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Graphical abstract 

Abstract   

Ball milling is an effective way of producing defective and nanostructured graphite. In this work, the 

hydrogen storage properties of graphite, ball-milled in a tungsten carbide milling pot under 3 bar hydrogen 

for various times (0-40 h), were investigated by TGA-Mass Spectrometry, XRD, SEM and Laser Diffraction 

Particle Size Analysis. For the conditions used in this study, 10 h is the optimum milling time resulting in 

desorption of 5.5 wt% hydrogen upon heating under argon to 990 °C. After milling for 40 h, the graphite 

became significantly more disordered, and the amount of desorbed hydrogen decreased. After milling up to 

10 h, the BET surface area increased while particle size decreased: however, there is no apparent correlation 

between these parameters, and the hydrogen storage properties of the hydrogenated ball-milled graphite. 
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1.  Introduction 

Hydrogen storage is a key technical challenge that needs to be met to allow the introduction of hydrogen 

energy economies1. High-pressure gas cylinders and cryogenic dewars are currently used to store hydrogen 

in many prototype mobile applications. However, there is great interest in the development of an alternative 

approach in which solid-state hydrogen materials are used to store hydrogen, as it is possible to greatly 

increase the volumetric storage density（90~150 kg H2 m-3）2. The principal remaining challenge is to develop 

materials which have the necessary gravimetric storage density, i.e. which are able to effectively store 6 kg of 

hydrogen for the ~500 km range of a typical vehicle 3. Reversible hydrogen capacity should ideally take 

place on-board a vehicle at 0-150 °C and 1-30 bar. For fast hydrogen cycling, the chemical (or metallic or 

ionic) bonds between hydrogen and the atoms / molecules of the storage material should be relatively weak. 

However, in order to achieve a higher hydrogen storage capacity, these bonds should be relatively strong. In 

addition, it is necessary to take into account cost and safety issues associated with potential hydrogen storage 

materials. Conventional metal hydrides have high volumetric storage densities (e.g. 115 kg H2 m-3 for 

LaNi5), but they are heavy and can be rather expensive 2a. It has been argued that carbon-based media are 

promising materials for hydrogen storage 4. Activated carbon (AC) consists of small graphite crystallites and 

amorphous carbon, and can have high surface areas of up to 3000 m2 g-1. Although the gravimetric hydrogen 

storage density can approach that of liquid hydrogen, low temperatures of around 77 K are required 5. In the 

case of graphite, it has been reported that the interlayer distance (0.34 nm) is too short for hydrogen 

molecules to be absorbed 6. However there are simulations that suggest that at near-ambient conditions, 

nanostructured graphite with an optimum structure (0.6-0.75 nm for interlayer spacing) may absorb up to 6 

wt% hydrogen (-73 °C, 500 bar) 7. 

An effective method of producing nanostructured, defective graphite is by ball milling, as shown by Orimo 

et al 8, who found that graphite milled under 10 bar hydrogen could absorb 7.4 wt % hydrogen. The milling 

conditions, such as pressure, gas atmosphere and milling mode, all affect the structure of the resulting milled 

graphite materials and their hydrogen storage properties. Chen et al 9 found that with increasing hydrogen 

pressure (3-60 bar) during milling, the total amount of absorbed hydrogen decreases. They postulated that at 

higher pressures, more hydrogen atoms are trapped both at the edges of the graphene sheets and between the 

interlayers, which suppresses the formation of further defects. Under the same pressure and atmosphere, the 

amount of hydrogen stored (measured by heating under argon up to 500 °C) was found to be 0.6 wt% using 

shearing-mode milling, and 2.7 wt% using impact-mode milling 10. A significant disadvantage of using 
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graphite to store hydrogen has been the absence of any reversibility. However, Ichikawa et al 11 demonstrated 

that an addition of lithium hydride (2:1 molar ratio of graphite and LiH) made it possible to achieve 

reversibility over a number of cycles. In order to significantly extend the cycling lifetime, there is a need to 

gain a greater understanding of the hydrogen sorption mechanism(s) involved in the ball-milled graphite 

system, with and without additions12. This includes the relationship between the particle size and specific 

surface area of the milled graphite powder, and its subsequent hydrogen desorption properties 13.  This work 

investigates the effect of milling conditions on the microstructure, powder characteristics and hydrogen 

storage properties of graphite ball-milled in hydrogen.  

