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Generic probabilistic
prototype based classification

of vectorial and proximity data

Frank-Michael Schleif

School of Computer Science, University of Birmingham, UK

Abstract

In supervised learning probabilistic models are attractive to define discrimi-
native models in a rigid mathematical framework. More recently, prototype
approaches, known for compact and efficient models, were defined in a proba-
bilistic setting, but are limited to metric vectorial spaces. Here we propose a
generalization of the discriminative probabilistic prototype learning algorithm
for arbitrary proximity data, widely applicable to a multitude of data analy-
sis tasks. We extend the algorithm to incorporate adaptive distance measures,
kernels and non-metric proximities in a full probabilistic framework.

1. Introduction

Discriminative models are of wide interest but few provide probabilistic out-
puts while being applicable for non-vectorial data. Modern measurement tech-
nologies in the life sciences, but also in the field of social interaction, provide
large sets of similarities or dissimilarities between the data, but without an un-
derlying vector space [1]. Examples are scores of sequence data and proximities,
occurring in social networks, but often also vectorial data are represented by
proximities, for example by the use of kernel functions.

The data can be represented by N×N matrices of proximity measures, with
N as the number of samples. As discussed in [1] embedding approaches can be
used to apply vector space models, but these are costly with typically O(N3)
complexity. In case of similarities, standard inner-product approaches, or kernel
methods [2] can be used, with the assumption of an underlying metric space.

For dissimilarity data novel prototype classifier algorithms have been pro-
posed recently in [3], focusing on crisp classification decisions. Only few prob-
abilistic classifiers for proximity data are available, like the probabilistic classi-
fication vector machine [4] for similarity data or the approach published in [3].
Here we present an approach which is applicable for vectorial and non-vectorial
representations and can also be applied to non-metric data, by an implicit pre-
processing of the proximity matrix.

Preprint submitted to Elsevier December 11, 2014



2 PROTOTYPE BASED LEARNING 2

Prototype-based methods are of special interest, because they represent their
decisions in terms of typical representatives, contained in the input space, or by
approximations thereof. Prototypes can directly be inspected by human experts
similar as data points: for example, physicians can inspect prototypical medi-
cal cases [5, 6], prototypical images can directly be displayed on the computer
screen, prototypical action sequences of robots can be performed in a robotic
simulation, etc. Since the decision in prototype-based techniques usually de-
pends on the similarity of a given input to the prototypes stored in the model,
a direct inspection of the taken decision in terms of the responsible prototype
becomes possible. A probabilistic output provides additional value to judge the
reliability of the model decision.

Many different algorithms have been proposed in the literature, which derive
discriminative prototype based models from given data, see e.g. [7, 8, 9, 10, 11],
but only few support probabilistic outputs [8], still being inherently genera-
tive. In [12] a fully probabilistic prototype model was derived for vectorial data,
closely related to earlier work of the authors [13], where the so called Multi-
variate class labeling soft robust learning vector quantization (MRSLVQ) was
proposed. In addition to their direct interpretability [14], prototype-based mod-
els provide excellent generalization ability, due to their sparse representation of
data, see e.g. the work [15, 16] for explicit large margin generalization bounds.

The task of supervised classification of proximities occurs in diverse com-
plex applications, such as the classification of mass spectra according to the
biomedical decision problem [17, 18] or the classification of music according to
underlying composers or epochs [19]. Supervised prototype-based techniques for
general dissimilarity data would offer one striking possibility to arrive at human
understandable classifiers in such settings.

In this contribution, we shortly review discriminative probabilistic learning
(DPL) as recently proposed in [12] and extend it, such that parametric distances
and proximity data can be used. We will call this approach generalized DPL
(GDPL). Additionally we address the problem of non-metric proximities and
how these can be corrected to be used in GDPL. We also address the processing
of soft labeled data sets in the context of DPL and GDPL not directly considered
in the original proposal of DPL. Experimental results at synthetic and real life
data confirm the efficiency of our approach.

2. Prototype based learning

Assume data xi ∈ RD, i = 1, . . . , N, are given in a D dimensional space.
Prototypes are elements wj ∈ RD, j = 1, . . . ,K, of the same space with W =
{w1, . . . ,wK}, the set of all prototypes of the model. They decompose the data
into receptive fields

R(wj) = {xi : ∀k d(xi,wj) ≤ d(xi,wk)}

based on a metric distance measure, like the squared Euclidean distance

d(xi,wj) = ‖xi −wj‖2 . (1)
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We further define the short-cut dj for Eq 1 with respect to the j-th prototype,
and the index i of the point xi will be clear from the context. The goal of
prototype-based machine learning techniques is to find prototypes which repre-
sent a given data set as accurately as possible. We will also assume that the data
xi are equipped with prior class labels c(xi) ∈ {1, . . . , L} in a finite set of given
classes in the crisp case or can be associated to a vector of class assignments
l(xi) ∈ [0, 1]L, normalized such that

∑L
k l(xi)k = 1, which we will call soft or

fuzzy labels.
Supervised prototype based modeling is established on two concepts, first

the data are represented by means of a representer concept, e.g a Gaussian
distribution [8], a mixture of Gaussians [12], a topographic model [20] or other
types of data representations which can be considered as the quantization step
where larger sets of data are summarized by a smaller number of prototypes
and the data itself are subsequently analyzed, based on the derived compact
representation.

