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Abstract: Community detection plays an important role in researchetwork characteristics and
in the mining of network information. A variety of algthms have previously been proposed, but
with the continuous growth of network scale, few bérh can detect community structure
efficiently. Additionally, most of these algorithms ongpnsider non-overlapping community
structures in networks. This paper addresses theseeprslily proposing a new algorithm, based
on node membership grade and sub-communities attegr to detect community structure in
large-scale networks. The proposed algorithm firsttyoofuces two functions based on the local
information of each node in networks, namely neighigprinter-nodes membership function
fusnn @and node-to-community membership functifisne. Firstly, local potential complete
sub-graphs are efficiently mined using the funcfiggiyn, and then these small graphs are merged
into larger ones in light of local modularity. Secondhgorrectly divided nodes are modified
according to functionfysnyn. Additionally, by adjusting the parameters figsne, We can
accurately obtain both non-overlapping communities aratlapping communities. Furthermore,
the proposed algorithm employs a framework resembéibglIpropagation, which has low time
complexity and is suitable for detecting communitieige-scale networks. Experimental results
on both artificial networks and real networks indéctite accuracy and efficiency of the proposed
algorithm.

Keywords: Large-scalenetwork; node membership function; sub-communitieegiration;

overlapping community
1. Introduction

Complex networks are prevalent throughout the natwaild, human interactions and
computer systems, e.g. the World Wide Web, interpedsoetworks, biological networks, and
many other examples [1-6]. An important property thaists in many of these networks is
community structure [7-9]. A community is a set ofles that connect more closely with each
other than they do with other nodes in different comitres [8-9]. Individuals of the same
community usually have common characteristics [16].[#or example, web pages with similar
subjects compose a community in the worldwide web orkt\i1]. Additionally, it can be seen

that individuals with similar characteristics often shamrendense connections with each other



than they do with other parts of the same networksTHeatecting community structures is helpful
in understanding the structure and functioning of netevd22] and can also help to detect
potentially useful information within a network, thgiumining relations between individuals.

The problem of community detection is an area ofidigpgrowing interest within the
complex network analysis research community, and &tyaof methods have been proposed for
its solution. Well-known approaches can be broadlygeaized as graph partitioning methods
[12-14], hierarchical clustering algorithms [15-1&Hd evolutionary algorithms [18-19].

Kernighan-Lin algorithm [12] is a well-known graph péohing method, which works by
randomly dividing a network into two communities, ahdrt iteratively exchanging the nodes of
the two communities until a modularity measure Q (889 [is maximized. Spectral bisection [13]
also works by separating the network into two pansing a Laplace matrix. Both of these
algorithms rely on accurate prior knowledge of comnyugize; they can only perform a simple
binary division of a network into two communities;atheir time complexity is high.

The hierarchical clustering algorithm is based on netmfsimilarity between the nodes and
edge betweenness. This class of algorithms is “ldkical” in the sense that clusters are
recursively merged (agglomerative methods) or sgitigive methods) as one moves up or down
the hierarchy respectively. For example, GN [15], psga in 2002, recursively removes
whichever residual edge has the largest edge betesgntihereby progressively decomposing a
network into a number of smaller clusters. Howevemguting the betweenness of all the edges
is time-consuming.

In 2008, Clara Pizzuti [18] first proposed the u$eswolutionary algorithms to solve the
problem of community detection. The algorithm usaiagle objective evolutionary algorithm to
optimize community fractio®Sas its objective function. Inspired by this meth@dng [20] et al
proposed a memetic algorithm to optimize modularity ieh> to extract multilevel community
structures. In 2013, Shang et al [21] improved o} B0incorporating additional kinds of prior
knowledge and using simulated annealing as a locattsestrategy to optimize a modularity
measure, Q. In addition to the above methods, @tlgerithms have recently been proposed for
detecting overlapping community structures. Somehesé¢ methods firstly extract maximal
sub-graphs from the original networks and then mengall sub-graphs according to some index
or strategy [57-59]. Other methods detect overlappindes in bipartite networks using key
bi-communities and free-nodg0].

However, with the rapid growth in worldwide compupgevalence and connectedness, the
corresponding expansion of individual’s social les; and the era of big data, the scale of
networks is increasing, engendering a growing needdorithms which are fast and efficient. In
this lights some of the above methods are no longeatdeifor community detection in large

scale networks, for example the time complexity of KR] is O(n?) and GN [15] isO(n?).




Although evolutionary algorithms have shown potential finding global optima, and are not
constrained by the type of optimization function, tioégn take a long time to converge. Besides,
the detection results still have some room for impremmsuch as improving the detection
precision and finding more multilevel solutions.

To overcome the limitations of the above algorithities paper proposes a large scale
community detection algorithm based on node memberghngbe and sub-communities
integration. First, we propose a neighboring intesdlesomembership functioiysnn to evaluate
the closeness of each node with its neighbors. Ttrounerging the couple-node with highest
fusnn value, this method can quickly find the potential corgpleub-graph structures and
effectively obtain a preliminary partitioning for theetwork. Next, those sub-communities
achieved from the above steps are integrated byn@gitig modularity Q. However, once these
sub-communities have been merged together, itfisuifto correct nodes that have been wrongly
placed. Therefore we propose another membershigidunfs e Which is used to estimate the
intimacy of nodes that connect with different adjacentroamities and can modify misclassified
nodes, thereby preventing the result from fallintpilocal optima. Finally, through adjusting the
parameters ofysnc, the proposed algorithm can be used to detect gyan@ nodes and find
overlapping community structures at different lev@lecause the proposed algorithm adopts a
learning strategy similar to label propagation, whictiolmes only local information in each
iteration, our method has low time complexity and isréffore suitably efficient for detecting
communities in large and medium scale networks.

