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Abstract—The flexible smart traction power supply system 

(FSTPSS) is a new type of traction power supply system including 

converters, energy storage devices and renewable energies. The 

capacities of the multiple components in FSTPSS have a 

significant impact on the economic operation and stable operation. 

And the capacity configuration optimization requires to consider 

both the daily operation costs and long-term investment recycle, 

which has not been fully studied. Based on the characteristics of 

FSTPSS, this paper proposes a double-layered capacity 

configuration optimization method by integrating artificial fish 

swarm algorithm and CPLEX solver. The main goal of this 

method is to obtain the maximum economic benefits in the whole 

life cycle. Meanwhile, the operation time of FSTPSS when facing 

grid outage is also considered. The simulation results show that 

compared with benchmark, the final converged maximum benefit 

value has increased by 43.6%, the grid power is averaged cut by 

2.26%, the sum of daily cycle number of the energy storage devices 

increased by 27.3%. In addition, the proposed method can also 

improve the probability that train can drive out of the current 

power supply interval in the event of grid outage. By using the 

proposed method, this probability is increased by 9.27%.  

Index Terms—Capacity configuration, operation time during 

grid outage, traction power supply system, energy storage devices, 

renewable energy, converter. 

 

I. INTRODUCTION 

OWADAY the t the distributed energy sources such as PV 

generation and wind power generation are increasing 

dramatically. They are widely distributed across the 

country. Traction power supply system (TPSS), as a system that 

is also spread all over the country, has a huge potential for 

accessing distributed energy sources and absorbing it in real 

time. FSTPSS is such a new TPSS that considers distributed 

power sources and energy storage devices. The concept of 

FSTPSS was first proposed in [1] which is a fully electronic 

TPSS with smart energy management strategy, before that, 

there was a similar concept called the flexible traction power 

supply system (FTPSS), which can be found in [2,3]. In [1], a 

day-ahead energy management of FSTPSS based on fixed 
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capacity configuration have been fully studied. However, at 

present, the problem of how these fixed capacity configurations 

are determined has not been solved. Therefore, this paper aims 

to propose a capacity configuration optimization method 

specifically for FSTPSS. 

At present, in terms of power system, there are some capacity 

configuration optimization methods that can be used for 

reference. Wang et al. [4] presented a capacity configuration 

optimization method for microgrid energy storage devices 

based on PV, energy storage devices, and noncritical loads. 

However, the proposed method only considers the maximum 

energy demand of the energy storage device, and the economy 

of the energy storage device capacity has further room for 

optimization. Soltani et al. [5] developed an optimal capacity 

allocation method for energy storage devices and renewable 

energy considering the uncertainty of load and renewable 

energy. By adding the uncertainty of load and renewable energy 

as chance constraints to the optimization problem, the result 

obtained the optimal capacity configuration that can be 

accepted in practical situations. Petrelli et al. [6] proposed a 

capacity configuration optimization method for microgrids in 

remote areas considering the battery degradation model. The 

battery degradation model was used to calculate the precise life 

cycle of the battery, thereby deriving the expected revenue of 

the battery in the full life cycle. This method is more accurate 

in estimating the expected benefits of the battery, but due to the 

addition of the battery degradation model, its calculation time 

is longer. The energy storage device model used above all have 

the problem to calculate the large-scale energy storage system 

in a suitable time. For large-scale energy storage system, a 

simple but efficient energy storage device model is usually used, 

and some more intelligent optimization methods are used to 

reduce the optimization time. In [7], a game theoretic-related 

optimization method for the capacity configuration of 

microgrids was proposed. Since multiple devices are included 

for joint optimization, the models used are almost all linear 

models which could effectively reduce the computation time. 

Using multiple time scales is also a common way to reduce 

computation time, in [8] a capacity configuration method for 
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energy storage devices that considers multiple time scales was 

proposed. And both the computation time and the result 

accuracy of co-optimization of multiple time scales is 

acceptable. These paper shows that we can use an approximate 

energy storage device model to reduce the calculation time 

without too much impact on our calculation results that meet 

the requirements.  

The above research fully considers the influence of the load 

characteristics of the microgrid itself on the capacity selection 

of energy storage devices, but they neglect the system 

flexibility which could deal with potential system power 

shortage risks. In fact, there are some studies pointed out that 

add additional constraints could make the final optimization 

results have flexibility. Madathil et al. [9] proposed a microgrid 

capacity configuration optimization method considering the 

resilience of the microgrid by adding N-1 security constraints 

to the optimization model. Thompson et al. [10] analyzed the 

relationship between the capacity of microgrid energy storage 

devices of microgrid and the economics of the microgrid. And 

the conclusion is that the profit of the microgrid is the highest 

when the gap between the discharge revenue and the charging 

loss of the energy storage device is the largest. Arefifar et al. 

[11] developed a capacity configuration and location method 

for microgrid distributed reactive power and distributed energy 

storage devices considering reliability. The optimization results 

show this method can improve the overall reliability of the 

system. In [12], a double-layer configuration optimization 

method was proposed. The optimization of the first layer 

determines whether corresponding configuration components 

should appear. The capacity configuration of the second layer 

is to configure the capacity of the corresponding configuration 

component size. In [13], an optimization method for energy 

storage configuration of multi-energy systems considering 

system flexibility was proposed. The flexibility index is defined 

as the sum of the reduction rates of the final load, and the 

flexibility index is added to the optimization as a constraint 

condition. Considering that the microgrid may operate in an 

islanded operation state, Lee et al. [14] presented a method to 

determine the optimal reserved capacity of the microgrid based 

on the power exchange for frequency control market 

environment, which can make the microgrid have enough 

energy storage capacity to cope with the power supply problems 

in island mode. The above paper proves that the reliability of 

the power system could be improved by using a proper method. 