In the second step these representations can be used e.g. to derive a clas-
sification model, which can again be based on different concepts as likelihood
ratios [8], inner-class constraints [7] or a softmax classifier [12], as it will be used
in the following. Typically both steps are linked to each other and the parame-
ters are optimized based on a cost function, using some optimization strategy,
like gradient descend, quasi-newton optimization or others. If the xi are given
in a vectorial space as defined before, standard techniques like the Generalized
Learning Vector Quantizer (GLVQ) [7] can be used to obtain the prototype
models and a classifier model can be defined, see [7] for a detailed derivation.
As mentioned before few prototypes models are based on a probabilistic model,
the most are inherently generative, rather then purely probabilistic. An excep-
tion is the multilabled robust soft LVQ (MRSLVQ) [13] and DPL [12], both
very similar. We will now review the main concepts of DPL and extend it in
different ways.

3. Discriminative probabilistic learning

3.1. Data representation

In the original DPL formulation a given point xi is defined as a set of multiple
feature vectors of the same dimension, accordingly a point is given as vi =
{qi,1, . . . ,qi,Qi

} with Qi as the number of feature vectors of point vi and qi,· ∈
RD. Such a setting occurs e.g. in image analysis where an image i can be
represented as a number of potentially overlapping patches with D entries each.
The number of feature vectors Qi can be different for each point vi. If Qi = 1
we have a standard vector quantization problem where a point can be directly
associated to a number of features. The representation of the data, during the
optimization, is modeled by a function r(q), which in case of typical prototype
learners like LVQ is given in a winner takes all scheme:

rj(q,W ) = ||wj − q||2 ·

{
1 if ||wj − q||2 ≤ ||wj′ − q||2 ∀j′ 6= j

0 otherwise
(2)
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Here a feature vector q is represented by the distance to its closest prototype
wj , an alternative is to use a measure of responsibility as it was done in [13] as
well as in DPL:

rj(q,W, β) =
exp(−β||wj − q||2)∑K
j′ exp(−β||wj′ − q||2)

=
exp(−βd(wj ,q))∑K
j′ exp(−βd(wj′ ,q))

(3)

Here the feature vector is not necessarily assigned to a single prototype but each
prototype is responsible for it to some degree in a probabilistic manner and β is
the inverse variance of the Gaussian. To cope with multiple feature vectors for a
single point in DPL the representation of a point vi with respect to a prototype
wj is given e.g. as

zj(vi,W, β) =

Qi∑
s=1

πirj(qi,s,W, β) (4)

with πi being a normalizer typically set to πi = 1
Qi

. The latent representation

of a point v will be given accordingly as a vector z = [z1(v), . . . , zK(v)]>,
where K is again the number of prototypes. Using this notation a point vi with
multiple feature vectors qi,· is represented by multiple prototypes, summarizing
similar feature vectors over multiple points vi. The latent points form a set
Z = {z1, . . . , zN}, As the second step a classifier function is defined using z as
input. Such a classifier can be based on the GLVQ cost function using winner
takes all in the final classification decision or a probabilistic classifier as used in
DPL.

3.2. Soft max classification and optimization

DPL takes a softmax classifier on top of the data representation approach
such that:

P (li = c|z) =
exp(θ>c z)∑L

c′=1 exp(θ>c′z)
= σc(z; Θ) (5)

where Θ = {θ1, . . . , θL} with θc ∈ RK , ∀k
∑L

c Θk,c = 1. The matrix Θ contains
the soft labels of the prototypes. In the following we may skip parameters of a
function if they are known from the context.

Assuming the data are i.i.d., the log-likelihood of the data can be modeled
as

L(Θ, β,W ) =
N∑
i

P̂ (li) · logP (li = c|zi(vi,W, β),Θ) (6)

where P̂ (li) refers to the soft label of the datapoint i. Now this likelihood is op-
timized using standard optimization strategies like a quasi-newton optimization.
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Using (3) as a representation model, the necessary gradients for the parameters
are given as:

∂L
∂wd

j

=
N∑
i

K∑
j′

∂zji
∂wd

j′
· ∂Li

∂zji
(7)

and i = 1, . . . , N , j, j′ = 1, . . . ,K and d = 1, . . . , D.

