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Abstract We prove that pillage games (Jordan in J Econ Theory 131.1:26–44, 2006,
“Pillage and property”, JET) can have multiple stable sets, constructing pillage games

with up to 2
n−1

3 stable sets, when the number of agents, n, exceeds four. We do so by
violating the anonymity axiom common to the existing literature to establish a power
dichotomy: for all but a small exceptional set of endowments, powerful agents can
overcome all the others; within the exceptional set, the lesser agents can defend their
resources. Once the allocations giving powerful agents all resources are included in
a candidate stable set, deriving the rest proceeds by considering dominance relations
over the finite exceptional sets—reminiscent of stable sets’ derivation in classical
cooperative game theory. We also construct a multi-good pillage game with only three
agents that also has two stable sets.

Keywords Pillage games · Cooperative game theory · Core · Stable sets

JEL Classification C63 · C71 · P14

1 Introduction

Pillage games are cooperative games which allow a coalition’s power to depend on
its resources as well as its membership. As cooperative games, they do not require
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agents to follow any predetermined game form, making them well-suited to the study
of power struggles without third party enforcement, in which any proposed game form
may itself be contested. Allowing transferrable resources to contributed to both power
and value is a similarly appealing extension to standard cooperative games.

Concretely, consider coalition formation problems. Non-cooperative analyses typ-
ically specify rules for determining a proposer and a sequence of respondents, which
often seem contrived. Standard cooperative analyses, on the other hand, do not recog-
nize that prospective coalition partners may be attractive not just for intrinsic reasons,
but for their transferrable holdings. Google, for example, seeking to defend hard-
ware manufacturers using its Android operating system from Apple’s legal attacks,
has sold patents to HTC, allowing HTC to—days later—launch its own patent case
against Apple (Kwong 2011; Milford and Decker 2011). In international politics, great
powers often transfer power—in the form of military aid—to their clients. Such behav-
ior is pervasive and intuitively obvious, but poses problems for the standard analyses
mentioned.

Analysis of pillage games has focused on their stable sets: these are both intrin-
sically interesting, and have been shown to be equivalent to a (farsighted) core in
expectation (Jordan 2006). Thus, if the property of being undominated is an appealing
one, and if forward looking agents are seen as natural, stable sets are a compelling
solution concept. There is evidence that pillage games’ stable sets behave better than
those of other cooperative games: they are small, and often unique—in sharp contrast
to the famous ‘signature’ example of Shapley (1959) which constructed a game in
characteristic function form with an infinite number of stable sets, each potentially
infinite.1

Both stable sets’ small size and their apparent uniqueness owe to pillage games’
structure: coalitions’ power must satisfy a coalitional monotonicity axiom (larger
coalitions, in the sense of set inclusion, are more powerful) as well as weak and strong
versions of a resource monotonicity axiom (coalitions whose members have more
resources are more powerful).

On size, Jordan (2006) used the strong resource monotonicity axiom to prove that
pillage games’ stable sets were finite.2 Kerber and Rowat (2011) further exploited the
same axiom to tighten Jordan’s bound to a Ramsey number. Saxton (2011) also made
use of the coalitional monotonicity axiom to tighten the bound yet further to one that
nonetheless remained doubly-exponential. Kerber and Rowat (2014) identified three
axioms satisfied by all examples of pillage games previously studied—anonymity (or
symmetry), continuity, and responsiveness—and derived a tight bound of 15 alloca-
tions for three agent pillage games satisfying these additional axioms.

On uniqueness, Jordan (2006) proved that the wealth is power pillage game—his
leading example—had a unique stable set; he did not find examples of multiple sta-
ble sets. Kerber and Rowat (2014) proved uniqueness in three agent pillage games

1 Lucas (1992, pp. 562, 566) observed that this result ended hopes of finding an algorithm for constructing
stable sets. Aumann (1985) had already lamented that “[o]ther than a small number of elementary truisms
…there is no theory, no tools, certainly no algorithms” for computing stable sets.
2 Beardon and Rowat (2013) extended the original result to multi-good pillage games, showing that stable
sets had measure zero, and bounding their Hausdorff dimension.
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satisfying the three additional axioms; a draft of their paper that preceded the
present paper’s results (Kerber and Rowat 2009) also conjectured that pillage games’
monotonicity axioms might lead to fine balances of power, such that stable sets either
existed uniquely, or did not exist at all.

This paper presents a family of counter-examples to that uniqueness conjecture,
each more general than its predecessor. All extend the majority pillage game (or
strength in numbers game) analyzed by Jordan and Obadia (2014) and Jordan (2006).
In the classic majority game (Lucas 1992), domination only occurs if one coalition
has strictly more members than the other. For three agent majority games, there are
a continuum of stable sets, each containing a continuum of allocations such that one
agent’s resources are held constant; the choice between two allocations within such
sets pits one agent against one other, satisfying internal stability. Three agent majority
games also have a degenerate stable set containing three allocations, each of which
splits the resource equally between two of the agents. By contrast, the majority pillage
game breaks ties in coalitional size in favour of the coalition with greater aggregate
resource holdings; this additional mode of dominance eliminates the majority game’s
continuum stable sets.

The examples presented here extend the majority pillage game by violating the
anonymity axiom that grants each agent identical intrinsic strength. Insofar as most
empirical applications will not involve intrinsically identical agents, it is clearly impor-
tant that the theory be developed to handle violations of anonymity.

The present constructions all include one or more powerful agents with a large,
fixed intrinsic strength, and many lesser agents with variable—but lower—strengths.
Specifically, they all exhibit the following power dichotomy: for all but a handful of
exceptional allocations, the powerful agents are more powerful than the lesser agents;
however, at those exceptional allocations, the lesser agents just match the powerful
agents.

The logic behind these constructions is that stable sets must satisfy both internal
stability—harder for large sets—and external stability—harder for small sets. As pil-
lage games’ stable sets are small, the existence of powerful agents with the ability
to dominate all but a small number of exceptional allocations overcomes the usual
problem with external stability.