Yet, the method mentioned above only considers the 

conventional load in the power system, which cannot directly 

used in TPSS. In fact, for TPSS, there is also some research on 

the optimization method of capacity configuration. In [15], a 

capacity configuration optimization method of TPSS based on 

supercapacitor energy storage is proposed. The optimization 

objective considered regenerative braking energy, negative 

sequence power and economic benefits. The method proposed 

in this article is more practical, but the efficiency of the 

optimization method used is too low. Luo et al. [16] proposed 

a capacity configuration optimization method for railway static 

power conditioner with energy storage system in TPSS. The 

optimization goal of this optimization method is to obtain an 

energy storage capacity configuration that enables the system 

to have optimal economic performance and its adjusted variable 

is the charge and discharge threshold of the energy storage 

device. Darco et al. [17] proposed a PV capacity configuration 

method for a hybrid PV TPSS. The relevant numerical 

simulation experiments prove that in a hybrid PV TPSS, a large 

number of PV power plants should be installed to offset the 

installation cost of power electronic devices. Zhu et al. [18] 

proposed a two-stage energy storage system parameter 

optimization method. The optimization goal of the upper layer 

is to improve the regenerative energy recovery rate of the 

energy storage system, and the lower layer is to optimize 

operating energy consumption. But this method does not 

consider the long-term investment recycle. Zahedmanesh et al. 

[19] proposed a capacity configuration optimization method for 

the TPSS including PV and energy storage systems. The 

method is divided into two parts, the first part is the sequential 

decision-making process which could make the system meet the 

requirements of demand power and power quality, and the 

second part is the capacity optimization of converters of PV and 

battery, which could reduce the system unbalance and provide 

sufficient reactive power compensation capacity. Yet, none of 

the capacity configuration optimization method used in TPSS 

has considered the daily operation costs and long-term 

investment recycle problem at the same time, especially for the 

scenarios based on FSTPSS. The above optimization methods 

have certain reference significance for the capacity 

configuration optimization of FSTPSS. But since FSTPSS is a 

brand-new TPSS topology, these methods cannot be directly 

applied to FSTPSS.  

In order to build a capacity configuration optimization 

method for FSTPSS, the first thing we need to do is to find a 

suitable optimization algorithm. In terms of optimization 

algorithms, we generally refer to the optimization algorithm of 

route optimization, since it is more intuitive and more 

explanatory. In [20], an optimization method for trajectory 

planning of unmanned vehicles based on artificial fish swarm 

algorithm (AFSA) and trial-and-error search algorithm was 

proposed. The results of the operation show that AFSA has the 

powerful optimization computing ability and has the ability to 

find the global optimal solution better than the genetic 

algorithm, particle swarm algorithm and other evolutionary 

algorithms. Tang et al. [21] compared the advantages and 

disadvantages of some modern swarm intelligence algorithms. 

Among them, for AFSA, they pointed out that it had the 

advantages of faster convergence speed, stronger global search 

ability and required fewer parameters to adjust. Lei et al. [22] 

used AFSA to identify essential proteins, which has better 

results than traditional identification algorithms. 

In fact, AFSA can also be used in the problem of capacity 

configuration optimization, because the capacity configuration 

optimization problem, to some certain extent, can also be 

understood as a trajectory problem, we need to find a set of 

optimal trajectories (capacity configuration), which makes our 

time optimal (target optimal). Therefore, this paper chooses to 

use AFSA as the upper layer optimization method for our 

capacity configuration optimization. 

Based on the above analysis, this paper proposes a capacity 

configuration optimization method for FSTPSS, and uses the 

scenario based on measured data to verify the feasibility of the 

method. The main contributions of this paper are as follows: 

1). Aiming at the capacity configuration problem of FSTPSS, 

a capacity configuration method for FSTPSS based on double-
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layer optimization is proposed. To the best of our knowledge, 

this is the first capacity configuration method for FSTPSS. 

CPLEX solver is used to solve the maximum daily profit of 

FSTPSS under specific parameters, and AFSA is used to 

determine specific parameters, which ensure that the FSTPSS 

has the maximum benefit during its life cycle. 

2). In order to make the train pass through the power supply 

section reliably when the grid outage happens, reliability 

constraints are added in the capacity configuration method, so 

that the configured parameters can not only meet the 

requirements of economy, but also meet the requirements of 

reliability. 

3). The proposed method is verified by a real case study. The 

simulation results prove that compared with the traditional 

TPSS, a FSTPSS with good capacity configuration parameters 

can have better economy and reliability. In addition, compared 

with the FSTPSS using the benchmark parameters, the FSTPSS 

using the parameters configured by the capacity configuration 

method proposed in this paper has the better economy, capacity 

utilization, reliability and can reduce the energy it obtains from 

the power grid.  

The rest of this paper is arranged as follows: Section Ⅱ 

introduces the topology and energy constraints of FSTPSS. 

Section Ш describes the capacity configuration method of this 

paper. Section Ⅳ is the case study and Section Ⅴ gives the 

conclusion. 

II. SYSTEM DESCRIPTION 

A. System Topology 

The topology of FSTPSS is shown in Fig. 1. FSTPSS consists 

of AC-DC-AC traction substation, traction network and 

wayside microgrid. Their respective functions are as follows: 

The AC-DC-AC traction substation could achieve 

symmetrical power supply and eliminate harmonics of traction 

load. UC (ultra-capacitor) and battery are connected to the DC 

side of AC-DC-AC traction substation to recover the 

regenerative braking energy and excess PV power and to realize 

the function of peak shaving and valley filling. Since the battery 

has a large energy density, the battery is actually be regarded as 

the main energy recovery device. 