∂zji
∂wd

j′
=

Qi∑
s=1

rj(qi,s)

=

β
∑Qi

s=1 rj(qi,s) · (1− rj(qi,s)) ·
∂dj

∂wd
j′

⇐⇒ j = j′

β
∑Qi

s=1 rj(qi,s) · rj′(qi,s)) ·
∂dj

∂wd
j′

where
∂dj

∂wd
j

is the derivative of the representation function to its parameters,

here in general a derivative of a standard distance measure with respect to wd
j

is used. For the parameter β we get:

∂L
∂β

=
N∑
i

K∑
j

∂zji
∂β
· ∂Li

∂zji
(8)

with

∂zji
∂β

=

Qi∑
s=1

rj(qi,s)

 K∑
j′=1

rj′(qi,s)dj′ − dj

 (9)

The derivative with respect to the latent representation z used above is given
as:

∂L
∂zji

=
L∑
c

(
P̂ (li)=c − σc(zji ; Θ)) · θc

)
(10)

With P̂ (li)=c being the value at the index referring to class c of the soft label of
data point i. For the gradient with respect to the soft labels, used as parameters
of the classifiers, we get

∂L
∂θc

=
N∑
i=1

(
(P̂ (li)=c − σc(zi; Θ)) · zi

)
(11)

4. Relevance learning

The principle of relevance learning has been introduced in [21, 22] with
generalizations in [23] as a particularly simple and efficient method to adapt the
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underlying metric of prototype based classifiers according to the given situation
at hand using available auxiliary information. It takes into account a relevance
scheme of the data dimensions by substituting the squared Euclidean metric by
the weighted form

dλ(q,w) =
D∑

d=1

λ2
d(qd − wd)2 . (12)

where qd refers to the dimension d of the feature vector q which belongs to some
point v. The principle is extended in [24] to the more general metric form

dΩ(x,w) = (q−wT ) ΩTΩ︸ ︷︷ ︸
Λ

(q−w) (13)

Using a squared matrix Ω, a positive semi-definite matrix which gives rise to a
valid pseudo-metric is achieved this way. In [24], these metrics are considered in
local and global form, i.e. the adaptive metric parameters can be identical for
the full model, or they can be attached to every prototype present in the model
[25]. As proposed in [26] the form given in (13) can also be used with limited
ranks such that the matrix Ω needs not to be of squared form Ω ∈ RM×N ,
with M ≤ N . Using M = 2, 3 a low dimensional projection matrix of the data
is obtained which incorporates the auxiliary label information of the training
and provides a discriminative mapping. A specific discussion of the approach
including a theoretical analysis is given in [26]. In [11] matrix learning has
also been addressed in the DPL context. The derivatives of the distance used
in the previous section with respect to this parametrized metric, using matrix
notation, is given as:

∂dj
∂w

= −2Ω>Ω(wj − q) (14)

The optimization of the matrix parameters, assuming a global matrix, is given
as

∂L
∂Ωm,n

=
N∑
i

K∑
j

∂zji
∂Ωm,n

· ∂Li

∂zji
(15)

∂zji
∂Ωm,n

=

Qi∑
s=1

rj(qi,s)

 K∑
j′=1

r′j(qi,s)
∂d′j
∂Ωm,n

− ∂dj
∂Ωm,n

 (16)

∂dj
∂Ωm,n

= 2[Ω(wj − q)]m · (wj,n − qn) (17)

The updates for the diagonal matrix λ or local matrix formulations per class or
per prototype are derived directly as a special case from equation (15). After
each update step the distance parameters are adapted to fulfill∑

i

λi,i =
∑
m,n

Ω2
m,n = 1
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Figure 1: Relevance (left) vs matrix (right) relevance learning for a simulated ellipsoid dataset.
The color shades indicate the classification uncertainty. For the relevance DPL we observe
clear miss-classification because the receptive field is aligned to one of the input axes, whereas
for matrix learning the receptive fields are diagonal, following the data distribution.

Further details can be found in [26, 24, 27]. In Figure 1 we show the results of
matrix relevance learning in DPL for a simulated dataset of two two-dimensional
ellipsoids which are not linear separable using classical Euclidean relevance
learning where only the relevance of individual input dimensions but not the
correlation thereof can be weighted. We use 1 prototype per class and do a five-
fold crossvalidation. The mean test set error using classical relevance learning
is 23.5± 1.9 and for matrix relevance learning one achieves 2.60± 2.77.

5. Proximity data

Prototype-based techniques as introduced above are restricted to Euclidean
vector spaces such that their suitability to deal with complex non-vectorial data
sets is highly limited. In the following, we assume that data points x or v are
not given as vectors, but in form of pairwise proximities. These proximities are
measures of the relatedness of pairs of points. Considering e.g. sequence data,
such a proximity value can be calculated by using popular alignment algorithms
[28]. Often such values occur in form of similarities, with more similar objects
having higher values and highest values for self similarities.