The remaining part of this paper is arranged asvd! In section 2, related algorithms are
introduced and the motivations for the proposed alguorine explained. In section 3, the details
of is the proposed algorithm are described. Sedtipresents the results of experiments on both

artificial and real networks. Section 5 discusses thaltseand presents conclusions.
2. Related works and motivation

In this section, we will introduce some related strig®egmployed for community detection
in large scale networks, and discuss the motivationddeigning the new algorithm proposed in

this paper.
2.1 Local modularity

Modularity Q, proposed by Newman [23], is used aseaegal evaluation index of the
partitioning result. A variety of algorithms have begroposed for dividing a network into
communities by maximizing Q. However, calculating madity Q requires global information of
a network, which causes fundamental problems fomeomnity detection as the scale of networks

becomes large. Therefore, to improve the detecfiiency in large-scale networks, more recent




algorithms have been proposed which exploit the ldcfdrmation of each node, [24-29],
especially those which are based on local modulapitynization [25-29].
This paper is particularly concerned with networks Wrace unweighted and undirected, so
that the local modularity incremental function carrdduced to:
| . dd.
AQiaj:L_ — (1)

m 2m?

Equation (1) shows the increment of modularity Q whemodei (or communityi) merges
with nodej (or communityj), wherel;;j represents the connections between mgdecommunityi)
and nodg (or communityj), d; andd; donates the degrees of all the nodes in mgdecommunity

i) and nodg (or communityj) respectively, whilen is the number of edges in the whole network.
2.2 Efficient ways of optimizing local modularity

Methods for optimizing local modularity can beadly divided into two categoriedocal
node search strategies and sub-communities iniegrstrategies. Local node search focuses on
information about each node’s neighbours in the néwand divides nodes into communities
according to an optimization function. For examplBAm [26] employs the framework of LPA
[25], which treats each node as a separate commuithyiterown label. In each iteration, LPAmM
updates each node’s label according to equatioctibamwhich is equivalent to local modularity,
converging on an optimized set of communities comedmg to an increase in modularity
optimization. LPAmM has low time complexity, @Y, and is more stable than LPA. In order to
overcome the vulnerability of LPAm to local optimangergence, Liu et al [27] extended LPAmM
by incorporating the sub-communities integration strat@gmultistep greedy, similar to MSG
[28]. The sub-communities obtained by LPAm ateratively merged according to the local
modularity function until no further improvement canrbade. The optimization result is greatly
improved, and its time complexity is or(mlog’n).

An alternative approach to optimizing local modulardtse sub-communities integration
strategies, which merge existing sub-communities iready way. FM [29], initializes each node
as a separate small community, and iteratively mesdgshever pair of current sub-communities
causes the largest increment of local modularity. Pincedure is repeated until no pair of
communities can be merged to make a positive impreménn local modularity. The algorithm
has a time complexity of ®lpg’n). BGLL [30] is another algorithm which uses a
sub-communities integration strategy. In contrast RM [29], in BGLL the pair of
sub-communities to be merged need not be globptiynal, but is only required to cause a locally
optimal increase in modularity, Q. This method leasear linear time complexity for sparse
networks and achieves good detection results. Hawdike LPAm, BGLL is prone to local

optima convergence because, during the merginglwtemmunities, if a single node is wrongly




assigned, it will become part of a larger commyrafier which it cannot be divided back out of
that community in future iterations. To overcome fhigblem, a correction method was proposed
by Rotta et al [31]. In this method, a multi-levelraztion strategy is employed, that employs a
local node search strategy during each iteration.

From the above discussion it is apparent that the iflearobining local nodes search and
community integration together, can help algorittmwercome vulnerability to local optima, while
offering the potential for low computational complgxitHence, in this paper, the idea of
combining these two strategies is employed for deteadmmunity structures in large scale

networks.
2.3 Pre-processing method

Unfortunately, the algorithms discussed in sectioh g€hare a common problem. After
initialization, when every node is individually labeled aseparate community, in accordance
with the formula (2)};; will be equal to unity. Consequently, the maximum éneent of local
modularity will correspond to two nodes with smaller @éegid; andd;, so that such nodes are
more likely to be partitioned into the same commur8®]] This tends to contradict the principle
that individuals with closer connections should beifi@ned together. Thus, inspired by literature
[37-40] which adopts pretreatment methods, we Yirgmploy a neighboring inter-nodes
membership function named &gsny t0 generate a preliminary community division for the
network. This function, based on the neighboring sadembership relation, divides those nodes
with more close connections into the same communityth& same time, by adjusting the
parameters ofysnn, potential complete sub-graphs can be found, whigps to improve the

accuracy of the algorithm. The details of this pre-pseig step are introduced in Section 3.2.
2.4 Detecting overlapping communities based on non-overlapping strsicture

Overlapping communities are widely prevalent in reatworks, but are comparatively
under-explored in the community detection literatureistihg methods for overlapping
community detection in large-scale networks incl@®@PRA [33] and LFM [34]. These are
comparatively fast algorithms with low computationasifig objective functions based on the
local node information or optimization of local fithneslspwever their classification accuracy is
relatively poor. Other algorithms, that are suitalde large-scale networks, detect overlapping
communities based on already having prior knowlddghe form of existing accurate detection
results for non-overlapping communities. For examie, CONA algorithm [35] efficiently
detects overlapping communities based on using tHd_.B@d Infomap [36] division results as a
starting point. High quality overlapping community ddéitat with this method, is often dependent

on first establishing accurate knowledge of the nomapping communities within networks.




