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Abstract 

The role of beryllium on the oxidation of methanol on Pt stepped surfaces (Pt[(n-1) 

(111)x(110)]) orientation - Pt(553) with n = 5, Pt(554) n = 10, Pt(151514) n = 30), 

Pt(111) and Pt(110) single crystals in alkaline media was studied by cyclic voltammetry 

and Fourier transform infrared spectroscopy (FTIRS). The results suggest that under the 

conditions of the experiment, the methanol oxidation reaction follows a direct pathway 

with formaldehyde and formate as reaction intermediates. The combination of OHads and 

beryllium blocks the adsorption and oxidation of methanol on Pt(111), but appears to 

promote the complete oxidation of methanol to carbon dioxide/carbonate on Pt(110).  
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1. Introduction 

A fundamental understanding of the influence of the composition of the metal–solution 

electrochemical interface on the kinetics of electrocatalytic reactions is of great 

importance for the design of electrochemical energy devices, such as the Direct 

Methanol Fuel Cell (DMFC). The timeliness and increasing interest in the DMFC as a 

sustainable energy source has boosted many studies from both fundamental as well as 

applied perspectives.  

From many mechanistic studies
1-10

, it is now well accepted that the methanol oxidation 

reaction follows a dual-pathway mechanism. In the direct pathway of this mechanism, 

the reactive intermediates are weakly adsorbed on the electrode surface while in the 

indirect path poisoning intermediates are strongly bonded. Although there is still 

considerable scientific dispute about the nature of the reactive intermediate species
4
, it 

is well accepted that that CO is the main poisoning species formed during methanol 

oxidation at low potentials. CO2 (as carbonate in alkaline media) is the final product 

formed at higher potentials 
3
 . It is also well accepted that the surface activity strongly 

depends on its ability to form chemisorbed OH species
11,12

. In this sense, the catalytic 

activity towards the CO oxidation on Pt single crystals in alkaline media increases in the 

following way: Pt(111) < Pt(100) < Pt (110). Moreover, the highest CO tolerance was 

found at Pt(110) in wide pH range (2-12)
13

. The higher activity of Pt(100) and Pt(110) 

can be explained by the strong tendency to attract oxygenated species on open surfaces 

such as Pt(110) and Pt(100) that are necessary to complete the CO oxidation reaction.  

Relevant information on the structure sensitivity of methanol oxidation has been 

obtained by investigating the methanol oxidation on (stepped) single crystal platinum 

surfaces in both acidic and alkaline media
1,4

. In acidic media, it has been established 

that steps enhance the initial dehydrogenation step 
7,8

, and steps are also the active sites 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 3 

for the oxidation of chemisorbed CO
14-16

, due to their higher ability to bind chemisorbed 

OH. In alkaline media, steps are also the active sites for COads oxidation, though the 

dynamics of COads is very different from that in acidic media
17-19

. The role of steps in 

the oxidation of methanol on stepped platinum surfaces in alkaline media has not been 

studied yet in great detail.  

Besides the role of the surface structure, recently special attention has been paid to the 

role of the cation on the kinetics of oxidation and reduction reactions, particularly in 

alkaline media
20-25

. The role of non-covalent interactions of the alkali cations with 

hydroxide groups has been shown to be important in the hydrogen oxidation and the 

oxygen reduction reaction in alkaline media on Pt(111) 
20,23

, and these results have 

motivated the study of the role of the cations in other relevant electrochemical reactions. 

The electrochemical oxidation of chemisorbed carbon monoxide and the interaction of 

cations with the surface structure on the kinetics of this reaction was studied by our 

group
21

. From this study, we concluded that small cations such as lithium and beryllium 

enhance the adsorption of OH on the step sites of the platinum surface, thereby 

promoting the oxidative stripping of carbon monoxide on stepped platinum electrodes 

in alkaline solution. A recent study of the effect of cation on the oxidation of glycerol 

and ethylene glycol on polycrystalline platinum proposed that the increase in the overall 

rate of ethylene glycol oxidation (Li
+
 < Na

+
 < K

+
) is not just related to the favourable 

adsorption of OH but it is also associated to an increase of the cleavage of the C–C bond 

24
.  