To obtain a valid probabilistic model we assume that the proximities are
metric. In case of non-metric data corrections on the, potentially approximated
matrix, can be applied as shown in [29, 30]. Metric similarities can be considered
to be inner products forming a valid kernel. As shown in [3], prototype based
learning algorithms can be reformulated to support kernels instead of vector
data, either using batch approaches [31] or in the online settings [32]. Also
approaches for dissimilarities have been proposed recently [3].

In the following we will give a formulation of DPL for metric dissimilarity
data without an explicit underlying vector space. Kernels can be used as a
special case of this formulation using the following equation to obtain squared



5 PROXIMITY DATA 8

distances based on given inner products

d(w,x) = 〈x,x〉+ 〈w,w〉 − 2 · 〈x,w〉

Assume dissimilarities di,j = d(xi,xj) of data points numbered i and j are
available. D ∈ RN×N refers to the corresponding dissimilarity matrix. Note
that it is easily possible to transfer similarities to dissimilarities and vice versa,
see [29]. To obtain a valid probabilistic model we assume D to be metric, which
can be achieved using approaches discussed in [29, 30].

Since the embedding of the data in a vector space is usually not given ex-
plicitly and computation of an explicit embedding takes cubic complexity, the
prototypes are usually adapted only implicitly based on the following observa-
tions: assume prototypes are represented as linear combinations of data points

wj =
∑
i

αjixi with
∑
i

αji = 1 .

Then dissimilarities can be computed implicitly by means of the formula

d(xi,wj) = ‖xi −wj‖2 = [D · αj ]i −
1

2
· αt

jDαj

where αj = (αj1, . . . , αjn) refers to the vector of coefficients describing the
prototype wj implicitly.

This way, model adaptation of DPL in a pseudo-Euclidean space can be per-
formed implicitly. This way, prototypes are represented implicitly by means of
their coefficient vectors, and adaptation refers to the know pairwise dissimilar-
ities dij only. We refer to this approach as the relational DPL (RDPL) in the
following. Initialization takes place by setting the coefficients to random vectors
which sum up to 1. Even for general settings, this assumption is quite reason-
able since we can expect that the prototypes lie in the vector space spanned by
the data.

This implicit distance calculation can be used in the log-likelihood function
of DPL, replacing the standard Euclidean distance given in (3) by the appro-
priate (parametric) distance measure. The update equations for β are adapted
accordingly. The update of parameter w is replaced by updates for the pa-
rameter α. The α parameters can be summarized in the matrix Γ with entries
α ∈ RK×N . The rows of this matrix represent the coefficients of a prototype,
normalized as discussed above. Note that the number of columns of Γ need not
to be N , but this representation set can be limited to fewer coefficients, using
random sampling or sparsity approaches [33, 34].

A component k of these α vectors is adapted by the rules

∂[Dαj ]i − 1
2 · α

t
jDαj

∂αjk
= dK −

∑
l

dlkαjl

After every adaptation step, normalization takes place to guarantee
∑

i αji = 1.
This way, a learning algorithm which adapts prototypes in a supervised manner
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similar to DPL is given for general dissimilarity data, whereby prototypes are
implicitly embedded in the pseudo-Euclidean space.

The prototypes are initialized as random vectors, i.e we initialize αij with
small random values such that the sum is one. It is possible to take class
information into account by setting all αij to zero which do not correspond to
the class of the prototype.

The resulting classifier represents clusters in terms of prototypes for general
dissimilarity data. Although these prototypes correspond to vector positions in
pseudo-Euclidean space, they can usually not be inspected directly because the
pseudo-Euclidean embedding is not computed directly. Therefore, we use an
approximation of the prototypes after training, substituting a prototype by its
K nearest data points as measured by the given dissimilarity. To achieve a fast
computation of this approximation, we enforce αij ≥ 0 during the updates.

Note that generalization of the classification to new data can be easily done
given a novel data point x characterized by its pairwise dissimilarities D(x)
to the data used for training, the dissimilarity to the prototypes is given by
d(x,wj) = D(x)t · αj − 1

2 · α
t
jDαj . For an approximation of prototypes by

exemplars, obviously, only the dissimilarities to these exemplars have to be
computed, i.e. a very sparse classifier results. The memory and runtime com-
plexity can be further reduced by using approximation concepts for low rank
matrices of the proximity matrices as recently discussed in [35, 29, 36].

6. Experiments

We evaluate the generalized DPL algorithm for different vectorial datasets,
employing the parametrized distance and a relational distance measure using
multiple public data sets. We also address how to interpret the probabilistic
prototype models for the different types of input formats.

6.1. Vectorial data

In this section we evaluate the efficiency of the proposed approach on a large
set of vectorial data. We use the Raetsch benchmark data [37], which are widely
based on datasets provided in the UCI machine learning repository [38] but with
given splits in a 100 fold crossvalidation. Data characteristics are given in Table
1

In [39] also a scheme for the estimation of meta parameters is provided which
we use to estimate the number of prototypes or, later on, the sigma parameter
of the used rbf-kernel. Here we use only those datasets from [37] which contain
at least 150 points.

