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Climate Related Natural Disasters and Voting
Behaviour: Evidence from Environmental

Legislation in the US Senate

August 27, 2022

Abstract

This paper investigates whether United States senators are more likely to
vote in favour of environmentally friendly legislation following damages caused
by climate related natural disasters. We combine senatorial scores of roll call
votes on environmental legislation with modelled state level human and economic
natural disaster losses over a 44 year period. Our results show that support for
environmental legislation increases in response to unusual human losses but does
not respond to unusual economic losses. We also find that the documented
response to natural disasters is two years and relatively short-lived. Geography,
constituent partisanship, local economic conditions, and senatorial experience
affect the magnitude and precision of the treatment effect.

Keywords: US, natural disasters, environmental legislation, politicians, voting.
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“Disasters are very political events.”

A testimony to senators by James L. Witt, the former director of
FEMA

(April 1996)

1 Introduction

Legislation is a key instrument used by governments to tackle environmental issues such

as combating climate change, reducing pollution, conserving natural resources, and

preventing species and habitat loss. Under democratic systems, citizens theoretically

have a voice in the making of environmental laws through the voting behavior of

elected officials. In reality, because few voters consider secondary policy issues such

as the environment when exercising their electoral power in elections (List and Sturm,

2006; Pacca et al., 2021; Bouton et al., 2021), electoral accountability has been a

perpetual cause for concern in US politics. It remains an open question as to whether

elected legislators genuinely represent the views of their constituents when shaping

and voting on environmental laws that have potentially important implications for the

quality of life, economic sustainability and ultimately the environmental health of the

planet.

The purpose of this paper is to investigate whether unanticipated, non-partisan,

salient events such as extreme losses caused by climate-related natural disasters in-

fluences the voting behaviour of elected politicians when it comes to environmental

legislation. To do so, we construct a data set that links the ‘environmentally friendly’

voting behaviour of US senators and unusual damages from climate related disasters in
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their local constituencies. More specifically, we measure environmental senator voting

patterns using scores constructed by the League of Conservation Voters (2018) from

records of selected roll call votes at the Senate from 1971 to 2014. The climate related

disaster induced costs come from a record of monetary and non-monetary losses due

to natural events that are included in the SHELDUS database (Hazards & Vulnerabil-

ity Research Institute, 2015). The cost estimates are then used to construct localised

measures of unusual losses using extreme value theory (EVT).

Our paper contributes to the existing literature on the behavior of legislators with a

focus on congressional voting patterns. In the US context, although it has been shown

that ideology plays an important and potentially decisive role in the voting behaviour

of congressmen (Poole and Rosenthal, 1985; Arnold, 1990; Lee et al., 2004; Ringquist

and Dasse, 2004; Clinton, 2006; Poole and Rosenthal, 2007), a number of studies show,

to some extent at least, that legislators still take the preferences of their constituencies

into account when casting their votes on environmental related legislation issues despite

the perception that the environment and climate change remain a ‘secondary’ issue

(Anderson and Mizak, 2006; Tanger et al., 2011; Chupp, 2011; Canes-Wrone et al.,

2011; Miler, 2016; Vandeweerdt et al., 2016; Cherniwchan and Najjar, 2021). We

focus on senators for two reasons. First, because our natural disaster measures are

aggregated to the state level they better fit the constituency borders of senators rather

than representatives (who are elected by border-changing districts). Second, senators

serve longer terms which means a fixed effects design is more appropriate if we wish

to distinguish between voting due to constituent interests from legislative ideology.

The study closest to our own is Herrnstadt and Muehlegger (2014) who suggest that
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US congressional members vote are more likely to vote for environmentally friendly leg-

islation when their home state experiences unusual weather patterns. We extend this

analysis by looking at climate related natural disasters and senator voting behavior.