Once the allocations sharing the endowment between the powerful agents are
included in candidate stable sets, the problem of constructing stable sets reduces to
one of assessing stability over the finite exceptional sets. This problem is both straight-
forward, and reminiscent of classical cooperative analysis (see, for example, Lucas
(1971)). Section 3 presents the first counter-example, a four-agent game whose excep-
tional set is defined to create a cyclical dominance relation among its four elements.
Thus, either the even or odd elements of the exceptional set may belong to a stable set,
yielding two stable sets. While most of the examples use power functions violating
the continuity axiom, we show that this is an expositional aid rather than an intrinsic
feature of the examples. Section 3.1 applies the same construction to a pillage game
with an empty core.

Section 4 generalizes the initial example by defining an exceptional set for each
non-overlapping set of three lesser agents. By creating these to exclude the possibility
of dominance across them, stable sets are constructed by independently picking either
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the even or odd elements from each such exceptional set. Thus, an n-agent game

yields 2
n−1

3 stable sets. Section 5 shows how to introduce dominance relations across
exceptional sets, making choices of even or odd elements from one dependent on
choices from another. This can arbitrarily reduce the number of stable sets below

2
n−1

3 .
Finally, Sect. 6 constructs a multi-good pillage game with two stable sets, but

only three agents. Multi-good pillage games (Rowat 2009) add qualitatively to the
original single-good pillage game by treating consensual trade in the same framework
as non-consensual ‘pillage’. In this richer environment, dominance can be symmetric,
allowing construction of two-element exceptional sets for two agents, each element
of which dominates the other. In single good pillage games, domination cannot be
symmetric (Jordan 2006), making four-element exceptional sets the smallest that can
support two stable sets.

The Appendix collects proofs. An earlier version of the paper (MacKenzie et al.
2013) contained more detail at various points.

In conclusion, this paper replaces the conjecture that pillage games have no more
than one stable set with new questions. First, do the additional axioms of anonymity,
continuity and responsiveness—sufficient for uniqueness with three agents (Kerber
and Rowat 2014)—guarantee that larger pillage games also have no more than one
stable set? As the constructions presented here rely on violating anonymity, is that
condition alone sufficient for uniqueness? Finally, as the present constructions only
produce finite numbers of stable sets, are there pillage games capable of producing
infinite sets of stable sets?

2 Pillage games

Let I = {0, . . . , n − 1} be a finite set of agents; when indexed by i , j , and k, these
refer to distinct agents. An allocation divides a unit resource among them, so that the
feasible set of allocations is a compact, continuous n − 1 dimensional simplex:

X ≡
{

{xi }i∈I

∣∣∣∣∣xi ≥ 0,
∑
i∈I

xi = 1

}
.

Let ⊂ denote a proper subset, and use ⊆ to allow the possibility of equality. A power
function is defined over subsets of agents and allocations, so that π : 2I × X → R

satisfies:

(WC) if C ⊂ C ′ ⊆ I then π
(
C ′, x

) ≥ π (C, x)∀x ∈ X ;
(WR) if yi ≥ xi∀i ∈ C ⊆ I then π (C, y) ≥ π (C, x); and
(SR) if ∅ �= C ⊆ I and yi > xi∀i ∈ C then π (C, y) > π (C, x).

Axiom WC requires weak monotonicity in coalitional inclusion; WR requires weak
monotonicity in resources; SR requires strong monotonicity in resources.

A pillage game is then a triple, (n, X, π).
Kerber and Rowat (2014) noted that all examples of power functions in Jordan

(2006) satisfied the following additional axioms:
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(AN) if σ : I → I is a 1:1 onto function permuting the agent set, then i ∈ C ⇔
σ (i) ∈ C ′, and xi = x ′

σ(i) then π (C, x) = π
(
C ′, x′).

(CX) π (C, x) is continuous in x.
(RE) if i �∈ C and π ({i} , x) > 0 then π (C ∪ {i} , x) > π (C, x).

Axiom AN is an anonymity axiom which means that power does not depend on the
identity of agents, merely their cardinality and resources.3 Axiom RE is the respon-
siveness axiom of Jordan (2009): the addition of an agent which has power even as a
singleton strictly increases the power of its new coalition. With continuity axiom CX,
these ensure that three agent pillage games have no more than one stable set, containing
no more than 15 allocations (Kerber and Rowat 2014).

An allocation y dominates an allocation x, written y x, iff

π (W, x) > π (L , x) ;

where W ≡ {i |yi > xi } is the win set and L ≡ {i |xi > yi } is the lose set. For Y ⊆ X ,
let

be the dominion of Y , the set of allocations dominated by an allocation in Y . Similarly,
U (Y ) = X\D (Y ), is the set of allocations undominated by any allocation in Y .

The core, K , is the set of undominated allocations, U (X) = X\D (X).
A set of allocations, S ⊆ X , is a stable set iff it satisfies internal stability,

S ∩ D (S) = ∅; (IS)

and external stability,

S ∪ D (S) = X. (ES)

The conditions combine to yield S = X\D (S). While stable sets may not exist, or
may be non-unique in general cooperative games, the core necessarily belongs to any
stable set; when the core also satisfies external stability, it is the unique stable set.

3 Four agents and two stable sets

This section presents a power function based on the strength in numbers (SIN) power
function (Jordan 2006),

π (C, x) =
∑
i∈C

[xi + v] , v > 1.

3 Jordan and Obadia (2014) called this axiom ‘symmetry’, following the terminology of CF games (Lucas
1971). We regard ‘anonymity’ as more precise, as it restricts the symmetry to agents’ identity: intrinsically
identical agents may differ in power when their resources differ.
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This defines a majority pillage game (Jordan and Obadia 2014) in which the larger
coalition is always the more powerful, with ties in coalitional size resolved by com-
paring their aggregate resource holdings. Our version extends the original in two
ways. First, it violates anonymity axiom AN by granting the zeroth agent an intrin-
sic strength much greater than each of the others’. Second, it allows these intrinsic
strengths to depend on coalitions and their resource holdings; in particular, it creates a
small exceptional set of allocations, outside of which the zeroth agent alone is stronger
than the other three together; inside it, however, they can resist the zeroth. This power
dichotomy is the key to all of the following examples.