We evaluate GDPL with a parametric metric as shown before defined as
matrix learning. This strategy permits a linear transformation of the input data
with respect to the most discriminating features and correlations thereof. As
shown before [9] this approach is often very effective also to prune out irrelevant
or noisy data dimensions, however it does not help in case of non-linear separable
problems, where kernel methods are more appropriate. The standard DPL,
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Data Points Positive % Negative % Dim
Banana 5300 44.83% 55.17% 2

Breast-Cancer 263 29.28% 70.72% 9
Diabetics 768 34.90% 65.10% 8
German 1000 30.00% 70.00% 20
Heart 270 44.44% 55.56% 13
Image 2086 56.95% 43.05% 18
Ring 7400 49.51% 50.49% 20
Splice 2991 44.93% 55.07% 60

Thyroid 215 30.23% 69.77% 5
Twonorm 7400 50.04% 49.96% 20
Waveform 5000 32.94% 67.06% 21

Table 1: Summary of 11 Benchmark Data Sets.

potentially improved by a parametric distance can handle such complicated
decision boundaries only to some degree, by adjusting the number of prototypes.
The number of prototypes per class has been optimized using a grid search of
1 − 10 prototypes per class. We will call this approach DPL-Matrix in the
following.

As known from previous work, kernels can often provide simple solutions for
non-linear decision problems. Accordingly, we evaluate GDPL also by using an
RBF kernel, with an optimized sigma. The sigma was optimized again by a grid
search on sigma values in [0.1, 10]. We will call this approach DPL-RBF in the
following.

We compare our results with recently published results on the same data sets
using the Probabilistic Classification Vector Machine (PCVM) [4] and the best
results of the support vector machine (SVM) [40] taken from [4]. The PCVM is
a probabilistic classifier for two class decision problems, applicable for positive
definite similarity matrices. We used an RBF kernel with an optimized sigma.

PCVM, SVM as well as DPL-RBF are able to define non-linear decision
boundaries and should be efficient to model non-linear decision problems. The
corresponding results are shown in Table 2.

From the comparison in Table 2 we observe that the DPL-Matrix approach
is in general slightly worse than the other approaches. This is mainly due to
the non-linearities in the considered datasets, which were originally proposed
and selected to evaluate kernel methods. Using a kernel matrix in DPL it
is consistently better compared with DPL-Matrix and most often competitive
with the results of PCVM or SVM. For the DPL-RBF results we used only one
prototype per class, such that the model complexity is comparable with PCVM.
DPL and GDPL permits however to adapt the number of prototypes such that
also the aspect of multi modality in the data can be easier addressed.
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DPL-Matrix DPL-RBF PCVM SVM
Banana 15.21± 2.69 15.24± 1.93 10.30± 0.76 10.47± 0.49
Breast-Cancer 29.87± 6.02 35.06± 8.52 26.23± 4.62 25.60± 4.45
Diabetics 27.53± 2.56 26.40± 2.47 23.15± 1.95 23.82± 1.73
German 28.60± 1.64 30.07± 1.59 23.62± 2.24 24.14± 2.18
Heart 18.60± 4.62 17.40± 4.39 16.62± 3.45 17.49± 3.26
Image 16.43± 1.34 14.91± 1.08 2.49± 0.52 2.75± 0.57
Ring 22.04± 1.41 3.49± 1.84 1.53± 0.12 1.64± 0.12
Splice 30.08± 4.71 18.43± 2.13 10.60± 0.65 10.51± 0.62
Thyroid 6.93± 3.58 5.60± 2.73 4.55± 2.49 4.79± 2.24
Twonorm 2.31± 0.05 2.67± 0.18 2.46± 0.26 2.69± 0.15
Waveform 12.64± 1.39 24.73± 3.17 10.40± 0.58 10.25± 0.43

Table 2: Experimental results (test set errors) for the raetsch benchmark data using DPL with
a parametric distance (DPL-Matrix) and an rbf kernel (DPL-RBF) in comparison to state of
the art results using PCVM and SVM, both also with an RBF kernel.