We argue that natural disasters, which are unanticipated and can have a devastating

impact on local communities, may serve as ‘focusing’ events. In such cases, an event

can grab the public’s attention, result in extensive media coverage, and trigger public

debate, thus possibly changing the balance of competing advocacy groups, and may in

turn alter the attitude and actions of elected legislators (Kahn, 2007; Birkland, 2016).1

Our study also contributes to the literature on the political consequences of natural

disasters. The majority of the existing literature on the US examines the executive

branch and how voters punish or reward federal and local governments after a natural

disaster has taken place (Abney and Hill, 1966; Achen and Bartels, 2004; Malhotra

and Kuo, 2008; Healy and Malhotra, 2009; Gasper and Reeves, 2011; Bechtel and

Hainmueller, 2011). In terms of the legislative branch, Birkland (1996, 2016) illus-

trates how natural disasters can drive changes in legislation regarding disaster relief

and disaster prevention. However, political pressure may evolves beyond the disaster

domain when these events occur. For example, Liao and Ruiz Junco (2022) show that

incumbent legislators with anti-environmental attitudes are punished in elections fol-

lowing a natural disaster. However, to the best of our knowledge, our study is the first

to examine the impact of natural disasters on voting behaviours within the broader

domain of environmental legislation.
1Boscarino (2009) explains this phenomenon as ‘problem surfing’, where advocacy groups attach any

seemingly relevant problem that arises in society to the preferred solution they are fighting for. For example,
Boscarino (2009) finds that two sustainable forestry advocacy groups, Wilderness Society and Sierra Club,
take advantage of different salient events covered by the media (wildlife, water quality, recreation, economic
inefficiency, and climate change) to promote their campaigns.
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In terms of methodology, our key contribution is to propose novel indicators of

salient events derived from state-level natural disaster damages. One of the main

empirical challenges is to identify events that are important, i.e., rare enough to po-

tentially trigger changes in attitude, and to take account of the fact that the perception

of ‘rare’ is likely to differ across states as a result of their historical exposure to natural

disasters. The approach we take in this paper is to homogenise the rarity of economic

and human losses across time and states. The key identifying assumption is that if

the yearly accumulated damage from natural disasters in a constituency exceeds an

arbitrary degree of rarity, it is assumed that the damages become a matter of public

concern and in turn this influences the behaviour of elected senators. Otherwise, the

accumulated damages are considered non-salient and are likely to be ignored. The

threshold we use in this study is a 10-year return level, although in robustness checks

we also consider whether alternative thresholds may be more appropriate.

A further empirical challenge to overcome is the question of external validity. More

specifically, the majority of the existing literature has tended to focus on one, or a

small number, of salient events, such as a 500-year flood. It is therefore difficult

to generalise from, or directly compare, these findings to other contexts where the

‘rarity’ of the event may be very different. In addition, restricting the analysis to

specific types of disasters (e.g. hurricanes) fails to take account of the fact that many

disasters, particularly climatic events, are driven by similar forces, for example the El

Niño–Southern Oscillation (Goddard and Dilley, 2005). Thus, it can be argued that

it is the cumulative losses due to natural disasters that matter in terms of changing

environmental attitudes and not any single event (however large).
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To model the possibility of a cumulative effect we use the monetary and non-

monetary losses from the SHELDUS database (Hazards & Vulnerability Research In-

stitute, 2015) and identify the pertinent climate related natural disasters using extreme

value theory (EVT). EVT is ideally suited to the task at hand as it allows one to take

account of ‘fat tail’ distributions that are typical of losses due to natural events, where

there are many smaller, negligible, and a few potentially very damaging events (the

‘fat tails’). To isolate and classify the probabilities of the latter we employ a peak over

threshold (POT) model for each state, thus allowing the associated derived probabili-

ties of events to differ across space.