Our power function is therefore:

π (C, x) =
∑
i∈C

[xi + vi (C, x)] ; (1)

where v0 (C, x) = 10, and

vi (C, x) =
{

q̄ if {1, 2, 3} ⊆ C and x ∈ E
q otherwise

}
∀i ∈ {1, 2, 3} (2)

where q̄ ≡ 3, q is bounded by

1
3 − 2δ < q < q̄ (3)

with 0 < δ < 1
6 , and the exceptional set is

E ≡ {a, b, c, d} , where

a ≡ (
0, δ, δ + 2

3 (1 − 3δ), δ + 1
3 (1 − 3δ)

)
b ≡ (

0, δ, δ + 1
3 (1 − 3δ), δ + 2

3 (1 − 3δ)
)

c ≡ (
0, δ + 1

2 (1 − 3δ), δ, δ + 1
2 (1 − 3δ)

)
d ≡ (

0, δ + 1
2 (1 − 3δ), δ + 1

2 (1 − 3δ), δ
)
.

(4)

Thus, the upper bound on q in inequality 3 prevents the three lesser agents overpow-
ering the zeroth, while lower bound ensures that any two weak agents can overpower
the third at any x ∈ E .4,5 The δ parameter ensures that the three weaker agents have
positive endowments in the exceptional allocations, and will therefore resist pillage to
t0; its upper bound ensures that q > 0, whose importance shall be seen below.

The power dichotomy here owes to this inequality:

3q + 1 < v0 (C, x) = 3q̄ + 1. (5)

4 Fully expressed, the lower bound is 2q + 2δ + 1
3 (1 − 3δ) > q + δ + 2

3 (1 − 3δ).
5 While the allocations in E can be written more simply—e.g. a =

(
0, δ, 2

3 − δ, 1
3

)
—the current presen-

tation will be clearer in the more general constructions.
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This will be seen to allow, on the one hand, the powerful zeroth agent to seize the
resources of the other three for any non-exceptional allocation while, on the other,
never allowing the lesser agents to seize the zeroth agent’s resources.

It may seem that the discontinuity in the three agents’ intrinsic power at the excep-
tional set risks violating resource monotonicity. This is not the case:

Lemma 1 Equations 1 and 2 define a power function.

Proof Equation 1 defines a function: the auxiliary conditions partition the domain,
and each condition maps onto a single-valued term.

Now demonstrate that function 1 satisfies the three pillage axioms. As, on X\E , the
function is the SIN power function, the axioms need only be tested on the exceptional
set, E , and across that set and its complement.

WC As x is held constant, only increases in C to C ′ for x ∈ E need to be
considered. There are three cases to consider:
1. not all i ∈ {1, 2, 3} are in C or in C ′. In this case, each agent i in C ′\C

contributes xi + q > 0 to coalitional power if i > 0 and xi + 10 > 0 if i = 0.
As π

(
C ′, x

)
is additive across agents, and as the contributions of the agents

in C do not change, the result holds in this case.
2. not all i ∈ {1, 2, 3} are in C but {1, 2, 3} = C ′. Now each agent i in C ′\C

contributes xi + q̄ > 0; further, the contributions of those i in C are increased
from xi + q to xi + q̄ . Again, π

(
C ′, x

)
> π (C, x), consistent with the result.

3. {1, 2, 3} ∈ C so that C ′ = I . As the newcomer, i = 0 adds x0 + 10, and as the
others’ contributions do not change, the axiom is satisfied.

WR Now there are two cases to consider:
1. 0 ∈ C , which subdivides into:

(a) {1, 2, 3} ⊆ C , which implies that yi ≥ xi∀i ∈ I . By the aggregate
endowment constraint, this implies that y = x, for which axiom WR is
trivially satisfied.

(b) {1, 2, 3} �⊆ C , so that vi (C, y) = vi (C, x) ∀i ∈ I , allowing these terms
to cancel when calculating π (C, y) − π (C, x) = ∑

i∈C (yi − xi ). That
yi ≥ xi for all i ∈ C then upholds the result.

2. 0 �∈ C further subdivides into two non-trivial cases:
(a) {1, 2, 3} = C , which implies that, if x ∈ E , then y = x:

∑
i∈C xi = 1

for x ∈ E , and yi ≥ xi for all i ∈ C with
∑

i∈C yi = 1. Then, for all
i ∈ C , vi (C, y) = vi (C, x) so that π (C, y) − π (C, x) depends only on
relative resource holdings, as above.

(b) {1, 2, 3} �= C , implying that {1, 2, 3} �⊆ C so that for all i ∈ C , it is again
the case that vi (C, y) = vi (C, x).

SR The proof is analogous to that for WR. ��

Following Jordan (2006), let t i ∈ X be a tyrannical allocation such that t i
i = 1 and

t i
j = 0. Then:

Lemma 2 For the pillage game defined by Eqs. 1 and 2, the core is
{

t0
}
.
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Proof First establish that t0 belongs to the core:

π
(
{0} , t0

)
= 1 + 10 = 11 > 3q = π

(
{1, 2, 3} , t0

)
.

Second, show that t0 dominates all allocations, y, in X\ (
E ∪ {

t0
})

. Noting that{
i
∣∣t0

i > yi
} = {0} and

{
i
∣∣yi > t0

i

} ⊆ {1, 2, 3} we calculate

π ({0} , y) = y0 + 10 ≥ 10 > (1 − y0) + 3q

= π ({1, 2, 3} , y) ≥ π
({

i
∣∣∣yi > t0

i

}
, y

)
.

Third, show that t0 does not dominate any z ∈ E :

π
({

i
∣∣∣t0

i > zi

}
, z

)
= π ({0} , z)

= 10 = 1 + 3 · 3 = π ({1, 2, 3} , z) = π
({

i
∣∣∣zi > t0

i

}
, z

)
.

Finally, for each allocation z in E , it can be confirmed that there is another, w ∈ E ,
such that w z. Concretely:

(6)

(Consider, for example, a d: W = {2, 3} and L = {1} as direct implications of
δ ∈ (

0, 1
6

)
; thus, π (W, d) = 2q + 1

2 + 1
2δ > q + 1

2 − 1
2δ = π (L , d).)