In this manuscript, we combine electrochemical measurements on stepped single-crystal 

platinum surfaces and in-situ electrochemical Fourier Transform Infrared spectroscopy 

(in-situ FTIR) to study the role of beryllium cations in the electrochemical oxidation of 
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methanol in alkaline media. Beryllium was chosen as a cation as it was observed to 

have a strong effect on the oxidation of chemisorbed CO in our previous work.
21

 

2. Experimental 

For the electrochemistry experiments, bead-type single crystals of Pt[n(111)x(111)] (or 

equivalently Pt[(n-1) (111)x(110)]) orientation—Pt(553) with n = 5, Pt(554) n = 10, 

Pt(151514) n = 30, Pt(111) and Pt(110) orientation prepared according to the method of 

Clavilier et al.
26

 were used. For the in-situ infrared experiments, Pt disk electrodes 

(Mateck
®
) of 1 cm diameter with the corresponding orientation were employed. Before 

each experiment, the single-crystal electrode was flame annealed and cooled down in an 

H2/Ar atmosphere, after which the electrode was transferred to the cell under the 

protection of a droplet of de-oxygenated MilliQ water. 

A Pt foil was used as a counter electrode, and an RHE in the supporting electrolyte was 

employed as the reference electrode. Electrochemical measurements were performed 

with a computer-controlled Autolab PGSTAT12 potentiostat/galvanostat. The FTIR 

experiments were carried out with a Bruker Vertex 80V Infrared spectrophotometer. A 

spectroelectrochemical glass cell with a 60° CaF2 prism was used, designed for the 

external reflection mode in a thin layer configuration. FTIR spectra were collected from 

an average of 20 scans obtained with 6 cm
−1

 resolution at selected potentials, by 

applying single potential steps from a reference potential (E0=0.05 V) in the positive-

going direction up to 1 V. Spectra are represented as the ratio R/R0, where R and R0 are 

the reflectance measured at the sample and the reference potential, respectively. 

Consequently, positive and negative bands correspond to the loss and gain of species at 

the sample potential, respectively. 

All glassware was cleaned by boiling in concentrated sulfuric acid, followed by washing 

copiously with MilliQ water. Solutions were prepared from high purity reagents 
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(methanol (Uvasol) from Merck), BeSO4
 
(99.99%, Alfa Aesar) and ultrapure water 

(Millipore MilliQ gradient A10 system, 18.2MΩ cm
-1

, 2 ppb total organic carbon). 

Argon (N66) was used to deoxygenate all solutions. 

Due to the low solubility of the beryllium hydroxide salt, a solution of beryllium sulfate 

was used to study the effect of beryllium cations. A 0.1 M NaOH solution was used to 

which a small amount of BeSO4 solution was added. Only a small molar percentage was 

added in order to prevent the formation of solid Be(OH)2, but this was enough to still be 

able to investigate whether beryllium had any influence on the voltammetry. In this 

context, voltammetric experiments conducted in 0.1 M NaOH with 0.1 M Na2SO4 

confirmed that the presence of sulfate anions had no influence on the voltammetric 

profile in the studied potential region at pH =13 (not shown).  

 

3. Results 

 

3.1. Voltammetric studies 

 

Figure 1 shows the blank voltammetry of a Pt(111) electrode in 0.1 M NaOH in the 

absence and presence of Be
2+

 in solution (0.001 M BeSO4 solution) and also the 

voltammetry of a 0.3 M solution of methanol in the Be
2+

-containing solution. Note that 

in the presence of Be
2+

 the peak corresponding to OHads formation in the blank 

voltammogram has shifted to lower potential and is much more irreversible than in 

NaOH. During the positive scan the onset for methanol oxidation starts at ca. 0.4 V, 

with a shoulder at 0.6 V and peaking at 0.75 V. During the negative scan there is a 

much lower anodic current between 0.8 and 0.5 V. When methanol is oxidized in a 0.1 

M NaOH solution in absence of the beryllium, the negative scan shows an oxidation 
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peak after the reduction of platinum oxide. Therefore we ascribe the low current for 

methanol oxidation in the negative-going scan in Fig.1 to the highly irreversible 

adsorption of Be
2+

. Another important observation is the similar current at potentials 

lower than 0.5 V in presence or absence of methanol, which indicates weak methanol 

adsorption in this potential window.  