The traction network is the main transmission path for the 

traction load to obtain power. The wayside microgrid is mainly 

used to connect the distributed generation along the railway line 

and the 10kV distribution network. The excess power of the 

wayside microgrid could be sold to 10kV distribution network. 

UC is also added to the DC bus on the wayside microgrid side 

so that the wayside microgrid can also output its power more 

smoothly.  

B. Network Power Balance 

For FSTPSS, the most basic constraint is its power balance 

constraint. FSTPSS shown in Fig. 1 can be divided into two 

parts: part 1 is the main traction power supply network from 

high voltage power grid, and part 2 is the 10kV distribution 

network. The power balance constraints of these two parts can 

be expressed by (1-2): 

, , , , , ,

, , , , , , ,

t t t t t
sub grid sub bat dis sub uc dis PV DC uc dis

t t t t t t
sub bat ch sub uc ch DC uc ch T DC load sub grid fed

P P P P P

P P P P +P +P    t

−

− −

+ + + + =

+ + + 
     (1) 

10
t t t

DC-load kV  grid 10kV  loadP P P+ =                           (2) 

where Psub-grid
t is the positive power of 220kV power grid. Psub-

grid,fed
t is the negative power of 220kV power grid. P10kV grid

t is 

the power of 10kV power grid. Psub,bat,dis
t, Psub,bat,ch

t, Psub,uc,dis
t 

and Psub,uc,ch
t are discharging and charging power of Battery and 

UC on the DC side of AC-DC-AC traction substation, 

respectively. PDC,uc,dis
t and PDC,uc,ch

t are discharging and 

charging power of UC on the DC side of wayside microgrid. 

PDC-load
t means the power provided by the microgrid to the 10kV 

distribution network. PPV
t, PT

t and P10kV load
t are respectively 

denotes the predicted power of PV panel, traction load and 

10kV distribution network load. 

PV generator

AC 

load

10kV AC power grid

220kV AC power grid

UC

UC

Psub-grid Psub,uc

Psub-T

PDC-T

P10kV grid

P10kV load

P DC-load

P pv
P DC,uc

PT

Battery
P sub,bat

2 西-北京南 2
和谐号兰州西-北1

CRH

CRH380A-193A

Part 1

Part 2

 
Fig. 1. Topology of FSTPSS. 

C. Constraints of Energy Storage Devices 

For energy storage devices such as battery and UC, their 

power is limited by their own residual energy and rated power, 

so they have constraints as shown in (3-5): 
1

, ,(1 ) / ,t t ch t t dis
i i i i i ch i dis iE E P t P t   i t  −= − +  −                  (3) 

max 1
,0 min( ,( ) / ( )) ,t rated rated t ch

i ch i i i i iP P E SOC E t   i t−   −      (4) 
1 min

,0 min( ,( ) / )) ,t rated t rated dis
i dis i i i i iP P E E SOC t   i t−  −        (5) 

where i means the energy storage device i. It could be battery 

or UC. Ei
t presents its residual energy. Ei

rated denotes its rated 

energy capacity. ƞi
dis and ƞi

ch are discharging efficiency and 

charging efficiency of it, respectively. κi is its self-discharging 

rate. Pi,dis
t and Pi,ch

t are discharging and charging power of it. 

Pi
rated denotes its rated power. SOCi

max and SOCi
min are 

respectively represent its maximum and minimum value of state 

of charge. ∆t represents the calculation interval of algorithm. 

In order to make the energy storage device operate under the 

same initial state every day, additional energy constraints are 

added as shown in (6): 
1t t end

i iE E   i= ==                              (6) 

In addition, the capacity of the energy storage device should 

be larger than the maximum energy demand when passing 

through the power supply interval, as it is necessary to consider 

the reliable operation of the train out of the current power sup-

ply interval in case of power failure of the grid, which function 

is similar to uninterruptible power supply (UPS). Therefore, the 
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constraints shown in (7) need to be added.  

min
max

1 1

( )
N

current t
i i load

i t

E -E P t 


= =

                  (7) 

where Ei
current is the remaining energy of the energy storage 

device i in the current state, and N is the total number of energy 

storage devices. Ei
min is the minimum energy limit of the energy 

storage device i. Pmax load
t represents the power of the tth time 

step in the traction load power sequence. τ denotes number of 

the time step required for the train to pass through the power 

supply interval. 

D. Limitations from PV Panels and Converters 

The power flow in FSTPSS should also be limited by the 

rated power of the converters which connect the various parts, 

as shown in (8-12): 
3

,
t PH

sub grid sub convP P   t−                                (8) 
3

, ,
t PH

sub grid fed sub convP P   t−                             (9) 
1

, , , , ,
t t t PH

sub grid sub uc dis sub bat dis sub convP P P P   t− + +         (10) 

, , ,
t t t

PV DC uc dis DC load DC convP P P P   t−+ −                (11) 

,0 t
DC load DC load convP P   t− −                          (12) 

Among them, Psub,conv
3PH and Psub,conv

1PH present the rated 

power of three-phase and single-phase converter of the AC-DC-

AC traction substation, respectively. PDC,conv indicates the rated 

power of converter which connects the wayside microgrid and 

traction network. PDC-load,conv denotes the rated power of 

converter connecting the wayside microgrid and 10kV 

distribution network. 

For the output power of PV panel, it should be limited by 

rated output power of PV panel, as shown in (13): 

0 t rated
PV PVP P   t                                (13) 

where PPV
rated presents the rated output power of PV. 