Thus, the only undominated allocation is t0, establishing the result. ��
As shall be seen, the cores in our examples, when they are non-empty, are small, but

have large dominions—precisely the conditions that led Lucas to discover games in
characteristic function form that had no stable sets (Lucas 1971). Here, the condition
contributes to multiplicity of stable sets.

Figure 1 illustrates some of the dominance relations generated by power function 1:
arrows flow from dominating to dominated allocations. Their cyclical behaviour is key
to the counter-example.

Theorem 1 The pillage game defined by functions 1 and 2 yields exactly two stable
sets, S1 ≡ {

t0, a, b
}
, and S2 ≡ {

t0, c, d
}
.

Proof First confirm that S1 and S2 are stable. As established in Lemma 2, t0 dominates
all allocations in X\ (

E ∪ {
t0

})
, and no allocations in E . As a, b are in E , and neither

a b nor b a is true, S1 is internally stable. The cyclical dominance within E ensures
that {c, d} ∈ D ({a, b}), establishing external stability. Thus, S1 is stable. A parallel
argument establishes that S2 is as well.

To prove that there are no other stable sets, denote any stable set of the game by Si .
In any cooperative game, the core belongs to any such stable set. In this case, t0 ∈ Si .
As allocations dominated by the core, D (K ), cannot belong to a stable set, the problem
of finding another stable set reduces to that of considering inclusions and exclusions
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Fig. 1 D
(

t0
)

=
X\

{
t0, a, b, c, d

}
and

a d b c a

of the allocations in E . As t0 does not dominate them, the core is not a stable set on its
own. By the cyclical dominance, suppose that one other element, a, also belonged to
Si ; this is insufficient for external stability as it leaves b and c undominated. Adding b
to a yields S1, which was already identified; as that satisfies external stability, adding
either c or d would then violate internal stability. Allocation c (and supersets containing
it) cannot be added to a without violating internal stability. Finally, attempting to add
allocation d (or supersets) to a also violates internal stability. Identical reasoning
beginning, in turn, with each of b, c and d establishes that no further stable sets exist.

��
All the examples of pillage games studied by Jordan (2006), Jordan and Obadia

(2014) and Kerber and Rowat (2014)—including a discontinuous example in Kerber
and Rowat (2014)—were such that each allocation, x, generated a dominion, D (x),
whose components had no holes. In the present example, the core’s dominion has
holes at the edge of the simplex—the exceptional set. Once the core is included in a
candidate stable set, analysis resembles classical analysis of games in characteristic
function form.

The preceding example can be replicated with a continuous power function, and
an empty core, isolating violations of the anonymity axiom as the common feature
in all of our constructions. Constructing an example in which the power of the lesser
agents increases continuously to that of the zeroth agent as the allocations approach
the exceptional set merely requires replacing Eq. 2 with

vi (C, x) =
{

max { f (r (a, x)) , f (r (b, x)) , f (r (c, x)) , f (r (d, x)) , q} if {1, 2, 3} = C
q otherwise

}
(7)

where r (z, x) ≡ ∑
i∈I |zi − xi | is the rectilinear distance between x and z, and

f (r ( y, x)) ≡ q̄ − 10 (q̄ − q) r ( y, x) ; (8)
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where q and q̄ are as defined on page 7. Worked details can be found in MacKenzie
et al. (2013).

3.1 Two stable sets with an empty core

The emptiness or non-emptiness of the core is often linked to other phenomena in
cooperative games; however, we now extend the construction above to produce multi-
ple stable sets in pillage games with empty cores.6 To do so, triplicate agent 0 to create
agents 00 and 000. The exceptional set again has four elements, E ≡ {a, b, c, d}: for
the lesser agents, i > 0, the allocations remain identical to the original ones defined
by Eq. 4; the triplicated zeroth agents each receive nothing under the exceptional allo-
cations, x0 = x00 = x000 = 0∀x ∈ E . Finally, modify the membership premium
defined in Eq. 2 so that (for this subsection alone) q̄ = 19

3 rather than 3; maintain the
upper bound q < 3. Let split allocations, si, j , divide the resource equally between i
and j , so that si, j

i = si, j
j = 1

2 ; s0,00, s0,000 and s00,000 shall play the same role as t0

did in the original example, although they are not core allocations.

Theorem 2 For the six agent pillage game defined by modified Eqs. 4, 2 and original
Eq. 1, the core is empty, and the only stable sets are S1 = {

s0,00, s0,000, s00,000, a, b
}

and S2 = {
s0,00, s0,000, s00,000, c, d

}
.

The theorem’s proof relies on the following definition and lemma. Denote the set
of allocations partitioning the endowment between the zero agents by

Z ≡ {z ∈ X |z0 + z00 + z000 = 1 } .

The lemma is then:

Lemma 3 If f is an allocation that belongs to neither the exceptional set, E, nor to
the zero simplex, Z, then f cannot belong to any stable set in the pillage game of
Theorem 2.

Proof of Theorem 2 Proposition 2.6 of Jordan (2006) states that a pillage game has an
empty core if no agent can defend itself from pillage even when it possesses the entire
allocation.7 Here, confirming that the strongest agents cannot defend themselves also
confirms that the core is empty:

π
(
{0} , t0

)
= 10 + 1 < 10 + 10 + 3q = π

(
I\ {0} , t0

)
.

6 Lucas (1992, p. 586) argued that the stable set became a particularly important solution concept when
the core was empty, as the core was generally a good solution concept, and its emptiness often implied
the emptiness of related solution concepts. Lucas (1992, p. 552) also noted that the initial focus of von
Neumann and Morgenstern (1953) was on constant sum essential games in characteristic function form, all
of which have empty cores.
7 The Bondareva–Shapley theorem provides a parallel result for games in characteristic function form.
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Second, establish internal stability. Dominance within the exceptional set remains
as described in expression 6. Thus, an internally stable set may contain only one of
{a, b} and {c, d}. By symmetry, it only remains to show that neither a s0,00 nor
s0,00 a:

π
(
{1, 2, 3} , s0,00

)
= 3q < 10 + 10 + 1 = π

(
{0, 00} , s0,00

)
;

π ({0, 00} , a) = 10 + 10 = 3 · 19
3 + 1 = π ({1, 2, 3} , a) .