Figure 2 compares the cyclic voltammograms for methanol oxidation on the five 

different platinum electrodes in NaOH solution with those obtained in NaOH with 1% 

beryllium sulphate solution. In general, there is a tendency for the onset for methanol 

oxidation in NaOH to shift to more negative potentials as density of (110) steps 

increases. We ascribe this to the lower onset potential of COads oxidation with 

increasing step density. 
21

 However, the maximum current density falls on Pt(110). For 

Pt(111) and Pt(15 15 14), the oxidation current measured in the presence of beryllium is 

much smaller than in NaOH solution. As more steps are introduced, the oxidation 

currents gradually become more equal with or without beryllium in solution. These 

results suggest that methanol oxidation on (111) terraces is restricted in the presence of 

beryllium, while the (110) steps are the active sites for the oxidation of methanol. In the 

absence of Be
2+

, Pt(111) is much more active and its peak current is comparable to the 

other stepped surfaces. Therefore, the Pt(111) terrace has activity for methanol 

oxidation, but is strongly blocked in the presence of beryllium. On the other hand, the 

inhibition by beryllium becomes less important for Pt(110) electrode, which can be 

associated to the oxophilic nature of this open surface, i.e. the coverage of adsorbed 

oxygenated species does not change much in absence or presence of beryllium and 

consequently the methanol adsorption is not significantly inhibited. 

 

3.2. In situ FTIR electrochemical characterization of the methanol oxidation 
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Figure 3 show sequences of in situ FTIR spectra recorded during methanol 

electrooxidation on Pt(111) in alkaline media in presence and absence of beryllium in 

solution, while varying the electrode potential stepwise from 0.1 to 1.0 V (R0 = 0.1 V). 

From these spectra, similar bands appear in both solutions that however develop with 

different potential dependence. Six negative-going contributions are apparent at 1630, 

1350, 1385, 1576, 1718 and 2343 cm
-1

. We consider now the assignment of these 

bands. The small band around 1630 cm
-1

 is due to the O−H bending mode of water,
 

which may disturb the spectral region between 1700 and 1400 cm
-1

.  The bands centred 

at 1350 (νsCOO), 1385 (δCH and/or σCOO), 1576 (νasCOO) cm
-1

 are characteristic of the 

presence of formate 
3,27,28

. At a potential higher than ca. 0.3 V in absence of beryllium, 

another band located at around 1715 cm
-1

 is observed that is assigned to the νCO 

stretching mode of a carbonyl group. It is difficult to distinguish between the carbonyl 

groups in formaldehyde and formic acid, since the bands in these compounds are very 

close, at 1713 and 1715 cm
-1

, respectively 
2,3,5,27

. However, in alkaline media the band 

at 1715 cm
-1

 may be attributed to formaldehyde since formic acid exists as formate in 

alkaline media. The observation of formaldehyde and formate is in agreement with a 

recent study of methanol oxidation on Pt in alkaline media by using a HPLC system, in 

which formate and formaldehyde were detected 
29

. 

The asymmetric stretch vibration of CO2 at 2343 cm
-1

 suggests a pH lower than 6.37 

(pKa,1 of carbonic acid) in the thin layer at E > 0.6 V. Additionally, carbonate and 

bicarbonate can be produced and their contributions appear as broad bands centred at 

1400 and 1360 cm
-1

. The latter distort the band intensities at 1350 and 1380 cm
-1 

of 

formate.  
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At E > 0.3 V, simultaneously with the increase of the faradaic current, only bands 

associated to the formation of formate are observed with beryllium in solution (together 

to low-intensity bands at 2343 cm
-1

 at higher potentials), whereas formate, 

formaldehyde and CO2 are observed in absence of beryllium. The formate and CO2 

band intensities are higher in absence of beryllium in agreement with the higher faradaic 

current observed in the voltammogram in Figure 2. Intriguing is the absence of a CO 

signal in the infrared spectra under the present conditions. The absence of this signal 

indicates that CO is not a high-coverage intermediate during the methanol oxidation in 

alkaline media, and the formate route appears to be the main operating path
4
.  

The infrared spectra corresponding to methanol oxidation on Pt(110) are depicted in 

Figure 4. Significant differences are observed with respect to Pt(111). In absence of 

beryllium, at low potentials only carbonate (1400 cm
-1

) is formed on Pt(110), whereas at 

higher potentials also formate and CO2 are observed. On the other hand, in the presence 

of beryllium, at E < 0.5 V beryllium promotes the formation of carbonate as well as 

formate. At E > 0.6 V bicarbonate is produced, while carbon dioxide seems to be 

formed from the oxidation of formate. 

Figure 5 compares the intensities of the band associated to carbon dioxide formation for 

Pt(111) and Pt(110) in presence and absence of beryllium. A clear correlation between 

the carbon dioxide formation and the faradaic current (Figure 2) is observed. 