E. Limitations from PV Panels and Converters 

Finally, the power of the grid is also limited by its own short-

circuit capacity, as shown in (14-16): 

0 t short
sub-grid 220kV  gridP S    t                      (14) 

0 t short
sub-grid,fed 220kV  gridP S    t                      (15) 

10 100 t short
kV  grid kV  gridP S    t                       (16) 

where S220 kV grid
short and S10kV grid

short are short-circuit capacity of 

220kV power grid and 10kV power grid respectively. 

III.  DOUBLE-LAYERED CAPACITY CONFIGURATION METHOD 

A. Double-layer optimization scheme 

The schematic diagram of the double-layer optimization is 

shown in Fig. 2.  

As can be seen from the figure, the optimization goal of the 

upper layer is mainly to obtain the optimal capacity 

configuration, and its input is the daily energy management 

strategy (DEMS) of FSTPSS and the daily revenue obtained by 

DEMS. Since the upper layer optimization is a nonlinear 

optimization problem, it is implemented by AFSA that 

specializes in solving nonlinear optimization problems.  

The optimization goal of the lower layer is to obtain the 

optimal DEMS. Its input is the operation scenario and capacity 

parameters. The lower layer optimization is a mixed integer 

linear programming (MILP) problem, so it is implemented by 

the CPLEX solver developed by IBM that can solve MILP 

problems [23-25]. The solver uses branch-and-cut method to 

solve MILP problems. 

B. Capacity Configuration Method  

The initial investment of FSTPSS is mainly divided into four 

parts, isolation transformers, converters, PV panels and energy 

storage devices. The investment cost can be calculated by (17): 

3 1
, , , ,

, , ,

( )

( )

invest Tran Con PV ESD Tran Tran

PH PH
con sub conv sub conv DC conv DC load conv

rated rated rated
PV PV uc sub uc DC uc bat sub bat

C =C +C +C +C = P

        P +P  +P P

            P  P P P





  

−

 +

 +

+  +  + + 

  (17) 

where λTran, λcon, λPV, λuc and λbat (¥/MW) present the unit 

investment cost of isolation transformer, converter, PV panel, 

UC and battery, respectively. CTran, Ccon, CPV and CESD denotes 

the investment cost of isolation transformers, converters, PV 

panels and energy storage devices, respectively. 

For an energy storage device, in addition to the parameter of 

rated power, there should be a parameter of rated capacity. 

However, for a specific modular energy storage device, the 

rated power of the energy storage device has a fixed ratio to the 

rated capacity. Therefore, once the rated power of energy 

storage device is determined, its rated capacity is also 

determined.  

In the similar way, for PV panels, in addition to the parameter 

of rated power, there should also be a parameter of PV panel 

area. For a specific modular PV panel, the area of PV panel also 

has a fixed ratio to the rated power. So, once its rated power is 

determined, its PV panel area is also determined. The formula 

for calculating the output power of the PV panel can be shown 

in (18): 
t t

PV PV PV solarP A I   t=                        (18) 

where ƞpv present the photoelectric conversion efficiency. 

APV (m2) is the PV panel area. Isolar
t (MW/m2) denotes the solar 

irradiance. 

Since we want to get the capacity configuration that can get 

the maximum revenue, we can design our objective function 

according to (19): 

expmax ( - )total ec origin optim invest   R =365 L C C -C         (19) 

Among them, Lexpec is the shortest life expectancy among the 

various parts of the FSTPSS. Corigin means the daily cost of the 

system before the implementation of DEMS. Coptim presents the 

daily cost of FSTPSS after the implementation of DEMS.  

C. Daily Energy Management Strategy 

For FSTPSS, its daily cost is mainly composed of two parts, 

one is the electricity charge, and another is the demand charge. 

The electricity charge is related to the power obtained by the 

FSTPSS from the power grid, which can be calculated by the 

formula shown in (20): 

1

T
t t

EC EC sub grid

t

C = P t −

=

                      (20) 

where T is the total number of time step in a day, t is current 

time step, πEC
t (¥/MWh) denotes the unit price of electricity. ∆t 

(5 mins) presents time step length. 

The demand charge is a penalty charge, which is 

implemented to punish excessive peak power. Its specific 

calculation formula is shown in (21): 
1 2 /3max( , ,..., )T

DC DC avg avg avgC = P P P                         (21) 

where Pavg
t means the average power within 15 minutes of 

traction substation. πDC
t (¥/MW) denotes the unit demand 

charge price.
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Fig. 2. Schematic diagram of double-layer optimization 

 

In addition to cost, since the 10kV distribution network is 

connected to wayside microgrid, FSTPSS can sell a certain 

amount of electricity to the 10kV distribution network to obtain 

a certain profit by signing a relevant agreement with the 10kV 

distribution network. The calculation formula of the revenue 

can be calculated according to (22): 

1

( )
T

t t t
sell EC trans micro load

t

R = P t  −

=

−                         (22) 

where πtrans
t (¥/MW) presents unit power transmission cost. 

Based on the above analysis, for DEMS, its objective 

function can be expressed by (23): 

min total EC DC sell   C =C +C -R                            (23) 

In fact, there are some variables in equations (1-2) that cannot 

appear at the same time, such as UC and battery cannot be 

charged and discharged at the same time. This problem can be 

solved by using a binary variable constraint.  