Third, establish external stability. By expression 6, including either {a, b} or {c, d}
ensures that all excluded allocations in E are dominated by an included one. For
allocations outside E , the power of a coalition formed of any two of the zero agents is
at least 20. The strongest opposition that they can face has power 10 + 3q + 1 < 20.
Any allocation not in E which does not split the unit endowment between two of the
zero agents therefore allows formation of a coalition of two zero agents who stand
to benefit by splitting the endowment equally between themselves; such equal splits
belong to the proposed stable sets. As, by the previous logic, these two agents can
overpower their opposition, external stability holds.

Finally, show that no other stable sets are possible. By Lemma 3, only allocations
in E ∪ Z may belong to any stable set. As its proof establishes that no allocation in E
dominates one in Z , ES on Z must be satisfied using only allocations from Z itself.
As the allocations dominating the rest of Z must also be internally stable amongst
themselves, and as the game played over Z is a three agent majority pillage game, the
result follows directly from Theorem 3.4 of Jordan and Obadia (2014), which proved
a unique stable set equal to

{
s12, s23, s13

}
in the three agent majority pillage game. ��

The pillage game above is based on a majority pillage game played among the three
zero agents, which has

{
s0,00, s0,000, s00,000

}
as its unique stable set. Adding the three

lesser agents thus creates new stable sets containing the original one.

4 Independent exceptional sets: 2
n−1

3 stable sets

This section extends the original construction, defining exceptional sets for each dis-
joint set of three consecutive lesser agents. As these are designed to ensure that there
are no dominance relations across sets, stable sets may be constructed by indepen-

dently choosing the even or odd allocations in each of these, yielding 2
n−1

3 stable sets
when n − 1 is a multiple of three.

Define the index J = {
1, . . . , n−1

3

}
so that the family of sets of three consecutive,

disjoint agents is
{

Pj
}

j∈J , with Pj = {k, l, m}, where k = 3( j − 1) + 1, l =
3( j − 1) + 2 and m = 3( j − 1) + 3. The exceptional set belonging to each j ∈ J is
E j ≡ {

a j , b j , c j , d j
} ⊂ X , where

(
a jk, a jl , a jm

) = (
δ, δ + 2

3 (1 − 3δ), δ + 1
3 (1 − 3δ)

)
,(

b jk, b jl , b jm
) = (

δ, δ + 1
3 (1 − 3δ), δ + 2

3 (1 − 3δ)
)
,
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Fig. 2 Independent exceptional
sets

(
c jk, c jl , c jm

) = (
δ + 1

2 (1 − 3δ), δ, δ + 1
2 (1 − 3δ)

)
,(

d jk, d jl , d jm
) = (

δ + 1
2 (1 − 3δ), δ + 1

2 (1 − 3δ), δ
)
,

and a ji , b ji , c ji , d ji = 0 for all i �∈ Pj .
As before, Eq. 1 defines the base of the power function. Now generalize the power

dichotomy so that—for q bounded below by the inequality in 3—its upper bound, q̄
and v0 (C, x) are determined by

(n − 1) q + 1 < v0 (C, x) = 3q̄ + 1. (9)

Again, this allows the zeroth agent to seize all resources other than those in exceptional
allocations, while always protecting its own resources from seizure.

The other vi (C, x) are again defined to give the lesser agents less intrinsic power
except when allied at their exceptional allocations:

vi (C, x) =
{

q̄ if ∃ j : i ∈ Pj and Pj ⊆ C and x ∈ E j

q otherwise

}
. (10)

Lemma 1 generalizes as expected:

Lemma 4 Equations 1 and 10 define a power function.

This section’s main result is:

Theorem 3 The n-agent pillage game defined by Eqs. 1 and 10 yields exactly 2
n−1

3

stable sets, each containing t0 and exactly one of S j,1 ≡ {
a j , b j

}
or S j,2 ≡ {

c j , d j
}

for each j ∈ J .

The construction is illustrated for six agents in Fig. 2. Before proving the theorem,
we state and prove an auxiliary lemma:
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Lemma 5 For all distinct Ei and E j , there are no x ∈ Ei and y ∈ E j such that
x y.

Proof of Theorem 3 Internal stability: each individual S j,1 and S j,2 is internally stable
by Theorem 1. Lemma 5 proves that the series of such sets defined in the theorem are
also internally stable. Finally, to show that t0 does not dominate any of the exceptional
allocations, it suffices to show that

π ({0} , ai ) = v0 (C, ai ) = 3q̄ + 1 = π (Pi , ai ) .

External stability: the core is again
{

t0
}
; it dominates all other allocations outside

the E j . As in Theorem 1, the elements in any S j,1 and S j,2 dominate the remaining
allocations in the corresponding E j ; as the theorem constructs a set from t0 and one
of these for each E j , external stability follows.

Finally, show that these are the only possibilities. As already noted, the core belongs
to any stable set. This leaves the allocations in the E j to be included or excluded. As, by
Lemma 5, no allocation in one exceptional set can dominate an allocation in another,
each a j must either be included, or dominated by an included allocation from E j ,
reducing the problem to that in Theorem 1. ��

5 Dependency: arbitrary numbers of stable sets

Theorem 3 restricted the number of stable sets to a power of two. By violating Lemma 5
to allow dominance across the exceptional sets, choices about inclusion of allocations
in one exceptional set become dependent on these choices in other exceptional sets,
reducing the possible number of stable sets. This section builds a six agent game with
three stable sets to illustrate.8

Define the sets Ẽ1 = {a1, b1, c1, d1} and Ẽ2 = {a2, b2, c2, d2}, where 0 < δ <
1
6 , 0 < α < 1

6 , and

a1 = (
0, δ, δ + 2

3 (1 − 3δ) , δ + 1
3 (1 − 3δ) , 0, 0

)
b1 = (

0, δ, δ + 1
3 (1 − 3δ) , δ + 2

3 (1 − 3δ) , 0, 0
)

c1 = (
0, δ + ( 1

2 + α
)
(1 − 3δ) , δ, δ + ( 1

2 − α
)
(1 − 3δ) , 0, 0

)
d1 = (

0, δ + ( 1
2 + α

)
(1 − 3δ) , δ + ( 1

2 − α
)
(1 − 3δ) , δ, 0, 0

)
a2 = (

0, δ, 0, 0, δ + 2
3 (1 − 3δ) , δ + 1

3 (1 − 3δ)
)

b2 = (
0, δ, 0, 0, δ + 1

3 (1 − 3δ) , δ + 2
3 (1 − 3δ)

)
c2 = (

0, δ + 1
2 (1 − 3δ) , 0, 0, δ, δ + 1

2 (1 − 3δ)
)

d2 = (
0, δ + 1

2 (1 − 3δ) , 0, 0, δ + 1
2 (1 − 3δ) , δ

)
.