6.1.1. Interpretation of prototypes

Using the parametric distance in DPL we are able to analyze the discrimina-
tion properties of individual or correlated input features of the data. As already
shown previously in [24, 6] for other prototype based learning algorithms, this
is often a key element to obtain effective decision models in a way, such that the
decision function remains interpretable and can be communicated to an expert.
Often it is also necessary to limit the number of input features to permit easier
technical implementations [41], which is not so easy by use of kernel approaches.
For kernel methods the identification of discriminating features in the original
input data is complicated due to the highly non-linear decision function, in-
troduced by the kernel-mapping and only few approaches have been proposed
so far, focusing most often on linear kernels or using complex calculations and
wrappers for non-linear kernel functions [42].
In Figure 2, exemplary so called relevance profiles and matrices as obtained
from DPL-matrix, for a sample dataset, are shown. The relevance profile shows
the calculated weighting of each features used in the distance calculations, as
obtained during the optimization process. High weights indicate features which
discriminate well between the classes whereas low ranked features are either
non- or less discriminative, or redundant. Using this approach unimportant
features can be effectively pruned out of the model, which can be helpful in
post analysis or technical processing steps of the data. The relevance matrix is
helpful to show the correlation of different features. This can be beneficial to
obtain a better understanding of the interaction of measurement variables, e.g.
for different sensor channels.
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Training Points DPL-Matrix DPL-RBF PCVM SVM
Banana 400 14 71.4± 2.79 19.8± 4.3 111.1± 8.9
Breast-Cancer 200 18 16.6± 4.82 9.4± 2.6 125.2± 6.25
Diabetics 468 2 37± 1.41 19.8± 3.1 265.0± 7.0
German 700 18 18± 1.22 40.9± 7.6 520.9± 10.9
Heart 170 14 15.2± 0.83 5.9± 2.2 103.7± 5.3
Image 1300 20 108± 3.74 170.3± 11.7 396.9± 11.4
Ring 400 16 50± 0.71 17.6± 3.8 198.6± 10.8
Splice 1000 4 65.4± 1.67 123.2± 8.3 778.8± 13.6
Thyroid 140 8 73± 2.35 8.6± 2.3 24.8± 3.7
Twonorm 400 2 14.8± 0.45 13.8± 3.4 237.4± 7.1
Waveform 400 10 76.2± 11.92 26.3± 3.7 229.6± 8.8

Table 3: Overall model complexity on 100 runs on the raetsch test data. For DPL-RBF
we report the mean/std of the number of points necessary to represent the prototypes. The
results for PCVM and SVM are taken from [4].
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Figure 2: Relevance profile of breast cancer data (left). Corresponding Λ matrix showing the
correlation between the variable. We observe features with high relevances e.g. 3, 6, 7. Some
features are correlated or anti-correlated, see e.g. feature 5 and 6.

6.2. Proximity data

The processing of similarity matrices is relevant, because many machine
learning algorithms are based on kernels and take the similarity between ob-
ject as inputs. Here we evaluate the relational DPL for seven benchmark data
sets where data are characterized by pairwise dissimilarities and which have
been preprocessed by flipping using strategies discussed in [29] to obtain metric
dissimilarities. We also compare our findings with an alternative probabilistic
kernel classifier (PCVM) provided in [4] and a standard core-vector machine
(CVM) implementation [43].

1. Protein: 213 proteins are compared based on evolutionary distances com-
prising four different classes according to different globin families. Label-
ing is given by four classes corresponding to globin families.

2. The Copenhagen chromosomes data set constitutes a benchmark from cy-
togenetics [44]. A set of 4,200 human chromosomes from 22 classes (the au-
tosomal chromosomes) are represented by grey-valued images. These are
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transferred to strings measuring the thickness of their silhouettes. These
strings are compared using edit distance with insertion/deletion costs 4.5
[28].

3. The proteom dissimilarity data set [45] with 2604 samples in 53 imbalanced
classes

4. The Delft gestures data with 1500 samples in 20 balanced classes taken
from [45]. The dissimilarities are generated from a sign-language interpre-
tation problem with 1500 samples in 20 classes and 75 samples per class.
The gestures are measured by two video cameras observing the positions
of the two hands in 75 repetitions of creating 20 different signs. The dis-
similarities are computed using a dynamic time warping procedure on the
sequence of positions [46].

5. The Zongker digit dissimilarity data consisting of 2000 samples in 10 bal-
anced classes taken from [45]. This dataset is based on deformable tem-
plate matching. The dissimilarity measure was computed between 2000
handwritten NIST digits in 10 classes, with 200 entries each, as a result
of an iterative optimization of the non-linear deformation of the grid [47]

6. The Voting data set comes from the UCI Repository [38]. It is a two-
class classification problem with 435 samples, where each sample is a cat-
egorical feature vector with 16 components and three possibilities for each
component a value difference metric was computed from the categorical
data, which is a dissimilarity that uses the training class labels to weight
different components differently so as to achieve maximum probability of
class separation.

7. The Aural Sonar data set is from a recent paper which investigated the
human ability to distinguish different types of sonar signals by ear. The
signals were returns from a broadband active sonar system, with 50 target-
of-interest signals and 50 clutter signals. Every pair of signals was assigned
a similarity score from 1 to 5 by two randomly chosen human subjects
unaware of the true labels, and these scores were added to produce a
100× 100 similarity matrix with integer values from 2 to 10 [48].