D. Algorithm Formulation 

For the upper layer optimization, it is implemented by AFSA, 

and its specific algorithm design is as follows: 

In AFSA, artificial fish have four behaviors: prey behavior, 

swarm behavior, follow behavior, and random behavior. Prey 

behavior can be defined by (24-25): 

(1)s
h kX X Visual Rand= +                          (24) 

1

2

(1)
s

h ks s
k k

s
h k

X X
X X Step Rand

X X

+ −
= +  

−
           (25) 

where Xk
s is the current position of artificial fish k. Xk

s+1 is 

the next step’s position of artificial fish k. Visual the artificial 

vision’s field. Xh is a random position within the field of vision 

of artificial fish k. Rand(1) means a uniformly distributed 

random number between -1 and 1. Step represents the step size. 

For the problem in this paper, the composition of X can be 

defined by (26): 
3 1

, , , , , , ,,PH PH rated rated rated rated
sub conv sub conv DC conv DC load conv sub uc sub bat DC uc PVX=(P ,P ,P ,P ,P P ,P ,P )−  (26) 

When the artificial fish performs the prey behavior, it 

constantly finds the food consistency in other locations within 

the field of vision. If the food consistency at the found location 

is higher than the consistency at the current location, it moves a 

random distance in that direction, otherwise it will continue to 

find food consistency at another random location within the 

field of vision and repeat above steps until the maximum 

number of try_number is reached. If the maximum number of 

try_number is reached and the artificial fish still does not find a 

location with a higher food consistency than the current location, 

it will perform random behavior which formula is the same as 

(24).  

Swarm behavior is defined by (27-29): 

1

fn

i

i
C

f

X

X
n

==


                                           (27) 

C
k

f

Y
Y

n
                                            (28) 

1

2

(1)
s

C ks s
k k

s
C k

X X
X X Step Rand

X X

+ −
= +  

−
           (29) 

where nf is the total number of artificial fishes within the field 

of vision of the current artificial fish k. XC is the center position 

of these artificial fish positions. YC and Yk denotes the food 

consistency of center position and current position, respectively. 

For this paper, the food consistence is Rtotal which is shown in 

(19). δ presents the crowding factor. 

When the artificial fish performs swarm behavior, it first uses 

(27) to calculate the center position of the fish within the current 

fish field of vision, and then executes (28). If it meets the 

conditions of (28), executes (29), otherwise executes prey 

behavior. 

Follow behavior is defined by (36-38): 

1 2arg max( , ,..., )fMAX n

X

X Y Y Y=                        (30) 

MAX
k

f

Y
Y

n
                                      (31) 

1

2

(1)
s

MAX ks s
k k

s
MAX k

X X
X X Step Rand

X X

+ −
= +  

−
            (32) 

where YMAX is the maximum food consistency within the field 

of vision of the current artificial fish k. XMAX the position of the 

maximum food consistency. 

The artificial fish performs follow behavior according to the 
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following steps: First AFSA determines the position of each 

fish and the corresponding food consistency within current 

fish’s field of vision. Secondly, AFSA uses (30) to find the 

maximum food consistency and its position of the fish. If 

maximum food consistency satisfies (31), then execute (32), 

otherwise execute prey behavior. 

For the lower layer optimization, it is implemented by 

CPLEX solver, and the specific solution method is branch-and-

cut method. The details of branch-and-cut method is as follows:  

Consider the following MILP problem： 

min{ : , }T T n mu c x d y x R y Z = +                      (33) 

where x is an n-dimensional vector of real variables. y is an 

m-dimensional vector of integer variables. cT and dT are 

constraint matrices for x and y, respectively. 

Solving the MILP problem using the branch-and-cut method 

generally removes all integer constraints first, so that the MILP 

problem becomes a linear programming (LP) problem, which is 

called the linear programming relaxation of the original MILP 

problem. We can then solve this LP problem, and if the result 

happens to satisfy all integer constraints, then, luckily, this 

solution is the optimal solution to the original MILP problem. 

Otherwise, we need to choose some integer constraint to branch. 

For the sake of illustration, assuming this variable is y1, if its 

value in the LP relaxation problem is 2.4, then we can branch 

the original LP relaxation problem into two LP problems that 

respectively satisfy the conditions y1≤2 and y1 ≥3. Similarly, 

in the new branch, if there is no solution that satisfies all integer 

constraints, we can also choose another integer variable for 

further branching. 

It should be noted that if the optimal solution obtained by a 

certain branch is smaller than the optimal solution in all current 

branches, the optimal solution will be updated to the latest 

optimal solution. And if we find that the lower bound of the 

optimal solution of a branch is greater than the latest optimal 

solution, we should cut off the branch, because this branch has 

no potential to tap the optimal solution. This is where the 

branch-and-cut method got its name. 

For MILP problem of this paper, the real variables vector is 

shown in (34): 

, , , , , ,

, , , , , ,

10 , , , ,

( , , , ,

, , , ,

, , , , )

sub grid sub uc ch sub uc dis sub bat ch

sub bat dis DC uc ch DC uc dis DC load

kV  grid sub grid fed sub uc sub bat DC uc

x P P P P

       P P P P

       P P E E E

−

−

−

=

              (34) 

The integer variables vector is shown in (35): 

, , , ,( , , , )sub uc sub bat DC uc sub gridy b b b b=                       (35) 

where bsub,uc, bsub,bat and bDC,uc respectively present the charge-

discharge limit variables of UC on the AC-DC-AC traction 

substation side, battery on the AC-DC-AC traction substation 

side and UC on the DC bus of microgrid. Since the energy 

storage device cannot be charged and discharged at the same 

time, the above variables are used to limit the state of charge 

and discharge of the energy storage device. When the above 

value is 0, the energy storage device is discharged, and when 

the above value is 1, the energy storage device is charged. 

bsub,grid is the state limiting variables for the traction substation 

to obtain electricity from the grid and return electricity to the 

grid. In the same way, traction substation cannot obtain power 

from the grid and return power at the same time. Therefore, 

when the value is 0, the substation obtains power from the grid, 

and when the value is 1, the substation returns power to the grid. 

