
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Table 5. Single motor unit peripheral properties and single motor unit action potential amplitude 270 

Peripheral SMU properties estimated with grid surface EMG electrodes  

Considerations for 

the measurement of 

SMU territories 

The discharge times from individual SMUs can be used to trigger surface EMG signals (spike-triggered averaging technique) to estimate the 2D 

spatial representation of MUAPs and thereby assess the location of innervation zones, the orientation of muscle fascicles, and indirectly assess 

SMU territory. Moving plots (videos) showing spatial distribution of SMU activity over time, can help to visualize propagation of MUAPs along 

the fascicles.  

 

Report 

- Anatomical landmarks to denote the location of the grid electrode. 

- The use of dry linear arrays prior to placing the grid electrode. 

- Spatial filter used to visualize innervation maps. 

- The use of intramuscular EMG in combination with surface EMG. If both methods were combined, report the technique that was employed to 

identify MUAPs (e.g., spike-triggered averaging).  

 Recommendations 

- Visualize MUAP propagation with dry linear arrays (single differential configuration) prior to placement of grid electrode 

- Align grid electrode in the direction of the muscle fascicles (i.e., with rows or columns) 

 Caution 

- This method cannot assess actual 3D SMU size. 

- This method could be potentially used to estimate SMU cross-sectional diameter or length, but caution is required. 

Considerations for 

the measurement of 

SMU conduction 

velocity 

Following SMU decomposition, discharge times from individual SMUs can be used to trigger surface EMG signals via spike triggered averaging. 

The 2D spatial representation of MUAPs from HDEMG grid electrode can be used to quantify MUAP propagation speed along the muscle fibres.  

 

Report 

- Interelectrode distance, size and electrode location.  

- Technique used to calculate conduction velocity (e.g., time domain, frequency domain, see (Farina & Merletti, 2004) for review).  

- Spatial filter used to calculate conduction velocity (i.e., single or double differential). 

- Cross-correlation value between channels. 

- Number of channels used to calculate conduction velocity. 

 Recommendations 
- SMU conduction velocity can be only reliably estimated from muscles with fascicles that run parallel to the skin (e.g., vastus medialis, biceps 

brachii).  

- Use ≥3 double-differential channels to estimate conduction velocity to reduce the variability of the estimation (Farina et al., 2002)  

- Cross correlation coefficient of MUAPs across all channels should be reported. 

- The same columns/rows should be selected for repeated measurements across different testing sessions as conduction velocity estimates can 

vary across the electrode grid. 



 

 
 

 Caution 

- The estimation of muscle fibre/motor unit size/recruitment with this method requires caution as several experimental conditions can alter 

conduction velocity without any changes in muscle fibre size. 

- The accuracy of motor unit conduction velocity estimates decreases with SMU depth. 

- Non-aligned fascicles can bias this estimate.  

- Discard motor units with conduction velocity estimates <2 m/s or >8 m/s as they are not physiological (Beretta-Piccoli et al., 2019). 

Estimation of MUAP amplitude  

General 

considerations 

MUAP amplitude has been used to infer SMU size (i.e., lower-threshold SMUs may have lower MUAP amplitude compared to higher-threshold 

SMUs), but the variability is substantial. MUAP amplitude can be quantified with both grid surface electrodes and intramuscular recordings. 

Common measures include peak-to-peak amplitude, root-mean-square, and area.  
 

Report  

- Recording mode (e.g., monopolar, single-, or double-differential) used to measure MUAP amplitude. 

- The number of channels in the measurement (i.e., full electrode grid, single column/row). 

- Mention if SMU discharge times obtained from intramuscular or HDEMG recordings were used to trigger surface EMG signals (spike-triggered 

averaging (Kakuda et al., 1991). 

 Caution 

- Estimates of MUAP amplitude are influenced by the distance from the SMU to the recording electrode (intramuscular or HDEMG). 

- MUAP amplitude estimates are also modulated by inter-electrode distance, muscle architecture, subcutaneous tissue thickness, among other 

factors [see (Farina et al., 2004) for a review]. Therefore, comparison across subjects and muscles requires caution (Martinez-Valdes et al., 

2018). 