Our final methodological contribution is to highlight the potential differences in

political impact of human damages versus economic damages. In general, the percep-

tion that there is a close relationship between natural disasters and the environment

means that issues related to the environment may emerge as a critical concern for

public opinion in those constituencies recently impacted. A common argument is that

environmental degradation, such as changes to the underlying climate, makes natural

hazards more damaging and/or frequent and hence increases the vulnerability of af-

fected communities (UNEP, 2007; Gupta and Nair, 2012; Botzen and Van Den Bergh,

2012; Estrada et al., 2015). At the same time, natural disasters can directly, or indi-

rectly result, result in further deterioration of the environment, for example through

ecosystem destruction, oil spills, or contaminant mobilisation (Labadie, 2006; Atkin,

2017; Dart et al., 2018; Natter and Calkins, 2018). Therefore, one may expect natural

disasters to trigger greater demand from the public for increases in the stringency of

environmental regulation under the assumption that stricter regulations will reduce the

probability of future damaging events and/or the magnitude of the damages caused
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by any future disaster.

There is however a competing argument that there is a positive association be-

tween economic prosperity and public concern for the environment and that economic

losses as a result of a natural disaster may lead to a reduction of concern for the en-

vironment with economic recovery given a greater priority (Elliott et al., 1997; Kahn

and Kotchen, 2011; Scruggs and Benegal, 2012; Shum, 2012). If true, constituencies

may prefer policies that prioritise short-term economic recovery and redevelopment to

policies that focus on the reduction of future but uncertain environmental related dam-

ages. Empirically, one may therefore expect economically costly disasters to reduce

the likelihood of voting for environmentally friendly legislation.

A final consideration is how politicians react to focusing events such as natural

disasters. A typical approach is to anecdotally link significant legislation with salient

events at the national level (Birkland, 2016). For example, Hurricane Agnes that

struck in 1972 was thought to be instrumental to the passing of the Flood Disaster

Protection Act (1973) and the Disaster Relief Amendments (1974). Similarly, Hur-

ricane Fran that hit in 1996 has been linked to the Disaster Mitigation Act (2000)

while Hurricane Katrina that landed in 2005 triggered the Post-Katrina Emergency

Management Reform Act (2006). In the broader domain of environmental legislation

Kuran and Sunstein (1998) provide a detailed narrative on how the Love Canal crisis

in 1978 caused a “media snowball” that lead to the Superfund legislation of 1980.

In this study we document changes in the voting behaviour of the average senator

after potential focusing events caused by unusual damages that result from a natural

disaster in their constituency. As the examples above illustrate, there is likely to be
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a delay between the focusing event and the passing of new legislation. There are a

number of explanations. First, it can take months, if not years, to get reliable estimates

of the state-level losses the publication of which could alter the opinions of both the

public and the elites. Second, the response of senators needs to be ‘catalysed’ by their

interaction with external factors such as the changing power of lobbying groups or

pressure from the media and the families of victims. Finally, legislation is a lengthy

process where any individual bill can take a long time to pass from introduction to a

roll call vote in the Senate. Hence, a senator’s decision could take place immediately

after a natural disaster but this change in voting behaviour would only show up at the

time of the vote in the Senate.

To briefly summarise our results, we find that the environmental voting pattern

of a senator is responsive to extreme losses from climate related natural disasters in

their constituency. However, this response is not immediate. The overall results show

a significant signal that occurs on average two years after an event and that this

signal lasts only one year. However, the signal is one year for senators in those states

that have had relatively little exposure to disasters in the past where constituents

are likely to be more sensitive to events they have not previously experienced. The

positive voting effect appears to be driven solely by an unusual number of injuries and

fatalities while senators’ attitude toward the environment does not appear to respond

to extreme economic damages. Geography, constituent partisanship, local economic

conditions and senatorial experience are all found to affect the magnitude and precision

of the treatment effect.

The remainder of the paper is organised as follows. Section 2 describes our data
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and the construction of our variables. Section 3 presents our regression specification,

the results of which are shown and discussed in Section 4. In Section 5 we conduct a

counter-factual analysis. Section 6 explores heterogeneity issues with further discussion

provided in section 7. Section 8 concludes.