Start

Initialization of 

AFSA parameters

Optimal Daily Energy Management Strategy

Food consistency calculation

Follow behaviourSwarm behaviour

Compare and obtain the current optimal configuration and maximum profit

Whether the maximum number of 

iterations has been reached

Output the maximum profit in all iterations round and its corresponding configuration

End

Scenario selection

N

Y

 
Fig. 3. Flow chart of capacity configuration method. 

Based on the above algorithm construction, we can 

summarize the steps of capacity configuration based on double-

layer optimization in this paper as follows: 

Step 1 Set the variable range of each variable to be 

determined and initialize each parameter of the AFSA 

algorithm. 

Step 2 Enter the scenario data, such as the power of traction 

load, solar irradiance, and the power of 10kV load. 

Step 3 Run DEMS and calculate the food consistency at 

each artificial fish’s position according to the DEMS operation 

results and (19).  

Step 4 The swarm behavior and follow behavior are 

performed for each fish, and the position with the highest food 

consistency in these two behaviors is selected as the optimal 

configuration result of the current fish. The number of 

executions of this step is equal to the total number of fish N. 

Step 5 The position with the largest food consistency among 

all fishes is selected as the optimal configuration result for the 

current round. 

Step 6 Determine whether the maximum number of 

iterations has been reached, and if so, output the maximum 

profit in all iterations and its corresponding configuration and 

terminate the program. Otherwise return to Step 1. 

The specific flow chart of these steps can be shown in Fig. 3. 

IV. CASE STUDY 

A. Simulation Conditions 

To verify the effectiveness and reliability of the proposed 

capacity configuration method. We designed a scenario of a 

flexible smart traction power supply interval based on measured 

data and optimized its capacity configuration based on this 

scenario.  

The departure interval of the train is set as follows: the 

departure interval between 6:30 and 9:00 is 24 minutes; the 

departure interval between 9:00 and 16:00 is 12 minutes; the 

departure interval between 16:00 and 20:00 is 16 minutes; the 

departure interval between 20:00 and 23:00 is 20 minutes; there 

is no train for the rest of the time. According to train traction 

load from Qingzhou to Dezhou in Beijing-Shanghai high-speed 

railway and the departure interval settings, we could get the 
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traction load power as shown in Fig. 4. The solar irradiation, 

and 10kV load power which is measured in Fugu substation in 

Shenshuo Railway are shown in Fig. 5-6, respectively. 

 
Fig. 4. Schematic diagram of traction load power. 

 
Fig. 5. Schematic diagram of solar irradiation. 

 
Fig. 6. Schematic diagram of 10kV load power. 

The price and life expectancy of each device in FSTPSS are 

shown in Table I. The overall life expectancy of FSTPSS takes 

the shortest life expectancy among these devices. 

To simplify the analysis of the problem, the same UC or 

battery modules are combined in series, so the relationship 

between the power and energy of the UC and the battery is fixed. 

In fact, if different UC or battery modules are used in series, we 

just need to separate them into different variables due to the 

different ratios between power and capacity. For the case study 

in this paper, the capacity of each MW UC is 0.025MWh, and 

the capacity of each MW battery is 1.5MWh.  

For UC, the charge and discharge efficiency of UC are set to 

0.9, the self-discharge coefficient is set to 0.84%/h, and the 

SOC range is set to 5%~95%. The charge and discharge 

efficiency of the battery is set to 0.8, the self-discharge 

coefficient is set to 0.004%/h, and the SOC range is set to 

20%~80%. 

For PV panels, we also use the same module, so the 

relationship between its rated power and the area of the PV 

panel is fixed. In our case study, each MW of PV panels 

corresponds to 6060 m2 photovoltaic panel area. 

For batteries, UCs and PV panels, the capacity of their 

converters are equal to their rated power, respectively. And the 

capacity of the two isolation transformers are respectively equal 

to the capacity of the converters they connect. 

The default parameter settings of AFSA and the range of the 

capacity configuration of each device that it needs to identify 

are shown in Table Ⅱ. 
TABLE I 

THE PRICE AND LIFE EXPECTANCY OF EACH DEVICE 

Device name Price life expectancy  

UC ¥104,200/MW 20 years 

Battery ¥1,975,500/MW 15 years 

Converter(3AC/1DC) ¥560,000/MW 25 years 

Converter(1DC/1AC) ¥480,000/MW 29 years 

Converter(1DC/1DC) ¥83,000/MW 16 years 

PV panel ¥485,000/MW 20 years 

Isolated transformer ¥30,000/MW 20 years 

 

TABLE Ⅱ 

AFSA PARAMETER SETTING 

Parameters Settings Parameters Settings 

Psub,converter
three-

phase 
[10,40]MW PPV

rated [0,2]MW 

Psub,converter
single-

phase 
[10,40]MW δ 0.618 

PDC,converter [5,20]MW Visual 0.25 

PDC-load,converter [0,0.5]MW Step 0.1 

Psub,uc
rated [1,10]MW try_number 2 

Psub,bat
rated [1,5]MW N 4 

PDC,uc
rated [1,10]MW 

Maximum 

iterations 
50 

B. Comparison of Benchmark and Optimal Capacity 

Configuration Results 

In order to demonstrate the superiority of the results obtained 

by the capacity configuration optimization algorithm, we 

compare it with the results using benchmark parameters. The 

idea of this capacity parameters is as follows: Considering that 

PV panels can bring higher benefits, the parameters of PV 

panels are set to the maximum value, which is 2MW. The 

converter connecting the 10kV distribution network and the 

wayside microgrid mainly considers the maximum power of the 

10kV distribution network load. Since the maximum power of 

the 10kV distribution network does not exceed 0.25MW, the 

converter power is set to 0.25MW. Then, considering that the 

main function of UC on the microgrid side is to realize the 

function of peak shaving and valley filling on the microgrid side. 