These seven data sets constitute typical examples of non-Euclidean data which
occur in complex systems, such as medical image analysis and symbolic domains.
In all cases, dedicated preprocessing steps and dissimilarity measures for struc-
tures were used to generate the data. The dissimilarity measures are inherently
non-Euclidean and have been corrected using the approaches discussed in [29].

We report the results of generalized DPL in comparison to different alter-
natives for these data sets. The number of prototypes is picked according to
the number of given classes. The prototypes are initialized either in the center
of corresponding classes (vectorial case), or using a classwise initialization of
the alphas, with additive random noise. Training is done using quasi newton
optimization until convergence with an upper limit of 100 steps.

The results are evaluated by the classification accuracy on the test set ob-
tained in a repeated stratified 10-fold cross-validation with 10 repeats. The
results are reported in Tab. 4.
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GDPL PCVM CVM
Protein 1.39± 2.23(192) 0.91± 2.87(36) 9.37± 6.48 (60)
Chromosomes 8.10± 1.26(1000) 20.40± 3.92(715) 17.57± 2.82 (430)
ProDom 9.37± 1.79(1000) 4.76± 2.38(2292) 2.57± 1.10 (1399)
Delft 5.13± 1.91(1000) 41.60± 13.87(304) 11.87± 2.03 (373.3)
Zongker 6.20± 1.18(1000) 9.15± 1.93(577) 26.50± 2.62 (178.4)
Voting 4.34± 4.08 (262) 4.61± 2.70 (3.5) 4.37± 3.12 (6)
Aural-Sonar 13.30± 10.00 (87) 16.00± 11.74 (8.1) 14.00± 10.75 (11)

Table 4: Crossvalidation errors of GDPL for proximity data, where no underlying vector
space exists. Non-metric proximities have been corrected using the flip approach (see text)
as a necessary pre-processing to obey valid probabilistic models and a psd kernel. The model
complexity by means of training points used in the model is given in parenthesis.

The results show that the CVM model is very effective in learning the given
classification problems, given the proximity matrices have been adapted by an
eigenvalue correction beforehand. Analyzing the number of support vectors we
observe, that the models of PCVM and GDPL are less effective, which is mainly
caused by the very sparse underlying modeling, using a prototype concept. The
PCVM uses truncated Gaussians for each point, which are sparsified during
learning and the GDPL uses a single Gaussian to approximate a whole class.
While PCVM scales the model complexity in a self-adaptive process, GDPL has
no such mechanism, but we could estimate the number of prototypes as a meta
parameter using the same scheme as before or by using adaptation concepts
as recently proposed in [49]. Here we simply used 1 prototype for class for
the Protein data and 10 prototypes per class for the remaining data sets. The
number of representation points was fixed to a maximal number of 1000 selected
randomly from N . The corresponding results are shown in Table 4.

7. Data with uncertain label information

In the former sections we considered data which have been labeled by crisp
labels, such that the assignment of a data point to a class is unique. For mul-
tiple data sets e.g. in the life sciences the assumption of given crisp labels is
unrealistic. In medicine a patient can be classified to a specific type of disease,
but this decision is often based on multiple measurements, all of which having
an individual errors and the decision is frequently based on measures mapped
to intervals, which can not be defined in a definite manner. Other prominent
examples can be found e.g. for sensor systems, where the sensor has a limited
resolution and the acquired signal is effectively a mixture of different substances.
This is probably most obvious in remote sensing, where the spatial resolution is
in the range of some square meters but for each pixel often a unique substance
class is assigned. Accordingly, labelings are often not unique. Beside of classical
Bayesian models only few machine learning methods can deal with uncertain
input label information. The formerly mentioned PCVM provides probabilistic
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outputs, but the input label of a point has to be 0/1 or -1 / 1 respectively. Also
many other prominent classifier algorithms are limited to crisp labels like the
SVM or CVM. The DPL and the MRSLVQ approach can deal with uncertain
input labels. In the following we give experimental results for artificial and real
life data with uncertain labels and show the benefits of the inclusion of this
information in the modeling process. While the original DPL and MRSLVQ
formulation are already useful for uncertainly labeled data we are now also able
not only to use a linear representation of the data sets but can also employ a ker-
nel encoding to simplify the modeling process and to improve the generalization
capabilities.

The following datasets have been analyzed

1. The synthetic data (Gaussian) is based on two Gaussians in 2D which are
slightly overlapping. From these two distributions 1000 points are drawn
randomly and mixed with some probability. The mixing probabilities
define the uncertain labeling. A sample of the data is shown in Figure 3.

2. Plant tissue data The data are 4418 points of 22 dimensional image fea-
tures in 11 classes of a serial transverse section of barley grains taken from
[50]. Developing barley grains consist of three genetically different tissue
types: the diploid maternal tissues, the filial triploid endosperm, and the
diploid embryo which are hard to distinguish. This data was originally
provided with crisp and fuzzy labels.