2 Data

2.1 Senator Environmental Voting Scores

Our indicator of the environmental voting behavior of senators is derived from the

National Environmental Scorecard constructed by the League of Conservation Voters

(2018) (LCV). More precisely, to generate a LCV score for a senator, every year since

the first Earth Day in 1970, LCV consults experts from over 20 organisations that have

a reputation for supporting environmental conservation to select a list of key votes on

environment-related issues. Accordingly, each vote is scored 1 (pro-environment) if in

line with LCV’s position, or 0 (anti-environment) otherwise, including absentee votes.

The annual score for each legislator, except for those who were ill or died, and the

Speaker of the House, whose vote is discretionary, is computed as the average score

on votes on all selected issues within a year and then transformed into a scale from

0 (environment enemies) to 100 (environment heroes). To construct scores, in some

years a number of important issues are counted twice while the sponsorship of certain

bills or petitions may be selected as replacements for real votes.

Finally, for each piece of environmental related legislation the LCV examines the

content of the bill and categorises the content into different environmental related
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topics. We take these topics and aggregate them into eight broad categories that we

call: (1) Air, (2) Clean energy, (3) Dirty energy/Toxins/Public right to know issues,

(4) Water, oceans and drilling, (5) Lands/Forest/Wildlife, (6) Transportation, (7)

Climate change, and (8) Other. To control for changes in the topics that are included

in legislative bills over time we construct a variable that captures the share of each of

these eight broad categories for each year.2

2.2 Senatorial Characteristics

To control for senator characteristics we use information from Voteview (Lewis et al.,

2017) and the Congress Legislator project on GitHub.3 The Voteview dataset provides

information about the birth date, party affiliation, and ideology.4 As an ideology

control we include the two dimensions of NOMINATE, which are calculated from

DW-NOMINATE (Dynamic Weighted NOMINATE Three-step Estimation) (Poole,

2005; Poole and Rosenthal, 2007). The first dimension captures ideology in terms of

economic/re-distributive issues, while the second accounts for social/racial issues. For

both dimensions, which are normalised between -1 and 1, a higher estimate means

a more conservative politician. The estimates are changed for those that switched

party. The GitHub data set also provides information on the gender and cohort of the

senators (to determine the election year) and the history of their appointment to the
2Note that the sum of these shares could exceed 100 percent as a piece of legislation may span multiple

topics and hence be included twice. Note that these share variables are not absorbed by year fixed effects as
they can vary over legislators each year if some senators, for certain reasons (such as midterm elections, illness
or death), cast fewer votes on those selected issues.

3The Voteview data set collates information on US congressmen, president and vice presidents from 1789
to the present day, using various information sources. See https://github.com/unitedstates/congress-legislators
for details.

4The party affiliation of legislators in the LCV dataset is corrected for those senators who switched party
or changed jobs.
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Senate.5

2.3 Natural Disasters

To measure the impact of natural disasters we rely on the SHELDUS™ database (Haz-

ards & Vulnerability Research Institute, 2015). The database tracks the damages

from natural hazards which are classified as belonging to one of eighteen different

types of disaster.6 As the focus of this paper is on climate-related disasters, we ex-

clude avalanches, tsunamis/seiches, volcanoes, and earthquakes.7 We have access to

data at the county level for the period 1960 - 2014.

Annual losses are given in terms of human losses (injuries and fatalities) and mon-

etary losses (crops and property). Note that the latter is often estimated based on

insured losses and not all crops or property will be insured. Since senators are elected

by their states as a whole, we aggregate losses to the state level. We compute hu-

man losses at the state level as the sum of annual injuries and fatalities and calculate

economic losses as the aggregate damage to crops and properties in a given year. Eco-

nomic losses are in 2014 prices. In addition, we consider the intensity of losses (per

capita variables) rather than their levels to take into account the changes in population

and the density of economic activity.