3. The proposed method

This section introduces the design of neighboring inbeles membership functidiysnn,
the procedure for merging of sub-communities baselbeal modularity, the node-to-community
membership functiofiysnc, and the detection of overlapping communities. Finahg overall

framework of the algorithm is presented and the tioreplexity of the algorithm is analyzed.
3.1 Representation and decoding

Consider a networle={V, E}, whereV represents the vertex set d&nads the edge sety|Fn
is said to be the number of nodes in the network|Bjwn is the total number of edges in the
network. Here we use the real coded representatitireazetwork partition:

g=[%.%,..X ... where £123,.n [ 1] 2

Whereg means a partition of the network axds an integer representing the label of the
community to which nodebelongs According to expression (2), %= x;, fori, j=1, 2, ...n, then
nodei and nodg belong to the same community. For example, fortaar with 12 nodes shown
in Fig.1(a), if the partitioning result 5=[2, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 3], that meaodenset {3, 4,
7, 8} is in the community 1 and node set {1, 2,5,6s9n community 2, and the rest nodes are in
community 3. The corresponding community structune lga displayed by Fig. 1(b), which is

shown in different colors and shapes.
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Fig.1. Test network 1

3.2 Preprocessing based naighboring inter-nodes membership functigenn

The question of how to judge the similarity of nodes inetwork is an important problem.
Commonly, the intimacy between any two nodes is decidedrding to the number of their
common neighbors, e.g. cosine similarity [61] orcdad similarity [62]. As a simple example,

consider that two people could be defined as knovaagh other well, if they share many




common friends. If most people connected with irdlral A are also known to individual B, then

we can infer that A belongs to the community of BieTextent to which B is connected to the

individuals that connect with A, represents the mentitygrdegree with which A belongs to B. In

light of this phenomenon, we propose a neighboringrinbdes membership functidgsnn

which indicates the membership degree with whisblongs tg:

- Irnrf+1
d

(i=12,..n, jOTI,) ()

fMS*NN (|1 J

Wheren represents the number of nodes in the netwirks the neighbor set of node anddy
denotes its node degree. Greater value$yefn(i,j) indicate higher likelihoods that node
belongs to nodg and suggest that nodshould be partitioned into the community of ngdé all
the neighbors of nodeare connected to nodenamelyfysnn(i,j)=1, then nodé is completely
attributed to nod¢ TABLE 1 presents the procedure for network pegtreent using the function

fMSNN.

TABLE 1: The framework of pretreatment of a netwbdsed on functiofy;s

Input: The node numbar; initialization representatiog=[1,2,3.. nJ;number of each node’s neighbadxgilen
neighboring node informatiaNeiglis&E{7,[%,...[\,...[}» k=1,2,...n wherelrepresents the neighbor
nodes set of node parameten.

Output: The preliminary partition resigt

Stepl: for i=1 tah do

Step2: Neilen<— the number of nodés neighbors:[j;

Step3: iNeiler=0

Step4: foj=1 toNeilendo

Step5: Fus_nj) <— Computéfys.nij)

Step6: end for

Step7: end if

Step8: if maxfys ny= a

Step9: Attribution nodig,s n<— arglmax( fus-nn(inl)), 1€ 175, (breaking ties randomly if more than one

I's satisfy the condition)
Step10: Community label of nodeg(i) <—Community label of nodis » I(ims_»;
Stepl11: end if
Stepl11: end for
Stepl12g <—Decode();

For example, Figure 1(a) is a simple network whioltains 12 nodes and its community
structure is clear. Intuitively, we can concludatthodevl to nodev9 belong to one community
while nodess10 to nodevl2 belong to a separate community. According tofidw@mework shown
in TABLE 1, we can pretreat the network presented-ig.1. The corresponding membership

function value ofysnn for each node is shown in TABLE 2.




TABLE 2: The value of functioffiygny Of each node in test network 1

nodei nodej fusandisl) nodei nodej fusandisl)
1 2 0.60 4 8 0.25
1 3 0.60 5 1 0.75
1 4 0.60 5 2 0.50
1 5 0.6C 5 4 0.5C
1 10 0.20 5 9 0.25
2 1 0.75 6 2 1
2 3 0.50 7 3 1
2 5 0.50 8 4 1
2 6 0.2¢8 9 5 1
3 1 0.7t 10 1 0.3z
3 2 0.50 10 11 0.67
3 4 0.50 10 12 0.67
3 7 0.25 11 10 1
4 1 0.75 11 12 1
4 3 0.50 12 10 1
4 5 0.50 12 11 1

According to the results in Table 2, assuming that membership functiofiysnn Satisfies
the condition thafus.n(i,j) > a, we will put nodd into the community for which adjacent node
has the highest value &fs.n\(i,j). For example, ifr is set to be 0.75, the the nodewill stay in
its own community since ndysnyl,j) exceeds the threshold. Nod2 is divided into the
community of nodevl sincefysnnN2,1) is the highest of afiysny2,), wherej=1,3,5,6,0others
followed by analogy. Ties are broken randomly #réhis more than one highest value. Fig. 2(a),
Fig. 2(b), Fig. 2(c) show the network pre-treatrseodrresponding ta. set at 0.5, 0.75 and 1

respectively (different communities are shown iffedént colors):

©

Fig.2. Preliminary partition results of test netwdr. (a) Pre-treatment result wher0.5. (b) Pre-treatment result

whena=0.75. (c) Pre-treatment result whesil.