Meanwhile, it also needs to accommodate the energy value of 

the power on the microgrid side within 5 minutes. Since the 

maximum solar radiation of PV is about 1.2kW/m2, considering 

a certain margin, so UC parameter on the microgrid side is set 

to 8MW. UC power on the AC-DC-AC substation side is set to 

10MW, which is higher than the 5-minute peak power of the 

traction load, but at this time, since the battery is also installed 

on the AC-DC-AC substation side, it does not need to consider 

the maximum energy capacity problem. This problem is borne 

by the battery. The battery on the AC-DC-AC substation side 

mainly considers the problem of maximum capacity. It mainly 

considers the regenerative braking power of the train and PV 

power. Since the sum of its peak power does not exceed 4MW, 

the battery parameters are set to 4MW. Finally, it is the power 

of the three-phase converter and the single-phase converter of 

the AC-DC-AC traction substation, which should be higher 

than the sum of the charging power and the sum of discharging 
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power of all devices in the system. Therefore, these two 

parameter values are both set to 30MW.  

So, the benchmark parameter is [Psub,conv
3PH, Psub,conv

1PH, 

PDC,conv, PDC-load,conv, Psub,uc
rated, Psub,bat

rated, PDC,uc
rated, 

PPV
rated]=[30, 30, 12, 0.25, 10, 2, 8, 2]MW. Based on the 

benchmark parameters, the maximum benefit in FSTPSS’s life 

expectancy is ¥5.53×107.  

The final capacity configuration optimization result is 

[Psub,conv
3PH, Psub,conv

1PH, PDC,conv, PDC-load,conv, Psub,uc
rated, 

Psub,bat
rated, PDC,uc

rated, PPV
rated]=[10, 10, 11.86, 0.26, 7.59, 4.18, 

3.69, 2] MW, and the maximum benefit in FSTPSS’s life 

expectancy is ¥7.94×107 . Compared with the benchmark, the 

final converged maximum benefit value has increased by about 

43.6%, which verifies the effectiveness of the proposed 

capacity configuration method. The change of the maximum 

benefit of AFSA with the number of iterations is shown in Fig. 

7. The performance comparison of FSTPSS under the 

benchmark parameters and the optimal parameters is 

summarized in Table Ⅲ. 

 
Fig. 7. Schematic diagram of the change of the maximum benefit with the 

number of iterations 

TABLE Ⅲ 
PERFORMANCE COMPARISON 

 Benchmark Optimal 
Growth 

rate 

Equivalent cycle number of sub,uc 16 22.4 28.60% 

Equivalent cycle number of sub,bat 1.11 1.22 9.01% 

Equivalent cycle number of DC,uc 15.9 18.4 13.60% 

Maximum benefit ¥5.53×107 ¥7.94×107 43.60% 

C. Grid Power Optimization Results 

Fig. 8(a) and Fig. 8(b) respectively compare the FSTPSS grid 

power using the benchmark parameters with the grid power of 

traditional TPSS and the FSTPSS grid power using the optimal 

parameters and the grid power of the traditional TPSS. The 

reduction rate of grid power using two sets of parameters is 

shown in Table Ⅰ. From Fig. 8 and Table Ⅰ, it can be clearly seen 

that no matter which set of parameters is used, the grid power 

of FSTPSS can be significantly reduced. However, using the 

optimal parameters, a greater load reduction rate can be 

obtained. 

 
(a) 

 
(b) 

Fig. 8. Comparison of the grid power of FSTPSS and the grid power of 

traditional TPSS: (a). FSTPSS using benchmark parameters. (b) FSTPSS using 

optimal parameters. 
TABLE Ⅳ 

LOAD REDUCTION RATE COMPARISON 

 Benchmark Optimal 

Load reduction rate 14.88% 18.33% 

In order to further analyze the economic considerations of the 

capacity configuration method for grid power optimization, we 

draw a pie chart of the contribution of each factor to economic 

optimization under the optimal parameters which shown in Fig. 

9. Among them, the economic contribution of PV to grid power 

optimization considers the cost saved by PV supplying power 

to traction load and 10kV load at each moment. If there is still 

surplus PV power after supplying power to the traction load and 

10kV load, the rest of the energy would be stored in the energy 

storage device. The energy income stored in the energy storage 

device is considered as the time-of-use electricity price at the 

current moment multiplied by the energy storage charge and 

discharge efficiency. The economic contribution of the train's 

regenerative braking energy to the grid power optimization only 

considers the income that store the braking energy in the energy 

storage device, and the calculation method is the same as that 

store the rest PV energy in energy storage device. The rest of 

the grid power optimization benefits are collectively attributed 

to the benefits obtained by adding energy storage devices and 

using optimization methods, which are mainly obtained through 

the price difference of time-of-use electricity prices and peak 

shaving and valley filling. From the figure, it can see that in 

addition to the utilization of PV and regenerative braking 

energy itself to increase the economics of grid power, the 

reasonable capacity configuration of energy storage devices and 

energy management process are also important factors to 
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improve the economics. 

 
Fig. 9. Composition diagram of economic contribution factors of power grid 

optimization. 