Three parameters therefore define the exceptional sets. As before, δ ensures that excep-
tional allocations are split between three lesser agents. Now, as agent i = 1 receives

8 See MacKenzie et al. (2013) for the general construction.
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resources in both Ẽ1 and Ẽ2, it has strict preferences across exceptional sets. The new
parameter, α, overturns Lemma 5 to establish dominance relations across the excep-
tional sets. Its upper bound of 1

6 reflects the requirement that agent 2 (resp. 3) gain
from the transition from b1 to d1 (resp. from a1 to c1), as it did previously. Finally, two
further bounds are added to q (in addition to inequality 3), also assisting in establishing
dominance relations across exceptional sets:

1
2 (1 − 3δ) + δ + 3q > 1

2 (1 − 3δ) + 2δ + 2q ⇒ q > δ; (11)

(1 − 3δ) + 2δ + 2q ≥ δ + 3q ⇒ 1 − 2δ ≥ q; (12)

Otherwise, the power function’s base remains defined by Eq. 1 and v0 (C, x) by Eq. 9.
The remaining vi (C, x), for all i > 0, are then expressed symmetrically as

vi (C, x) =
{

q̄ if
(
{1, 2, 3} ⊆ C ∧ x ∈ Ẽ1

)
∨

(
{1, 4, 5} ⊆ C ∧ x ∈ Ẽ2

)
q otherwise

}
;(13)

where q̄ is as defined in Eq. 9.

Theorem 4 The six agent pillage game defined by Eqs. 1 and 13 yields exactly three
stable sets,

{
t0, a1, b1, a2, b2

}
,
{

t0, a1, b1, c2, d2
}

and
{

t0, c1, d1, a2, b2
}
.

The proof uses the following lemmas:

Lemma 6 For each i ∈ {1, 2}, ai di bi ci ai .

Lemma 7 No allocation in Ẽ1 is dominated by an allocation in Ẽ2.

Lemma 8 Neither a2 nor b2 is dominated by an allocation in Ẽ1.

Lemma 9 Neither c2 nor d2 is dominated by either a1 or b1.

Lemma 10 Across exceptional sets, the following hold: c1 c2, d1 c2, c1 d2 and
d1 d2.

Figure 3 depicts the dominance relations established by Lemmas 6 to 10.

Proof of Theorem 4 As before, the core is t0, which must belong to any stable set.
Similarly, by definition of v0 (C, x) and q̄ , the remaining set of allocations undomi-
nated by it are Ẽ1 and Ẽ2. Thus, any stable set must be the union of t0 and sets stable
on the restriction of the allocation space to Ẽ1 and Ẽ2.

Lemmas 6–10, which establish all dominance relations among and between the
members of Ẽ1 and Ẽ2, make the task of finding stable sets on these restricted spaces
trivial.

As previously, for each i = 1, 2, ai pairs with bi and ci with di : a stable set
including one of a pair but not the other will—by Lemma 6—violate either internal
stability or external stability.

First consider including a1 and b1, which dominate c1 and d1, but do not dominate
allocations in Ẽ2. Thus, as before, either {a2, b2} or {c2, d2} may be added to the
candidate stable set, completing it. This produces the theorem’s first two stable sets.
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Fig. 3 Dominance within and
between Ẽ1 and Ẽ2

Now include c1 and d1 instead. This excludes c2 and d2, forcing the inclusion of
a2 and b2, the theorem’s third stable set.

Finally, no other stable sets are possible: t0 dominates all allocations outside Ẽ1
and Ẽ2. Within these exceptional sets, a1 must either be included or excluded, both
of which have been considered above. ��

6 A three agent counter-example with multiple goods

While Jordan noted that domination is asymmetric in the original pillage environment,
Rowat (2009) showed that it may be symmetric in a multi-good pillage game. This
allows construction of exceptional sets of two allocations, each dominating the other.
Economically, the multi-good pillage game allows one to model trade as a form of
pillage with an empty lose set, allowing analysis of trade in the absence of externally
enforced property rights.

The objects of the single good pillage game generalise naturally to the case of
m > 1 goods, each in unitary endowment. The set of allocations becomes

X =
{

(x1, . . . , xn) :
∑

i

x1i = · · · =
∑

i

xmi = 1, 0 ≤ x ji ≤ 1

}
⊂ (

R
m)n

,

a subset of R
mn . The allocation of each agent i is xi = (x1i , . . . , xmi ), where 0 ≤

x ji ≤ 1 for each i and j . Allocations of the goods are vectors, x = (x1, . . . , xn);
as inequality no longer provides a complete order, they are compared according to a
preference relation, �i , defined on R

m+; denote strict preference by �i and indifference
by ∼i .

The axioms defining coalitional power extend naturally to the multi-goods environ-
ment, by replacing the original x ∈ R

n with x ∈ R
mn . The definition of dominance

remains unchanged, but the win and lose sets are now formed on the basis of strict
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Fig. 4 An example of cyclicity:
a b a

preference rather than strict inequality. Determining whether x y thus requires con-
struction of W ≡ {

i
∣∣xi �i yi

}
and L ≡ {

i
∣∣ yi �i xi

}
. The definition of stability is

unchanged.
Figure 4 illustrates a two agent counter-example to acyclicity. In it, a =(( 19

20 , 7
25

)
,
( 1

20 , 18
25

))
and b = (( 1

20 , 18
25

)
,
( 19

20 , 7
25

))
, with Ê ≡ {a, b} . Agents’ prefer-

ences are represented by the utility functions

u1 (x11, x21) = (x11)
1
3 (x21)

2
3

u2 (x12, x22) = (x12)
2
3 (x22)

1
3 .