As we can see from Figure 2, whers 0.5, the preliminary partition result of netwatkis
the most compatible with the intuitive result. Whenincreased to 0.75, nodd0 becomes
regarded as a sole community as it has the trebé &n overlapping one. If we set 1, which
has the most stringent membership relation, théntbnse nodes who are completely affiliated to
their neighbors become partitioned into the samangonity. Thus, changing the membership

function threshold: can usefully lead to multi-level pretreatment fssu
3.3 Sub-communities integration based on local modularity

Based on the preliminary partition result obtained section 3.2, a sub-communities
integration strategy is next employed. This metisogimilar to the second step in BGLL [30]. The
first thing to do is to agglomerate those nodethénsame community as a new node. The method
for agglomerating the nodes is as follows. Firglect those nodes within a single common
community as a whole group. Then this group isabkeled as a “big new node”. This “big new
node” has both a self-link and external links.sksf-link is set to be twice the number of internal
links of nodes within this group, and its exterdiaks are those that connect with other
communities. The process of sub-communities integraf the pre-proceed network of Fig. 2(c)

is shown in Fig. 3 (unlabeled lines connection degs 1).

Fig.3. The process of sub-communities integratiomedwork in Fig. 2(c). (a) The initial network loeé
integration. (b) Agglomerate the node in same conityu(c) Merge sub-communities according to local

modularity. (d) The final result corresponding ke priginal network.




Figure 3 shows the process of using sub-commuriitiegration, based on local modularity,
to partition the network shown in Fig. 2(c). As slmoin Figure 3 (a)y2 andv6 are in the same
community, and the connection number between twdesds 1. Therefore, these two nodes
agglomerate into one node and its self-link becoteéster all nodes within the same community
have been agglomerated into a single node, thesenodes will merge according to formula (1)
to increase the local modularity. As shown in Fga(b) and Figure 3(c), new nodes 2, 4 and 5
agglomerate into one community 2, and new node3 Hecome merged into one. Finally, the
result is re-drawn corresponding to the nodes @f dmiginal network. At this stage, the

partitioning result is the best (with Q=0.3223).
3.4 Modifying the network using node-to-community membership fufigign

From the analysis of Section 2, it is apparent thdi-communities integration strategies
based on incremental local modularity can effidiewfbtain partitions in large-scale networks.
However, nodes that are wrongly partitioned onae reaver be correctly recovered, leading to a
sub-optimal final result. Hence, we propose a egpatfor modifying the partitions based on a
node-to-community membership functifpsnc. In the spirit of LPA [25], we begin with the
assumption that the possibility of a node belondm@s adjacent nodes is in proportion to their
connection number. However, such an approach idéveentric”, and ignores the extent to which
a community might actually be receptive (or notlttoadjacent nodes. Therefore, we take both
sides into consideration and propose a new memdistttionfysnc to measure the intimacy of
a node and its neighboring communities:

fys-nc (i,€) = 4 EI'(IZTC"',BE!ICTC (i=12,..n; /l,ﬂ[l[o,l],,1+ﬁ #0) 4

c

Where | represents the number of links between nbdad its adjacent community; [c|
represents the number of nodes in commurjityandf are the parameters of this function and
their values lie in the range [0,1]. The first tetbefore the “+") represents the possibility of a
node belonging to its adjacent commurdtgind the second term shows how likely commuaity
is to accept node Since 0% <d; , and the node number of commuritys |c|, then the value of
the whole equation range is (0,1lhitially, the size of sub communities is small afyd.nc
changes mainly with the connection number of eamtenio its adjacent communities. With the
growth of these sub-communities, the gaps betweemnities widening, and the link numbers
being equal, the value &fis.ncrepresenting the intimacy of a node with a smalenmunity is
higher, and the node is more easily partitioned iatsmall community. At the same time,
adjusting the parametetsandf can also adjust the proportion of the first ancbsd item in the

formula (4). The overall procedure is presentetABLE 3.




TABLE 3: Modify the network based on node-to-comityyumembership functioffys.nc

Input: Node numbern; Network representation after pretreatment and-cawbmunities integration
o=[rura...1d> rk€[1.n], k=1,2,..n; Parameters, p; Iteration numbetter.

Output Detection resulg.

Stepl: forloop=1 tolter do
Step2: foi=1 ton do
Step3: Find all the adjacent sub-communitieaodei : N.={c,,C,,...c;}» wherep is the number of

sub-communities;

Step4: foj=1 topdo

Step5: Fus_ndj) <— Compute fys.ndi, &),wheret=1,2,3..p;

Step6: end for

Step7: Attribution community index ixs . <—argmax (Fus_ndW), u=1,2,..p (breaking ties
u

randomly if more than on&'s satisfy the conditiorr)
Step8: Community label of nodey(i) <— Community label of sub-communityNc(ims J);
Step9:  end for
Step10: end for
Stepl1lyg <—Decodeg);

Figure 4 shows the detection result on the Zacl@ob network [41] after using our
proposed strategy based on node-to-community meshipefunctionfys.ne Fig. 4(a) shows the
detection result of using only node search stratgy sub-communitiegtegration, Fig. 4(b)

represents the network modified by our proposedridlgn as summarized in TABLE 3.