D. Energy Storage Device Optimization Results 

The comparison of SOC changes of the energy storage 

devices with benchmark parameters and optimal parameters are 

shown in Fig. 10.  

From figure, we can see that UC and battery using the 

optimal parameters has more charge and discharge cycles per 

day than those using the benchmark parameters. The equivalent 

charge cycles of UC in substation, battery in substation and UC 

in microgrid with optimal parameters are 22.4, 1.22 and 18.4, 

respectively, whereas with benchmark parameters, they are 

16.0, 1.11 and 15.9, respectively. These results show that the 

utilization of UC has become more sufficient. Therefore, the 

optimal capacity configuration parameters have more charging 

margin and more efficient energy storage device utilization than 

the benchmark parameters. The performance comparison of 

FSTPSS under the benchmark parameters and the optimal 

parameters is summarized in Table Ⅲ. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Comparison of SOC changes of energy storage devices with benchmark 
and optimal parameters: (a) UC in AC-DC-AC traction substation. (b) battery 

in AC-DC-AC traction substation. (c) UC in the DC bus of wayside microgrid. 

E. Converter Capacity Utilization results 

In order to further verify the efficiency of converter 

utilization, we also made statistics on the average capacity 

utilization rate of each converter. The formula for calculating 

the average capacity utilization rate is as follows: 

,

,

100%
i av

rated
i cap

P
=

P
                         (36) 

where η is the average capacity utilization rate. Pi,av is the 

average daily power through converter i. Pi,cap
rated is the rated 

capacity of converter i. 

Fig. 11 shows the average utilization rate of capacity of each 

converter. The capacity utilization rate of the optimal 

parameters is significantly larger than that of the benchmark 

parameters. This is because an excessively high capacity 

vacancy rate is not conducive to the overall economy. 

Meanwhile, since the traction load has a certain peak load, 

which is usually three times or more than its average load. 

Therefore, even with optimal parameters, the capacity 

utilization of the converter will not exceed 30%. 
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Fig. 11. Capacity utilization of each converter in FSTPSS. 

F. Influence analysis of reliability constraints on Capacity 

Configuration Optimization 

Since the traction load has a certain randomness, in order to 

verify the validity of the reliability constraint under this 

randomness, we add random fluctuations that obey the N(0, 

2.06) distribution to each train load at each moment. N stands 

for a normal distribution. For a normal distribution N(μ, σ2), μ 

represents its mathematical expectation, and σ2 represents its 

variance. If the reader wishes to know some details of the 

randomness of the traction load, please refer to [26]. 

Fig. 12 shows comparison of reliability of trains passing 
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through the power supply interval before and after the reliability 

constraints is added to DEMS. When the reliability index is 1, 

it means that even the grid outage happens, the train can still 

pass through the power supply interval by relying on the 

remaining energy of the energy storage devices. When the 

reliability index is less than 1, it means that the train cannot pass 

through the power supply interval solely by relying on the 

remaining energy of the energy storage devices. 

From the figure, we can clearly see that the capacity 

parameters configured after adding reliability constraints can 

increase the reliability of the train when the grid outage happens. 

Before adding the reliability constraint, the probability that the 

train can continue to pass in the event of a grid outage is 0.9120. 

After the reliability constraint is added, the probability that the 

train can continue to pass is increased to 0.9965, which verifies 

the necessity and effectiveness of adding reliability constraints. 

However, after adding the reliability constraints, the economy 

of FSTPSS has also suffered a certain loss. Before the reliability 

constraints are added, the maximum profit of the system is 

¥8.48×107, and after the reliability constraints are added, the 

maximum profit of the system is ¥7.94×107. This is because the 

reliability constraints actually require the system to have a 

larger battery and capacitance capacity, which is unnecessary 

when grid outage does not happen. 

In fact, Equation (7) indicate that there still remaining energy 

of energy storage devices which can help the train passes 

through the current power supply interval, but due to the 

limitation of the rated power of the energy storage devices and 

the limitation of the minimum SOC of them, the train cannot 

use them. If we cancel the minimum SOC limitation of the 

energy storage devices, the train still has a chance to pass the 

current power supply interval, but it is not recommended in 

general since operating below the minimum SOC may damage 

the energy storage devices. 

 
Fig. 12. Comparison of FSTPSS reliability before and after adding reliability 

constraints. 

 

V. CONCLUSION 

Reasonable capacity configuration is the premise of 

establishing a FSTPSS that meets the requirements. Based on 

the limited features and conjectures about the future real 

FSTPSS, this paper establishes a FSTPSS capacity 

configuration method, hoping to provide certain 

recommendations to configure the real FSTPSS in the future. 

Based on the case study, the following conclusions can be 

drawn: (1) The system parameters configured by the proposed 

capacity configuration optimization method can effectively 

reduce the power obtained by the FSTPSS from the grid and 

can effectively improve the utilization rate of the battery, UCs 

and converters. (2) The optimization method of capacity 

configuration proposed in this paper can significantly improve 

the overall economy of FSTPSS, so that the investment income 

of FSTPSS can be significantly improved. (3) If it is necessary 

to ensure the operational reliability of FSTPSS in the case of 

grid outage, adding reliability constraints to DEMS allows 

capacity configuration optimization method to obtain capacity 

parameters that make the system more reliable. Nevertheless, 

the economy of FSTPSS will be reduced. 

At present, this paper has not yet considered the influence of 

the randomness of the distributed power supply itself and the 

energy storage models and TPSS model considered in this paper 

are not very complex. In the future, if conditions permit, more 

complex and accurate model of FSTPSS could be studied, and 

more analysis about impact of the randomness of the distributed 

power supply on FSTPSS energy management accuracy could 

be discussed.  
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