 

2. Material and methods  

2.1. Sample preparation 

High-purity graphite powder (Sigma-Aldrich, -325 mesh, >99.99%) was used as the starting material. 

Milling was carried out using a tungsten carbide (WC) milling pot and milling balls (250 ml milling pot and 

49 × 7 mm diameter WC balls) on a Retsch PM400 Planetary Ball Mill. WC was selected as it is one of the 

hardest and densest milling media available. During the milling process it is possible that a small amount of 

contamination, such as either WC or Co (used as a binder in the construction of the WC milling pot) may be 

introduced into the carbon. Before milling, the high-purity graphite powder was heated up to 200 °C in a 

vacuum annealing furnace14. The dried graphite was loaded and sealed into the milling pot in an argon glove 

box to prevent oxidation and water adsorption. The mass ratio of milling balls to the sample is 13. The 

milling was carried out in 3 bar hydrogen. The rotational velocity was 280 rpm, with a sequence of 15 min 

grinding and 15 min rest (to prevent temperature build-up in the pot). 1 g samples were taken from the 

milling pot at different milling times (0-40 h) for analysis. 

  

2.2. Materials characterization 

X-ray diffraction (Bruker AXS D8 XRD, Cu Kα = 0.154 nm), Scanning Electron Microscopy (Jeol 

JSM-6060 LV SEM), Brunauer–Emmett–Teller (BET) adsorption examination (Micromeritics, ASAP 

2010) for specific surface area measurement and Laser Diffraction Particle Size Analysis (Coulter, LS230: 

G/0600/08 Fisons Scientific Equipment) of graphite powder in an aqueous glycerol solution were used to 

characterise the physical properties of the as-received and milled powders. Thermal Gravimetric Analysis 
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(TGA) (Netzsch TGA 209, 2 °C min-1) and Mass Spectrometry (MS) (Hiden Hal IV) were used to measure 

the hydrogen desorption properties.  

3. Results and discussion   

3.1. Structural characterizations 

SEM and laser particle size analyses were carried out on the as-received (Fig. 1a) and milled graphite 

samples. During ball-milling, the graphite particles were reduced in size and the sharp edges found on some 

particles disappeared. The graphite sample milled for 10 h appeared to exhibit a wider distribution of particle 

sizes (Fig. 1b) compared to that at 40 h (Fig. 1c). This is supported by the laser diffraction particle size 

analysis (Fig. 2 and 3). Laser Diffraction Particle Size Analysis showed that the average particle size 

significantly decreased with milling up to 1-2 h (Fig. 2 and 3). After which, there were only small further 

decreases for graphite samples milled for 10 and 40 h (Fig. 3), presumably due to agglomeration during 

milling. Also, after milling up 10 h, the particle size distribution became narrower (Fig. 2).  

 The variation of specific microspore external area (Sexter), internal area (Sinter) and BET area (SBET=Sinter+ 

Sexter) as a function of milling time, are shown in Fig. 4. After milling up to 10 h, the BET area increased to a 

value of 550 m2g-1. Meanwhile, Sinter increased to 200 m2g-1 and Sexter increased to 350 m2g-1. After 10 h, such 

areas increased slightly. This is supported by particle size analysis (Fig. 2 and 3), which shows particle size 

decreasing as Sexter increased. This agrees with the results of Shindo et al 15, in which after milling for 20 h, 

the surface area did not decrease but reached a plateau. During milling (0-10 h), the increase in Sinter  

suggests that micropores have been produced as part of the increased impacts between the surface of the 

graphite particles and the milling balls. After 10 h, the external area did not change greatly, suggesting 

increased particle agglomeration. This is consistent with Francke et al 16 who reported that the agglomeration 

of the small particles increases after milling up to 6 h,..  