(a) (b)

Fig.4. Partitioning result of Zachary's karate cl(dy) Detection result of using only node searcitsyy and

sub-communitiegntegration. (b) Detection result using our progbsethod withfys.ne




As you can see from Figure 4, after modificatiomuanber of misclassified nodes have been
corrected. For example, the 33rd node, which hasenoonnections with the 34th node, is
wrongly divided into the same community as the 28tde. Once the 33rd node has been
modified, the 19th node and 15th node are corresttedessfully. Similarly, note that the 2nd node
has a node degree of 9, while its number of coforeivith the community denoted as triangles
is 5, which accounts for more than half of theltbtks. Thus the 2nd node is corrected by being
assigned to the community of the 1st node. Aftat,tthe 22nd node, 3rd node, 14th node and
10th node are also modified. In addition for noderection, some potential small community
structure has also been identified. For exampldesad®, 6, 7, 11 and 17 form a closely connected
small network. After correction, the value of Qaalacreases from 0.276 (shown in Fig. 4 (a)) to
0.419 (shown in Fig. 4 (b)).

3.5 Detecting overlapping communities using the node-to-community maipbers

function fs.ne

In real networks, those nodes which belong to mlglticommunities are known as
overlapping ones. Since the definitionfg§.ncimplicates the membership grade of a node and its
neighboring communities, we can assume that if tlembership value between a node and
several of its adjacent communities are the samea, this node can be regarded as an overlapping
node. Additionally, as stated in Section 2, higlaldy prior knowledge of the non-overlapping
community structure usually contributes to accudatection results for overlapping communities.
Therefore, our proposed algorithm makes use ofriambership function introduced in Section
3.4 and mines overlapping nodes based on the nerapping communities obtained by the

previous steps. The overall framework of the d@agbrocedure is shown in TABLE 4.

TABLE 4: Overlapping community detection basedigfinc.

Algorithm 3: Overlapping community detection basedys.nc

Input: Number of nocs in networkn; Detection results of n~overlapping communitg=[r 4, r »,...,
r'.], wherer' ([1,n], k=1,2,..n; parameters, £; Max iteration numbekg,;.

Output: Overlapping node listod_ov.

Stepl:Nod ov<— {};

Step2:for loop=1 tolterl do

Step3:  for i=1tondo

Step4: Find all the adjacent sub-communitfesoadlei : N, ={co,, C0,,..., €O}, Wherep is the

number of sub-communities;

Step5: if not all the community label of sulamunities in\.; are the same;

Step6: foj=1 top do

Step7: Fus_ndj) <— Compute fys.ndi, co),wheret=1,2,3..p;




Step6: end f

Step7: Membership index sgt<—argmax( Fys ndV)), v=1,2,..p;

Step8: if |voy|>1

Step9: i is an overlapping node, hended_ov=Nod_ov({i};

Stepl0: else

Stepll: i is a non-overlapping node aN@d_ov =Nod _ov \ {i}if iisinNod ov
Stepl2: end if

Stepl3: nodebelongs to communitgo,, namelyco ,= co ,[{i}, v=1,2,..;

Stepl4: end if

Stepl5: end for
Stepl6: end for
Stepl7g <—Decode();

According to the procedure of TABLE 4, and using #achary’s karate network obtained in
Fig.4. (b) as an example, we set the paramétarsl$ respectively equal to 1 and 0 or 0.2 and 1,
with the corresponding overlapping community detectesults shown in Figure 5 (a) and Figure
5 (b), in which the overlapping nodes are depidgtedhite. From Fig. 5 (a) it can be seen that
wheng=0, whether a node is overlapping is mainly deciofethe number of connections between
it and its adjacent communities. Thus only the lfitde satisfies the overlapping condition. In
contrast, wherns=0.2, after considering the acceptance degree betwlee community and its
neighbors, a greater number of overlapping nodesdantified, as shown in Fig. 5 (b). Thus, we

can obtain overlapping communities at differentle\by adjusting these parameters.

() (b)
Fig.5. Overlapping community detection resultstos Zachary’s karate club network whenXa1, =0 (b)
1=0.2,p =1.




3.6 Overall framework of the proposed algorithm

According to the descriptions of Sections 3.1 %, #he overall framework of our proposed

Preprocessing based on
neighboring inter-nodes
membership function fjss. vy

»|
Sub-communities integration
based on local modularity

!

Modify the network based on node-
to-community membership function

algorithm is shown in Figure 6.

f MS-NC

Reach max iteration ?

Detecting overlapping
communities based on fys.ne

!

Output the final
results

Fig.6. Overall flow chart for the proposed algamith

3.7 Time complexity analysis of the proposed algorithm

In this section, we analyze the time complexitytloé proposed algorithm. Supposing a
network withn nodes anan edges, at the stage of the preprocessing introdacgdction 3.2, the
membership between each node and its neighbors toeled calculated, with time complexity
O(m). The second stage need@nlogn) time as stated in [28], and if the procedure riandor I,
iterations, the total time used in the second stag®(l;mlogn). The third stage, in which
misclassified nodes are modified, has to considert@pological relationship between each node
and its adjacent communities, thus it takes a toraplexity ofO(k:n) in each iteration, where
is the average number of communities that a nodeleaonnected with. The time complexity of
the third stage aftdgiterations isO(Iok:n). The time used in searching overlapping commemit
almost the same as that used in the third staggpdSing it takessiterations for the second and
the third stage to converge, thus the whole coniglenf the proposed algorithm is
O(m)+l3(O(I;mlogn)+ O(l kn))+ O(l2 kn). Sinceli=logn [27], the overall time complexity is only
O(mlogn).