In the figure, ∼i denotes their indifference curves. Their power is described by an
extension of the majority pillage game’s power function (Rowat 2009):

π (C, x) =
∑
i∈C

[
2
7 x1i + 5

7 x2i + vi (C, x)
]
; (14)

and

vi (C, x) =
{

q̄ {1, 2} ⊆ C and x ∈ Ê
q otherwise

}
;

for 1 < q < q̄ = 3, maintaining the power dichotomy. The figure indicates the locus
of allocations such that π ({1} , x) = π ({2} , x) by a dashed line.

Thus, a1 �1 b1, b2 �2 a2, π ({1} , b) > π ({2} , b) and π ({2} , a) > π ({1} , a) so
that a b a. This demonstrates symmetry, the minimal example of cyclicity. Intu-
itively, goods contribute linearly to agents’ power, but non-linearly to utility, creating
trade-offs between power and utility.

123



Pillage games with multiple stable sets

To form multiple stable sets, add a zeroth agent defined by

u0 (x10, x20) = (x10)
1
2 (x20)

1
2 ;

v0 (C, x) = 7.

These values again maintain the power dichotomy: 2q +1 < v0 (C, x) = 2q̄ +1 = 7,
for all C ⊆ I and x ∈ X .

Theorem 5 In the three agent, multigood pillage game defined in this section, the
core is

{
t0

}
, and there are exactly two stable sets,

{
t0, a

}
and

{
t0, b

}
.

Proof First show that t0 is undominated:

π
(
{0} , t0

)
= 7 + 1 = 8 > 2q = π

(
{1, 2} , t0

)
.

To show that no other allocation is undominated, we have already eliminated a and b,
which dominate each other. This leaves X\ {

t0, a, b
}
, all of which are dominated by

t0. Consider x ∈ X\ {
t0, a, b

}
with x1, x2 �= 0. Then:

π ({0} , x) = 2
7 (1 − x11 − x12) + 5

7 (1 − x21 − x22) + 7 > 7

> 2
7 (x11 + x12) + 5

7 (x21 + x22) + 2q = π ({1, 2} , x) .

If either x1 or x2 sets either component to zero, xmi = 0, then the coalition opposing
the zeroth agent is even weaker.

Finally, we show that the game has the two stable sets stated in the theorem. As
before, the core must belong to any stable set. Once t0 is included, only the two named
allocations must be considered. As they dominate each other, both cannot be without
violating IS; for the same reason, including either satisfies ES. ��

7 Discussion

The examples above all violate anonymity axiom AN, allowing powerful agents to
dominate all but a small, finite set of allocations even if they initially hold none of
the resource. The resulting multiplicity, while unexpected, is practically disappoint-
ing: pillage games’ independence of game forms make them appealing for analyses
of environments with weak institutions; however, as intrinsic asymmetries between
agents are likely to be a feature of empirical work, this paper’s link between violat-
ing axiom AN and multiple stable sets suggests that pillage games may not offer as
precise predictions as previously hoped. Selten (1987) discussed the interpretation of
set-valued solutions in empirical cooperative game theory more generally; Leonard
(2010, pp. 244, 260–262) presented early concerns about testable implications of the
stable sets. Nevertheless, it remains the case that stable sets of pillage games—when
they exist—are finite, and the worst example that we have been able to construct only
produces exponentially many stable sets as a function of the number of agents.
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The introduction compared the classic majority game in characteristic function
form to the majority pillage game, showing that the ability to use resource holdings
to break ties arising purely from coalitional membership refined the stable sets of the
former. Other games in characteristic function form may be similarly extended when
the characteristic function, v (C), is superadditive, so that v

(
C ∪ C ′) ≥ v (C)+v

(
C ′)

for disjoint coalitions C and C ′. Consider the n = 3 veto-power or market game in
Lucas (1992), in which

v ({1, 2, 3}) = v ({1, 2}) = v ({2, 3}) = 1;
v ({1, 3}) = v ({1}) = v ({2}) = v ({3}) = 0.

To create a pillage game extension, replace the power function in Eq. 1 with

π (C, x) = v (C) + �
∑
i∈C

xi ;

where v (C) is defined above, � ∈ (
0, minC,C ′

∣∣v (C) − v
(
C ′)∣∣ s.t.v (C) �= v

(
C ′)).

Thus, � ensures that resource holdings only influence dominance when opposing
coalitions alone are evenly balanced.

In both the classic market game and its pillage extension, the core is the singleton
t2.9 In the classic market game, any continuous curve in the simplex from t2 to any
(x1, 0, 1 − x1) satisfying the Lipschitz condition

y2 < z2 ⇒ (y1 ≥ z1) ∧ (y3 ≥ z3) (15)

for all y and z on the curve is a stable set. In the pillage extension, the unique stable set
is

{
t2, s12, s13, s23, q2

}
, where q2 ≡ ( 1

4 , 1
2 , 1

4

)
: t2 must be included; all x such that

x2 > 1
2 are dominated by t2, so excluded; none of the remaining allocations dominate

s12, s23 and q2, so they must belong to any stable set; the only allocation that remains
undominated is s13, which must therefore be included in any stable set.10

Thus, while there is a unique stable set in the pillage market game, it is not—unlike
that of the introduction’s majority pillage game—a subset of one of the infinitely
many stable sets in the market game: in breaking coalitional ties in dominance, the
pillage extension introduces dominance into previously internally stable sets, forcing
the removal of some such allocations which may have contributed to external stability,
forcing—in this example—the inclusion of s12 and s23.