Remarkably, the effect of beryllium strongly depends on the surface structure. While 

beryllium inhibits carbon dioxide formation at Pt(111), on Pt(110) the presence of 

beryllium appears to promote the formation of carbon dioxide.    

 

4. General discussion 
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From the results presented above, a more general picture of methanol oxidation on 

stepped Pt single crystals in alkaline media and the effect of beryllium can be extracted. 

Adsorption of methanol is the rate determining step and strongly depends on the surface 

structure of Pt 
3
. The complete oxidation requires Pt–(OH)ads as a reactant, however the 

nature and the coverage of the oxide on the surface is important. The OHads/oxide acts 

as a reactant in the oxidation of COads, but high-coverage strongly bonded oxide layers 

on the surface will inhibit the adsorption of methanol, thereby acting as a poison. The 

coverage of OH absorbed on the Pt surface is promoted by the presence of bivalent 

cations
21

. This appears to lead to a poisoning of terraces with (111) orientation, on 

which methanol adsorption and consequently its oxidation is highly inhibited in 

presence of beryllium in solution. On surface with a higher step density and on Pt(110), 

this poisoning effect is much reduced, which suggest small changes in the surface oxide 

coverage in presence of beryllium. Formaldehyde and formate species are the main 

reaction intermediates produced on surfaces with (111) orientation, while carbonate is 

formed on sites with (110) orientation. It is important to highlight that the indirect path 

(formation of strongly adsorbed CO) was not observed under the present conditions, 

and consequently CO poisoning does not appear to be very relevant for the methanol 

oxidation under this conditions.  

 

5. Conclusions 

 

Methanol oxidation on Pt stepped single-crystal electrodes in alkaline media and the 

effect of dissolved beryllium have been studied using Fourier transform infrared 

spectroscopy. It was observed that methanol oxidation reaction strongly depends on the 

surface structure and the presence of beryllium. The activity towards methanol 
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oxidation reaction increases with the density of steps with (110) orientation. It was 

found that the specific non-covalent interaction of beryllium with hydroxide groups 

strongly inhibits the methanol adsorption on Pt(111), but the inhibition becomes much 

less in the presence of (110) sites. The FTIR results show that methanol oxidation on Pt 

stepped single-crystals in alkaline media mainly follows a direct pathway with 

formaldehyde and formate as reaction intermediates.  
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Figure Caption 

Figure 1. Cyclic voltammograms of Pt(111) (black curve) and of methanol (0.3 M) 

oxidation on Pt(111) (red curve) in 0.1 M NaOH + 0.001 M BeSO4 solution. Scan 

rate: υ = 50 mV s
-1

. Blank voltammetry of Pt(111) in 0.1 M NaOH (blue curve) also 

shown for comparison.  
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Figure 2. Cyclic voltammograms of methanol (0.3 M) oxidation for Pt(hkl), as 

indicated in the figure, in 0.1 M NaOH (black curves) and 0.1 M NaOH + 0.001 M 

BeSO4 (red curves) solutions. Scan rate: υ = 50 mV s
-1

. 

 

Figure 3. In situ FTIR spectra for the oxidation of 0.3 M methanol on Pt(111) in 

(left panels) 0.1 M NaOH and (right panels) 0.1 M NaOH+BeSO4. The potential 

was stepped positively from 0.1V up to 1 V. Reference potential: 0.1 V. The sample 

potentials are indicated in each panel at the corresponding spectra. 

 

Figure 4. In situ FTIR spectra for the oxidation of 0.3 M methanol on Pt(110) in 

(left panels) 0.1 M NaOH and (right panels) 0.1 M NaOH+BeSO4. The potential 

was stepped positively from 0.1V up to 1 V. Reference potential: 0.1 V. The sample 

potentials are indicated in each panel at the corresponding spectra. 

 

Figure 5. Potential dependence of the integrated band intensity of the band 

associated to CO2 formation for Pt(111) and Pt(110) in presence and absence of 

beryllium. 
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Highlights 
 
Steps enhance the oxidation of methanol on platinum single crystal electrodes in 
alkaline media 
 
The presence of beryllium blocks methanol oxidation on (111) terraces 
 
The presence of steps much reduces the blocking effect of beryllium 
 
Methanol follows the direct pathway on Pt(111) and Pt(110) through the 
formation of formaldehyde and formate; no adsorbed CO is observed 