4. Experimental results and analysis

This section presents and discusses the resultdetfcting both non-overlapping and

overlapping communities in experiments performedboth artificial and real network examples.
4.1 Evaluation index

To test the detection results of networks whose partitions are known, here a standard

mutual information index (NMI) is introduced, defih as follows:

=2y Y e H, log(Hy N /H H ) :
> " H, Jog(H, /N)+Zth ®)

H; log(Hy /N)
Here Np; (Nh2) is the number of communities in the partitibp(h,). H is the confusion

(. hy) =

matrix and its elemertd; is the number of nodes that belong to commuiniy partitionh; that
also belong to communityof partitionh, The element;.(H,) is the sum of the elements row
(columnj) in matrix H. When the partitioning results; is the same witlh,, thenl(hy, hy) =1;
otherwise, the larger the difference of the twatipans, the lower the value dthy, hy). When
they are completely oppositgh;, h,) =0.

For other networks whose true partitions are unkmawodularity Q [23] is employed here
as another index to test the detection resultséor-overlapping communities. Its definition can
be found in [23]. As to the evaluation of the oapping nodes, Shen [42] et al. proposed a simple
function EQ, for the evaluation of overlapping communities inweighted and undirected

networks. The definition of EQisas follows:

EQov _72 (Au J)S(CHC (6)

In the equation (6)4; represents the link number of nodeandj. If i is connected witl,
thenA;=1; otherwiseA;=0. O, represents the number of communities to which ndgelongsd,
represents the degree of nagden represents the sum edges in the network. Fronmtiequ®) we

can see that EQ=Q if the network does not contain any overlappinges.
4.2 Setting of parameters

In the proposed algorithm, we introduced membersHimction fusny and
node-to-community membership functibfsnn, in which some parameters should be set. To
obtain more accurate experimental results, somer pvork has been done on several small
networks whose ground truth partition results anevkn. As Fig.2 shows, different hierarchical
network structures are found when parametehanges from 0.5 to 1. Hence, to mining more
multilayered structures, here we seto 1. Another two parametefsandp, are flexible settings
according to the detecting results of each netwbhat means we can get much better detection

results through adjusting these two parameters.




4.3 Detection of non-overlapping communities

This section describes the algorithms employedc@mparison, the artificial networks and

real-world networks used in the experiment, andctireesponding analysis is given.
4.3.1 Algorithms for comparison

In order to fully demonstrate the effectivenesthefproposed algorithm, some representative
algorithms such as GA algorithm [18], MODPSO altfoni [44], LPAm [26], LPAmM+ [27],
Infomap [36] and BGLL [30] (part of the code candmevnloaded from [45]). In addition, in order
to verify the effectiveness of each component ef phoposed algorithm, we will combine the
preprocessing strategy introduced in Section 3tB wilb-communities integration introduced in

Section 3.3 as the comparison algorithm, whicheisaded as Pre-processing+BGLL.
4.3.2 Detection results on artificial networks

The first artificial network employed in our expeents is the extended GN benchmark
networks, proposed by Lancichinetti et al. [43]isThetwork has 128 nodes, and is divided into 4
communitiesy is a parameter which represents the fraction efriimber of links of each node
within the community and the degree of the nodeelvithe value of 1- becomes large, it
suggests that the community structure of this nekvi® much clearer, and can be more easily
detected. Therefore, with increasipg the difficulty of detection is also increased.eTkey
parameter values set for our algorithm in this expent are:o =1, =0.15,p =1. Parameters in
other algorithms are the same as those suggesttittimcorresponding publications. Figure 7
shows the best results over 30 runs on extendecb&Nhmark networks for the detecting of

non-overlapping communities.
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0.2F BGLL

o1k Pre-Processing+BGLL
’ —*— The proposed algorithm
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Fig.7. Best results over 30 runs on extended GNHhreark networks.




As we can see from Figure 7, our proposed algoritearly generates the best testing results.
Whenu < 0.4, apart from GA algorithm, all other algorithmgre able to obtain completely
accurate results, but wherr0.45, Infomap is unable to detect the communitycstire, only
LPAm+, MODPSO and the proposed algorithm can getrhe partition results, and the value of
NMI obtained by other detection algorithms has ited. Meanwhile, because the Pre-Processing
+BGLL algorithm makes a preparatory division ofwetk based on the functiofysny thus it
generates more accurate results compared to usiggtlee BGLL algorithm. When=0.5, the
proposed algorithm generates the closest resulketue partition (NMI value is close to 0.9).

Another set of artificial networks is the LFR benark networks [43]. Compared to the
extended GN benchmark networks, LFR benchmark n&svbas more adjustable parameters,
which control the number of nodes generated, the af communities and the degree of nodes.
For our experiments, the parameters chosen in R henchmark networks are as follows:
network node number n=1000, average node deg@ immaximum node degree is 50, the degree
distribution exponents ard=2,12=1. In this experiment, paramejechanges from 0 to 0.7 and
17 network are generated. Figure 8 shows the lesstits over 30 runs on LFR benchmark

networks.

§ 0.5 GA
0.4F| —*— MODPSO
Infomap
0.3F| —— LPAm
02l —&8— LPAm+
) BGLL
0.1} Pre-Processing+BGLL
—#—— The proposed algorithm
0 0 0.1 0.2 0.3 0.4 0.5

B

Fig.8. Best results over 30 runs on the LFR netaork

It can be seen form Figure 8 that the detectionlt®sbtained by the proposed algorithm are
not completely optimal and perform very slightlgdewell than some of the comparison methods
(e.g. LPAm and Infomap) for relatively easy detaetproblems. However, as increases, the
results remain relatively stable and it obtains liest results whep is greater than 0.65. In
contrast, Infomap produces a completely correctitjar of the networks only whep<0.65.
Similarly, the value of NMI obtained by MODPSO deek afteru=0.6. The results obtained by
Pre-Processing + BGLL outperform those obtained WyLB alone, which indicates the

effectiveness of the preprocessing strategy prapivsthis paper.