Finally, note that the construction based on the power function in Eq. 1 breaks down
as n → ∞, as inequality 9 would require q̄ → ∞ as well. For this to hold for any
n requires something like a power function that sets q to be a decreasing function of
n, with limn→∞ qn = 0; this, in turn, disables the requisite dominance among the

9 For the classic game, see Lucas (1992). For the pillage game, π
(
{2} , t2

)
= � > 0 = π

(
{1, 3} , t2

)
;

for any x ∈ X such that x2 < 1, i = 2 can successfully pillage any agent holding resources by allying itself
with the other.
10 See Kerber and Rowat (2014) for a less condensed version of this sort of reasoning.
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exceptional allocations in E . Thus, the constructions presented here do not extend to
infinite agents, and cannot be used to generate infinite numbers of stable sets.
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Appendix

Proof of Lemma 3 Proceed by contradiction, assuming that at least one such alloca-
tion, f , exists. Each such f therefore induces an open triangle, T ( f ), on Z such that
each zero agent has strictly more wealth than in f . As allocations in T ( f ) cannot be
dominated by f , ES requires either that they belong to a stable set, or that they are
dominated by another member of a stable set. As, by Jordan (2006, Theorem 2.9),
stable sets are finite, and T ( f ) has positive area, there must exist at least one member
of a stable set that individually dominates a positive measure of T ( f ).

We now attempt to find such an allocation. Exceptional allocations, in E , cannot
dominate any z ∈ T ( f ) ⊆ Z : the attempt would set L = {0, 00, 000}, and therefore
π (L , z) = 31 > 19 ≥ π (W, z). For x to dominate a z in T ( f ), x must belong to
X\E . There are only three ways in which such domination may occur:

1. Coalitions in which fewer zero agents belong to W than do to L . No x can dominate
a z in this way: as all three lesser agents are collectively less powerful than a single
zero agent, x z in this way requires that W include more zero agents than L
does.

2. Coalitions in which the same number of zero agents belong to W and L . As z is in
Z it shares the resource between the zero agents; for any distinct x, at least one such
agent must belong to L; as there are only three zero agents, the coalitions cannot
each contain two or more of them. Thus, the two coalitions each contain exactly
one zero agent, with the third remaining indifferent. The third agent’s indifference
restricts the possible x that may dominate z to, at most, lines along Z ; a finite
number of these cannot cover T ( f ).

3. Coalitions in which more zero agents belong to W than do to L . As in the previous
case, at least one zero agent must belong to L; as there are only three zero agents, it
follows that two must belong to W . When this is so, any x such that x z implies
that x f : the set of zero agents benefiting from a transition from f to x contains
at least the two benefiting from the x z operation; by definition, as f �∈ E , the
two zero agents are able to overcome all other agents. The presence of both f and
x in a candidate stable set therefore violates IS.

These cases are exhaustive: as z ∈ Z , any distinct x ensures that at least one zero
agent belongs to L .

To summarize: any f �∈ E ∪ Z belonging to a stable set is dominated by a z ∈
T ( f ); ES therefore requires the existence of at least one x in any stable set containing
f that dominates x; the three cases above show that dominating T ( f ), an object of
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positive measure, therefore requires the support of two of the zero agents; this, in turn,
causes x f , violating IS. ��
Proof of Lemma 5 A possible move from y ∈ E j to x ∈ Ei generates W = Pi and
L = Pj . Thus, x y is equivalent to

π (Pi , y) =
∑
i∈Pi

q = 3q < 10 =
∑
j∈Pj

(
y j + q̄

) = π
(
Pj , y

)

a contradiction. ��
Proof of Lemma 6 Comparison of any two allocations in Ẽ1 does not allow {1, 2, 3}
to be a subset of either W or L . Thus, the second clause of Eq. 13 ensures that
vi (C, x) = q for any x ∈ Ẽ1. (Similarly, for Ẽ2, comparison splits agents {1, 4, 5},
so that vi (C, x) = q for any x ∈ Ẽ2.) Thus, the result is ensured by constraint 3, which
ensures that—for any such allocation and coalitions—any two-member coalition is
more powerful than any one-member agent. ��
Proof of Lemma 7 Let x ∈ Ẽ2 and W ≡ {i ∈ I |xi > c1,i } and L ≡ {i ∈ I |xi < c1,i }.
Then W and L do not depend on the choice of x as all four possibilities yield the same
results: W = {4, 5} and L = {1, 2, 3}. Therefore to show that c1 is not dominated by
any allocation from Ẽ2, one computes the relevant powers:

π (W, c1) = 2q < 1 + 3q̄ = π (L , c1)

which holds as q < q̄ . By symmetry, the same argument holds for d1.
For a1 and b1, two cases are identified. First consider y ∈ {c2, d2} so that W ≡{

i ∈ I
∣∣yi > a1,i

}
and L ≡ {

i ∈ I
∣∣yi < a1,i

}
. This yields W = {1, 4, 5} and L =

{2, 3}, so that

π (W, a1) = 3q + δ ≤ (1 − δ) + 2q = π (L , a1)

whose inequality is equivalent to constraint 12. Again, symmetry extends the result to
b1.

The second case considers elements z ∈ {a2, b2}. Defining W and L as above sets
W = {4, 5} and L = {2, 3}. As this case differs from the previous only by removing
i = 1 from W —reducing π (W, a1) to 2q—coalitional monotonicity axiom WC
guarantees that a1 is not dominated by any element from Ẽ2. Symmetry again applies
the result to b1. ��
Proof of Lemma 8 The sections of the proof of Lemma 7 corresponding to alloca-
tions a1 and b1 establish this result as well if allocations in Ẽ1 are replaced by the
corresponding allocations in Ẽ2 and vice versa, and if coalition {2, 3} is replaced by
coalition {4, 5}, and coalition {1, 4, 5} by coalition {1, 2, 3}. ��
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Proof of Lemma 9 For c2 or d2 to be dominated by either a1 or b1, coalition {1, 4, 5}
must be weaker in c2 or d2 than is coalition {2, 3}. Formally, this requires that

π ({1, 4, 5} , c2) = 3q̄ + 1 < 2q = π ({2, 3} , c2) ;

a contradiction as q̄ > q. ��
Proof of Lemma 10 We prove only the first dominance relationship; the rest follow
by symmetry. Defining W ≡ {

i ∈ I
∣∣c1,i > c2,i

}
and L ≡ {

i ∈ I
∣∣c1,i < c2,i

}
sets

W = {1, 2, 3} and L = {4, 5}. The coalitions’ powers are therefore

π (W, c2) = δ + 1
2 (1 − 3δ) + 3q > 2δ + 1

2 (1 − 3δ) + 2q = π (L , c2) ;

where the inequality follows from constraint 11. This is equivalent to c1 c2, the
result. ��
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