Figure 1 summarises the cumulative damages by climate-related disaster type in
5The tenure of senators is six years. Every two (even numbered) years, one-third of senators (representing

33-34 seats) are re-elected and the cohort helps determine the year of election. For example, those of cohort 1,
2, and 3 are up for re-election in 2018, 2020 and 2022, respectively.

6For completeness the eighteen types of natural hazards included in SHELDUS™ are: avalanches, coastal
floods, droughts, earthquakes, floods, fog, hail, heat, hurricanes/tropical storms, landslides, lightning, severe
thunderstorms, tornadoes, tsunamis/seiches, volcanoes, wildfires, high winds, and winter weather.

7The results are, however, qualitatively similar if we include these additional disasters. For example, only
Hawaii includes volcano related damages.
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the US between 1960-2014. The disasters that caused the most injuries and fatalities in

descending order are tornadoes, hurricanes/tropical storms, lightning, winter weather,

and high winds. Meanwhile, disasters with the largest damages in monetary terms are

hurricanes/tropical storms, floods, tornadoes, droughts, and winter weather. Given

the diversity of the terrain in the US, damages are unevenly distributed. For example,

tornadoes tend to be concentrated in the central part of the country (Tornado Alley),

wildfires are common in the West, and hurricanes typically strike the East Coast and

the Gulf of Mexico. Hazards such as floods, lightning, and droughts tend to be more

evenly geographically distributed.

[Figure 1 about here]

To identify the salient, i.e., relatively rare, human and economic loss years in a

state we use extreme values theory (EVT) and estimate a Peak Over a Threshold

model (POT) (Coles, 2001). The approach can be summarised as follows. If, for each

of the 50 states, for each of the two series of annual losses, we assume that they are

a sequence of independently and identically random variables, then an appropriate

normalisation of the maximum of such a sequence, according to the Extremal Types

Theorem (Fisher and Tippett, 1928), must asymptotically approximate one of three

extreme value distribution families, namely Fréche, Gumbel, or Weilbull, which can

be generalized by a Generalised Extreme Value (GEV) distribution (Jenkinson, 1955).

Under certain asymptotic arguments, the probabilities of the extremes of these se-

quences being above a certain threshold can be modelled via a generalised Pareto

distribution (GPD); see (Pickands, 1975).

For the practical implementation of peak over threshold models, the choice of the
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threshold is important. A high threshold limits the number of observations, making the

estimation less precise, while a low threshold undermines the underlying asymptotic

assumptions, posing a potential risk of bias in the estimation. We follow the guidelines

presented in Coles (2001) and use a series of visualisation tools to determine the

threshold for each series. First, we draw the mean residual life plot (MRL), which

captures the relationship between the average exceedances and thresholds, and select

a low threshold where such a relationship still plausibly mirrors a straight line, as one

would expect from the theory. The selection is verified by a POT parameter stability

plot.8 After the threshold is chosen, the GPD is estimated by a Maximum Likelihood

Estimator (MLE). Post-estimation graphs are used to further assess the selection of

the threshold. Appendix A provides a detailed explanation of our EVT and POT

approach and an explanation of the POT parameter stability plot approach.

The estimated GPD distribution is used to determine the return level z(N) of the

extreme loss intensity values corresponding to a predefined return period of N years.

For our baseline results we choose a return period of 10 years, which corresponds to

a return level z(10) such that the annual natural disaster damages/losses in a given

state in any year can exceed such a level with a probability of 1/10 = 0.1.