4.3.3 Detection results on real-world networks

In this section 9 real-world networks are testex] their important attributes are as shown in
TABLE 5:

TABLE 5: Information of real-world networks

Network node number edge number average degree reReée
Zachary's karate (N1) 34 78 4.59 [46]
dolphins (N2) 62 159 5.13 [47]
American football (N3) 115 613 10.66 [15]
elegans (N4) 453 2025 8.94 [48]
netscience(N5) 1589 2742 3.45 [49]
power (N6) 4941 6594 2.67 [50]
PGP (N7) 10680 24340 455 [51]
Internet (N8) 22963 48436 4.22 [52]
Enron(N9) 36692 367662 20.04 [53]

All algorithms are run 30 times on the 9 real-wonétworks, and their best results and
average results are shown in Table 6 (for conci&eriee Pre-Processing+BGLL algorithm is

abbreviated as Pre_BGLL):

TABLE 6: The results of all the algorithms run 3®és on 9 real-world networks (the symbol "—" iraties
that the algorithm cannot effectively detect comities within the networks).
network | Index | GA MODPSQO| Infomap LPAmM LPAM# BGLLU PBGLL | proposed
N1 Qax 0.4198 | 0.4198 0.402 0.406 0.4198 | 0.4188 | 0.3949 0.4198
Qavg 0.411 0.4186 0.402 0.384 0.4176 | 0.4172 | 0.3894 0.4181
N2 Qhnax 0.5238 | 0.5268 0.5285 | 0.511 0.5285 | 0.520 0.5285 0.5276
Qavg 0.5138 | 0.5249 0.5285 | 0.501 0.5240 | 0.518 0.5202 0.5244
N3 Qmax 0.568: 0.604¢ 0.600¢ 0.604< | 0.604¢ | 0.604: | 0.604: 0.604¢
Qavg 0.5021 | 0.6035 0.6005 | 0.5814 | 0.6038 | 0.6036 | 0.6032 0.6035
N4 Qhnax 0.2832 | 0.3585 0.4168 | 0.3999 | 0.450 0.434 0.4156 0.4505
Qavg 0.2732 | 0.3566 0.4168 | 0.3796 | 0.440 0.432 0.4074 0.4417
N5 Qhnax 0.8979 | 0.9501 0.931 0.8471 | 0.9513 | 0.9517 | 0.9481 0.9579
Qavg 0.8581 | 0.950 0.931 0.8363 | 0.9436 | 0.9504 | 0.935 0.9549
N6 Qhnax 0.666 0.8422 0.8298 | 0.6121 | 0.9302 | 0.9349 | 0.9363 0.9382
Qavg 0.6354 | 0.8385 0.8298 | 0.6055 | 0.9289 | 0.9341 | 0.9351 0.9366
N7 Qhnax 0.645 0.335 0.8135 | 0.7222 | 0.8643 | 0.8822 | 0.8799 0.8831
Qavg 0.604 0.328 0.8135 | 0.7124 | 0.8632 | 0.8817 | 0.8787 0.8820
N8 Qrax 0.3912 | — 0.5755 | 0.4748 | 0.6500 | 0.6608 | 0.6668 0.6756
Qavg 0.3850 | — 0.5755 | 0.4669 | 0.6381 | 0.6597 | 0.6644 0.6742
N9 Qhnax 0.1071 | — 0.2584 | 0.2450 | 0.2716 | 0.2741 | 0.2762 0.2780
Qavg 0.1068 | — 0.2584 | 0.2297 | 0.2663 | 0.2724 | 0.2728 0.2769

We can see from TABLE 6 that GA and LPAm strugglelétect useful results, even when
the scale of networks is relatively small. The hssobtained by Infomap are relatively stable, but
it can only achieve the best results in few ofdkample networks. As the size of the test networks

increases, the performance of MODPSO (also basednoavolutionary algorithm) is greatly




improved compared to GA, but fails on several lssgale networks. LPAm+ which is based on
LPAm using a sub-communities integration strateggrcomes the vulnerability of LPAm to local
optima, and thus generates superior results thasethchieved by LPAm. In contrast to LPAmM+
(which is based on global sub-communities and stefi greedy integration), BGLL uses
integration strategy based on local sub-communéies thereby achieves better results in some
large and medium-sized networks as shown in TABLEPf-BGLL denotes our proposed
pre-processing strategy (building on BGLL) whichnsilers the intimacy between each node and
its neighbors. TABLE 6 shows that the accuracyesiuits obtained by Pre-BGLL is improved
compared with that obtained by the unmodified BGLhew testing on large scale networks.
Furthermore, the proposed algorithm employs theenowdification strategy based on the
Pre-BGLL algorithm and the accuracy of its detattiesults is therefore further improved. Thus
the proposed algorithm achieves the best detectisults when tested on the majority of these

benchmark networks.
4.4 Detection of overlapping communities

For detection of overlapping communities, we coreg@®PRA [33], CFinder [54], CONGA
[55], as well as a recent algorithm proposed by{34] (Li's Alg), as well as our proposed
algorithm on the 9 real-world benchmark network®RRA is based on the LPA algorithm, and is
suitable for large-scale overlapping community dét®. CFinder is a k-clique percolation
algorithm, in which a node can belong to multipldaktions, thus achieving the detection of
overlapping nodes. The CONGA algorithm is based @ well-known GN algorithm [15],
joining the node splitting strategy to make surattmodes can be accepted to multiple
communities. The source code of these algorithmsbeaobtained from [56]. Li proposed two
noble algorithms for the detecting of overlappiognenunities [58][63]. In paper [58], he employs
depth and breadth searching to extract the maxititales and then merge sub-graphs according
to rules. Through these steps, overlapping node®edound and satisfactory results are obtained.
Another firstly extracted all the seed communites absorbed more community members using
the absorbing degree function. As this algorithming overlapping nodes in weighted networks,
which is different from ours, hence here we onketthe former one for comparison.