3. Remote sensing data is a multi-spectral LANDSAT TM satellite image of
the Colorado area taken from [51] with 6 different spectral bands. The
LANDSAT TM bands were strategically determined for optimal detec-
tion and discrimination of vegetation, water, rock formations and cultural
features. There are 14 labels describing different vegetation types and ge-
ological formations. The size of the original image is 1907× 1784 pixels1.
Fuzzy labels where obtained by a downsampling of this data set to 12650
points where the original image was cut to 1760× 1840 pixel2. The fuzzy
labels were derived from the histograms of the averaged pixel areas.

The model complexity for PCVM is adapted automatically whereas for DPL
we need to provide the number of prototypes, as mentioned before. For the
Gaussian and the Plant-Tissue data we use 1 prototype per class and for the
Remote-Sensing data we use 10 prototypes per class, as suggested in former
work with the original remote sensing data set [51].

The results are shown in Table 5 and Figure 3. For the synthetic data shown
in Figure 3 we observe a clear change in the decision boundary. The DPL model,
which is capable to account for fuzziness in the input label reflects the uncer-
tainty about the data labeling in a corresponding large uncertain prediction
area. For the PCVM model the uncertain region is small because the addi-
tional information about uncertain input labels can not be used in the modeling

1Thereby 9 pixel have an unknown label and have been removed.
2Here we just cut the right and lower boundary of the image
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Figure 3: Synthetic data set to illustrate uncertain labelings. Plot a) shows 1000 sample
points mixed from two Gaussian distributions. Plot b) shows the predicted label of a linear
DPL model with crisp labels as input. Plot c) shows the predicted labels with DPL having soft
labels as input. Plot d) shows the predicted label using PCVM and crisp labels. All models
have a similar accuracy of ≈ 84%, but the mean square label error (MSLE) is three times
smaller using DPL with soft label inputs compared to DPL or PCVM with crisp inputs. We
see that DPL+Crisp and PCVM behave similar but the area of (indeed) uncertain points is
much larger for DPL using soft labels as inputs. The contours with respect to class 1 (squares
in red) are given as 0.25 (red), 0.5 (cyan) and 0.75 (green). Probabilistic labels are given by
different color shades (bright is safer), the shape indicates the predicted crisp class label.
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DPL-Fuzzy DPL-Crisp PCVM-Crisp
Gaussian - Linear 17.60± 3.85 19.60± 5.50 16.5± 3.27
Plant-Tissue - Linear 37.62± 2.13 39.91± 3.78 88.23± 5.11
Remote-Sensing - Linear 44.27± 1.61 45.45± 1.68 n.a.

Table 5: Crossvalidation errors of the uncertainly labeled data. We show the mean and
standard deviation of the test error where the labeling of the points and model outputs has
been taken as a crisp label or fuzzy labels depending on the algorithm-properties. For the
PCVM model the remote sensing data failed to converge.

step. Also in the Table 5 we observe improved prediction accuracies for the
DPL-Fuzzy model compared to its crisp counterpart, when the data are fuzzy
labeled. In comparison to the PCVM model we observed slightly better results
for the simulated Gaussian data, but for the other datasets a substantially worse
performance was found. The real data sets are obviously very challenging for
PCVM, likely due to the strong overlaps of the different classes. The information
provided by the uncertain labeling is not available to PCVM and accordingly it
is hard to estimate the underlying class distribution. Also DPL is less effective
if only crisp labels are given but this effect is not so strong.

8. Conclusions

In this article we presented multiple extension of Discriminative Probabilis-
tic LVQ to support adaptive relevance learning and the analysis of proximity
matrices in the form of kernel or dissimilarity matrix data. We compared the
proposed method with state of the art approaches on a number of test data. In
the first experiments (see Table 2) we observed that the extensions of DPL are
very effective, leading to competitive results for those data which are known to
be linear separable. Here we have also shown how to analyze the most relevant
discriminating features from the model a property which is of wider interest and
often not directly available in many methods. For those data which are non-
linear separable we analyzed a kernelization of DPL and found it to be similar
effective like other kernel approaches. The additional parameter of the number
of prototypes is an extra favor of DPL and permits to define local vectorial or
kernel models. This was found to be effective especially in cases where the stan-
dard kernel encoding with a single prototype per class was suboptimal on the
training data. In the experiment for non-metric proximity data DPL was found
to be very effective, clearly competitive to state of the art approaches. For the
soft or fuzzy labeled data sets we found small improvements by taking the fuzzi-
ness of the labeling into account but the results of DPL were superior to those
obtained by PCVM. Finally we conclude that the generalized DPL algorithm
is now accessible for a very wide spectrum of data formats still providing good
prediction accuracy, probabilistic output of the classification decision as well as
compact prototypical models. In future work it will be of interest to explore the
method in the context of semi-supervised learning similar as shown in [49].
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