- The estimation of SMU size from measures of MUAP amplitude is not generally recommended.   
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Abbreviations and definitions 273 

CDI: Common drive index 274 

CIS: Common input strength 275 

CKC: convolution kernel compensation 276 

CUSUM: Cumulative sum  277 

DSDC: Decompose-synthesise-decompose-compare 278 

ISI: inter-spike interval.  279 

SMU: single motor unit  280 

MUAP: motor unit action potential 281 

MVC: maximum voluntary contraction 282 

SIL: Silhouette threshold.  283 

PNR: Pulse to noise ratio.   284 
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APPENDIX: 532 

Appendix 1. Delphi rating scores (for both rounds 1 and 2). Each cell provides the median score and 533 

(in parenthesis) IQR in first row, then % and absolute frequency of appropriate (scores 7–9) followed 534 

by inappropriate (scores 1–3) in second row.  535 

SMU recordings matrix items R Rating scores – Median (IQR); % appropriate (n), % 

inappropriate (n) 

Electrode type Surface grid of 

electrodes 

Intramuscular fine-

wire electrode 

Intramuscular 

needle electrode 

Electrode design reporting 1 8 (1.8) 

78.6 (11), 0 (0) 

8 (0.8) 

92.9 (13), 0 (0) 

8 (0.8) 

92.9 (13), 0 (0) 

Electrode design recommendations 1 8.5 (1) 

85.7 (12), 0 (0) 

8 (1) 

78.6 (11), 0 (0) 

8 (2) 

100 (14), 0 (0) 

General principles for reporting on SMU 

recording procedures 

1 8 (1.8) 

71.4 (10), 0 (0) 

9 (1) 

100 (14), 0 (0) 

8.5 (1.8) 

85.7 (12), 0 (0) 

General principles for recording single motor unit 

activity (Recommendations) 

1 9 (2) 

78.6 (11), 0 (0) 

8.5 (1.8) 

85.7 (12), 7.1 (1) 

8 (1) 

78.6 (11), 7.1 (1) 

2 8 (1) 

92.9 (13), 7.1 (1) 

8 (1) 

85.7 (12), 7.1 (1) 

8 (2) 

85.7 (12), 7.1 (1) 

PROS 1 8 (1.8) 

92.9 (13), 0 (0) 

8.5 (1) 

92.9 (13), 0 (0) 

8 (1) 

100 (14), 0 (0) 

CONS 1 8.5 (1.8) 

100 (14), 0 (0) 
8 (2.8) 

64.3 (9), 21.4 (3) 

8 (2) 

78.6 (11), 14.3 (2) 

2 9 (0.5) 

100 (14), 0 (0) 

8 (1) 

100 (14), 0 (0) 

8.5 (1) 

100 (14), 0 (0) 

MU decomposition techniques HDsEMG MU 

decomposition 

techniques 

Intramuscular EMG MU 

decomposition techniques 

General principles for processing of EMG signals 

for MU identification (Reporting) 

1 8 (1) 

92.9 (13), 0 (0) 

8 (1) 

92.9 (13), 0 (0) 

General principles for pre-processing of EMG 

signals for MU identification (Recommendations) 

1 8 (2) 

78.6 (11), 0 (0) 

8.5 (1.8) 

85.7 (12), 0 (0) 

PROS 1 9 (1) 

92.9 (13), 0 (0) 

9 (1) 

100 (14), 0 (0) 

CONS 1 7 (1) 

78.6 (11), 0 (0) 

7.5 (1.8) 

78.6 (11), 0 (0) 

Contraction type used to identify MUs HDsEMG MU 

decomposition 

techniques 

Intramuscular EMG MU 

decomposition techniques 

Submaximal isometric contractions 1 9 (1) 

92.9 (13), 0 (0) 

9 (1) 

78.6 (11), 0 (0) 

Submaximal isometric contraction until task 

failure 

1 9 (1) 

92.9 (13), 0 (0) 

8.5 (1.8) 

85.7 (12), 1 (7.1) 

Maximal isometric contractions 1 9 (1) 

100 (14), 0 (0) 

9 (2) 

85.7 (12), 0 (0) 

Submaximal dynamic contractions 1 9 (1.8) 

92.9 (13), 7.1 (1) 

8.5 (2) 

92.9 (13), 0 (0) 

Maximal dynamic contractions 1 9 (0) 

100 (14), 0 (0) 

9 (0) 

100 (14), 0 (0) 

Longitudinal MU tracking HDsEMG MU 

decomposition 

techniques 

Intramuscular EMG MU 

decomposition techniques 

Real-time SMU tracking within a session 1 8 (1) 