Figure 9 shows the average detection results orlapgeng networks over 30 runs within 2
hours. It can be seen that CONGA can hardly deteotmunity structures effectively when
parameteq increase to 0.25. The remaining algorithms, likiadzr and COPRA can find relative
better results, but with the increaseupthese two algorithms can hardly get satisfyintecting
results. Li's Alg can obtain higher value of E@ith the increase ofi, but it is not the most
efficient one. From Fig.9 we can conclude that pheposed algorithm can effectively mining

community structures compared with other algorithms
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Fig.9. Average detection results on overlappingvoets over 30 runs within 2 hours

Figure 10 shows the overlapping nodes detected single run on the dolphin network.
Figure 9(a) shows the non-overlapping communitycitres obtained by the proposed algorithm.
The color notation shows how the network has beedetl into five distinct communities, and
the triangles and squares respectively represeninth communities in the ground-truth division
of the network. Figure 10(b) shows the detectiomwdrlapping communities with white circles

denoting the overlapping nodes.

@) (b)
Fig.10. Detection results on dolphin network whangmeters are set @s-0.7,A =0.15,8 =1. (a) Detection

results of non-overlapping communities. (b) Detattiesults of overlapping communities.




For the detection of overlapping nodes in the dolptetwork, the parameters were set as
a=0.7, 4=0.15, p=1. As shown in Fig. 10(a), the proposed algoritidmides the single
ground-truth triangle node into a number of smalmmunities during the non-overlapping
community detection stage, making the network atifeiel structure. On this basis, the 40th
node, 29th node and 3rd node are detected as pperwpnodes, because they connect with
several different communities which all share thmes value ofys.ncwith them.

In the following experiment, we set the parameés’s = 0.15 and3 =1, the evaluation index
is EQy introduced in the Section 4.1. Table 7 shows ttezame value of EQ over 30 runs in the

9 real-world networks.

TABLE 7: Each algorithm run 30 times in the reaiwark, the average EQvalue are as below-"" indicates
that the algorithm cannot effectively detect thertapping nodes).
algorithm | N1 N2 N3 N4 N5 N6 N7 N8 N9
CONGA | 0.278 | 0.3808| 0.3372| 0.1695| 0.9506| 0.9170| 0.4916| —— —_—
COPRA 0.2576| 0.3258| 0.5934| 0.3233| 0.8464| 0.75 0.6710| 0.0914| 0.315
CFinder 0.1858 0.3612| 0.5593| 0.0957| 0.5905| 0.1577| 0.3788| 0.0149| ——
Li's Alg 0.3848| 0.5077| 0.5946| 0.4024| 0.8460| 0.8712| 0.8694 | 0.457 | 0.4623
Proposed| 0.4053| 0.5238| 0.5987| 0.4349| 0.9541| 0.9362| 0.8826| 0.6621| 0.6019

As shown in Table 7, the overlapping community déde results of the proposed algorithm
on the 9 real-world networks are significantly betthan the other three algorithms. As CFinder
needs to extract the maximum complete sub-graplesdh run, the running time is too long to
detect community structure in larger networks, ésidesults are affected by the paramétgr the
algorithm, so the value of E(ds low. CONGA in some networks, such as the netseeetwork
(N5) and power network (N6) has good detection Itestiowever, CONGA is also unable to
detect the overlapping community structure of thst kwo networks as its time complexity is
O(m?). Although the COPRA algorithm has lower time céemjty, and it can accomplish the
detection of all the networks, its detection resalte not optimal. Li's algorithm utilizes depttdan
breadth searching methods to extract the maximalie$ which istime-saving, enabling it to
discover overlapping nodes in some large-scale ar&neffectively. However, it cannot achieve
the best values dfQ,,in all the networks. The results suggest that oopased algorithm can

effectively detect the overlapping nodes in lamyé mmedium-scale networks.
5. Conclusions

In this paper we have proposed a large-scale coityndetection algorithm based on node
membership grade and sub-communities integratimstlys considering the relationship between
each node and its adjacent nodes, we proposedghbioeing inter-nodes membership function

fusnn to extract sub-communities, thus providing fagtgoocessing of the network. Next, after




merging these sub-communities based on local mdgulawe introduced another
node-to-community membership functibpsnc to modify any misclassified nodes, preventing
convergence on local optima. Additionally, by atijug the parameters of functiofysnc,
multilevel overlapping communities of high qualizan be detected on the basis of the
non-overlapping community structures obtained by pinoposed algorithm. The experimental
results demonstrate that, through the effectivelipation of the strategies of local node search
and sub-communities integration, as well as nodeection, the algorithm can not only accurately
detect non-overlapping communities, but can aléece¥ely mine the overlapping communities
in large and medium scale networks. In additioe, &fgorithm relies mainly on only the local
information of each node, which contributes to katheely low time complexity ©(mlog’n)),
making this method suitable for community detectiofarge scale networks.

In future research, we will focus on the detecpooblem in networks with larger scale, such
as networks with hundreds of thousands, or eveliomsl nodes, and endeavor to further improve
the detection accuracy while preserving low timenptexity, so that the algorithm can detect

community structures efficiently.
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