The as-received graphite is crystalline and has two main diffraction peaks (002) and (004), as shown in 

Fig. 5. As milling time increased the intensity of the (002) peak continuously decreased, and almost 

completely disappeared after 40 h milling. This shows that significant amorphisation of the graphite occurred 

after milling between 10 and 40 h. Orimo et al 8 reported a similar trend, with the intensity of the (002) peak 

weakening at 2 h and then disappearing after 5 h milling. However, a shift in the (002) peak from 26.7° to 

26.6° 2 8, was not observed in this work. Such a shift might be explained by the introduction of Fe impurity 

from the milling media 17. 
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When graphite was milled for 40 h, low intensity diffraction peaks associated with tungsten carbide (WC) 

were observed in the 20 - 50° 2 region. It is most likely that this is due to contamination from the milling 

media. In previous work 18, it was shown by vibrating sample magnetometry that the ferromagnetic 

component of milled graphite increased as a function of milling time. If one assumes that this 

ferromagnetism was only due to Co (rather than any other Co-based phase(s)), then after 40 h milling this 

would correspond to 0.04 vol % Co 18.  

 

3.2. Hydrogen desorption properties of the milled graphite  

MS was simultaneously carried out during a TGA measurement, allowing the amount of desorbed gases to 

be estimated. The TGA and MS results (Fig. 6) showed that for a graphite sample milled in hydrogen for 40 

h, the amount of hydrogen desorbed was about 5.5 wt%, the ratio of hydrogen to methane was relatively low 

and the onset desorption temperature was about 400 °C. In order to improve the hydrogen storage capability 

of nanostructured graphite, there is a need to decrease the temperature of hydrogen desorption, increase the 

amount of hydrogen desorbed, and also reduce the amount of methane release 14. 

The maximum amount of hydrogen desorbed was for the sample milled for 10 h (Fig.7). After 40 h the 

hydrogen-desorption content decreased, and a significant amount of methane was also desorbed.  The BET 

area and the particle size changed slightly after 10 h (Fig. 3 and 4). In this work, there is no linear correlation 

between BET area and the amount of hydrogen desorbed /desorption gases.  

The high onset hydrogen desorption temperature of above 400 °C (Fig. 6) suggests a chemisorption 

process rather than physisorption. Therefore the degree of hydrogen uptake should be related to the number 

of active carbon atoms that are able to react with hydrogen to form C-H bonds, and not just the measureable 

BET area.  

 

4. Conclusions  

This work shows that ball milling of graphite under a hydrogen atmosphere is an effective method of 

producing nanostructured graphite which is able to store an appreciable amount of hydrogen. Under the 

conditions used, it was found that 10 h was the optimum milling time to maximize the amount of hydrogen 

desorbed and minimise methane release, resulting in desorption of 5.5 wt% hydrogen upon heating under 

argon to 990 °C. Although BET area and particle size changed with milling, no apparent correlation could be 
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found with the hydrogen storage properties of the hydrogenated milled graphite powder. It cannot be ruled 

out that impurities (e.g. W and/or Co) from the milling process may also have a role to play, but it was not 

possible to detect their presence by any of the techniques employed in this study. 
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Fig. 1   SEM secondary mode micrographs of: (a) as-received graphite; (b) graphite milled for 10 h; and (c) 
graphite milled for 40 h (under 3 bar hydrogen). 
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Fig. 2   Distribution of particle size values for as-received graphite (□), and graphite ball-milled in 3 bar 

hydrogen for 2 h (○), 10 h (∆) and 40 h (*). 
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Fig. 3    Laser Diffraction Particle Size Analysis of graphite powder milled for different times (0-40 h) 

under 3 bar hydrogen 
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Fig. 4 BET, external, and internal surface areas as a function milling time for graphite powders milled in WC 

milling media, under 3 bar hydrogen. 
 

 

 
 

 

 
 

  
Fig. 5  XRD patterns of graphite milled for various times (0-40 h) under 3 bar hydrogen 
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Fig. 6  TGA and mass spectrometry of graphite that had been milled for 40 h in 3 bar hydrogen. Heated at 

2 °C/min under 0.5 bar flowing argon. 

 

 

 

 

Fig. 7 Amount of hydrogen and methane desorbed from graphite milled under 3 bar hydrogen for various 

times (0-40 h). Calculated from TGA-MS measurement, e.g. the absolute desorption weight percent for 40 h 

was estimated from the data in Fig. 6 
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