100 (14), 0 (0) 

8.5 (2) 

85.7 (12), 0 (0) 

Tracking within a session (across different 

repetitions) 

1 9 (1) 

100 (14), 0 (0) 

9 (0.8) 

100 (14), 0 (0) 
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Across sessions 1 9 (1.8) 

92.9 (13), 7.1 (1) 

9 (0.8) 

100 (14), 0 (0) 

Analysis of decomposition results HDsEMG MU 

decomposition 

techniques 

Intramuscular EMG MU 

decomposition techniques 

Details that should be reported following 

decomposition 

1 8 (1.8) 

100 (14), 0 (0) 

8 (2) 

92.9 (13), 0 (0) 

Recommendations following decomposition 1 8 (2) 

85.7 (12), 0 (0) 

8 (2) 

92.9 (13), 0 (0) 

2 8 (1.8) 

100 (14), 0 (0) 

8 (1.8) 

100 (14), 0 (0) 

MU discharge characteristics Recruit. and 

de-recruit. 

Thresh. 

Mean firing 

rate 

/discharge 

rate 

Discharge 

rates at 

recruit. and 

de-recruit. 

Peak DR  Variability  Double 

discharges or 

doublets 

Reporting MU discharge characteristics 1 8 (1.5) 

78.6, 0 

8 (1) 

78.6, 0 

8.5 (1.8) 

92.9, 0 

8 (1) 

92.9, 0 

9 (1.8) 

78.6, 0 

8 (2.8) 

91.4, 0 

2 9 (1) 

92.9, 0 

8 (1) 

100, 0 

8.5 (1) 

92.9, 0 

8 (1) 

92.9, 0 

8 (1.8) 

92.9, 0 

8 (2) 

92.9, 7.1 

MU discharge characteristics (Recommendations) 1 8 (1) 

92.9, 0 

8.5 (1.8) 

85.7, 0 

8.5 (1.8) 

92.9, 0 

8.5 (1.8) 

78.6, 7.1 

9 (1) 

78.6, 7.1 

8 (1.8) 

78.6, 7.1 

2 9 (1) 

100, 0 

9 (1) 

100, 0 

9 (0.8) 

100, 0 

9 (1) 

100, 0 

9 (1) 

100, 0 

9.5 (1.8) 

92.9, 0 

Measures of correlation between MU discharge times Short-term 

synchronization 
Common drive Coherence 

General principles (definitions) 1 8.5 (1.8) 

85.7 (12), 0 (0) 

8.5 (1) 

85.7 (12), 0 (0) 

9 (1) 

92.9 (13), 0 (0) 

Reporting of correlation measures 1 8.5 (1) 

85.7 (12), 0 (0) 

8 (1) 

92.9 (13), 0 (0) 

8.5 (1.8) 

85.7 (12), 0 (0) 

Recommendations for measures of correlation 1 8 (1) 

78.6 (11), 0 (0) 

8 (1.8) 

85.7 (12), 0 (0) 

8 (2) 

92.9 (13), 0 (0) 

PROS 1 8.5 (1) 

85.7 (12), 0 (0) 

8.5 (1) 

85.7 (12), 0 (0) 

8.5 (1) 

92.9 (13), 0 (0) 

CONS 1 8 (2) 

100 (14), 0 (0) 

8.5 (1.8) 

92.9 (13), 0 (0) 

8 (1) 

92.9 (13), 0 (0) 

Peripheral MU properties estimated with grid surface EMG electrodes 

Considerations for the measurement of MU 

territories – Report 

1 9 (1) 

100 (14), 0 (0) 

Recommendations  1 9 (1) 

100 (14), 0 (0) 

Caution 1 8 (1.8) 

100 (14), 0 (0) 

Considerations for the measurement of MU 

conduction velocity – Report 

1 9 (1.8) 

92.9 (13), 0 (0) 

Recommendations  1 8 (2) 

78.6 (11), 0 (0) 

Caution 1 8 (2) 

78.6 (11), 7.1 (1) 

Estimation of MUAP amplitude 

General considerations – Report 1 8 (1.8) 

92.9 (13), 0 (0) 

2 8 (1.8) 

78.6 (11), 0 (0) 

Caution 1 7.5 (2.8) 

71.4 (10), 0 (0) 

2 8.5 (1) 

100 (14), 0 (0) 