2.4 Other State Level Controls

In our estimations we also control for a number of state characteristics including demo-

graphic, economic, and weather related, that could be correlated with voting behavior

and the possibility that natural events translate into large losses. In terms of demo-
8As suggested by the theory, once the threshold is considered appropriate, relevant (transformed) parame-

ters must be stable when there is an increase in the value of the threshold.
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graphic data we take information from ‘The US Population Data by National Cancer

Institute’, which provides an estimate of the annual population by age, sex, and race

at the county level.9 To generate controls for the macro-economic environment (GDP,

personal income, and implicit price deflator) at the state level, we use data from Bureau

of Regional Economic Analysis (BEA).10

As noted by Auffhammer et al. (2013), when modelling climate related phenomena

it is important to also control for general weather patterns that could be correlated.

To construct a state level measure of annual temperature and precipitation we use

data from the nClimDiv database (NOAA, 2014; Vose et al., 2014) that interpolates

climatic data from stations at a 5km × 5km resolution using an area weighting method

and taking into account topographic and network variability. The data covers states

in the contiguous United States (CONUS) and Alaska (added in 2015, based on 1971-

2000 PRISM averages) and excludes Hawaii. For Hawaii, we use the Global Summary

of the Year data provided by National Climatic Data Center (NCDC).11

2.5 Summary Statistics

Table 1 summarises the data used in our regressions. After the data matching pro-

cesses, we obtain 4,414 observations from 381 senators for which we were able to obtain

the full set of senatorial environmental voting scores, natural disaster measures, sen-

atorial characteristics, and other state-level controls. The average age of a Senator

is 58.6. The oldest senator in the dataset is Sen Strom Thurmond (1902), who was
9The data is accessible at https://seer.cancer.gov/popdata/methods.html.

10Data is available at https://www.bea.gov/regional/downloadzip.cfm.
11More specifically, we compute temperature and precipitation for Hawaii as the average of the data from

three stations located at Hilo International Airport, Honolulu observatory, and the Lihue weather service office
airport.
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100 years old when serving the Senate in 2002 before his death in 2003. The female

representation is 7.3% over the entire period although it has risen dramatically since

1992 and reached nearly 20% in 2014.

[Table 1 about here]

Regarding our variables of interest (the modelled natural disaster measures), we

present the spatial distribution of human and economic losses in Figure 2. As can be

seen, the 10-year return levels for economic loss intensity in 2014 prices ranges from

16.5 (Connecticut) to 510.5 (Iowa) dollars per head, while the 10-years return levels

for human loss intensity ranges from 4.7 (Rhode Island) to 144.5 (Mississippi) deaths

and injuries per million of the population. Spatially, the South and the Midwest, have

the highest 10-year return levels of extreme climate induced damages, both in terms

of economic and, human losses. Figure 3 shows the temporal variation of human and

economic losses in conjunction with the number of states affected. As can be seen,

there is considerable variation in both the incidence and the intensity during the last

50 years or so.

[Figures 2, 3 about here]

3 Specification

Our baseline specification to estimate whether natural disaster shocks have an impact

on environmental voting patterns of senators is given by:

Yi jt = α +

q∑
k=0

βkshock jt−k + Ψ
′Xit + Ω

′Z jt−q−1 +

q∑
k=0

δkW jt−k + µit̂ + νt + εi jt (1)
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where Yi jt is the average LCV score in year t of Senator-by-term i elected to state

j. The binary variable shock jt−k indicates whether there were unusual losses due to

natural disasters (per capita) in state j, k years prior to year t that exceeded the 10-

year return level. One should note that we allow for potential lagged effects of these

shocks by including q lags of their realizations. The set of coefficients {βk} are the main

parameters of interest.

The vector Xit contains our set of variables that control for characteristics of sen-

ators including ideology (measured by 2-dimensions of the NOMINATE estimates),

party affiliation, age, tenure (whether they are in their first year in the chamber and

whether they are in an election year) and a range of policy issues (share of issues by

topic) voted in year t. Z jt−q−1 is a vector of state conditions, including demography

(share of voters by ethnicity and age), economy (average personal income, and real

growth rate). Note that to avoid bad controls that might be impacted by the extreme

climate shocks and hence might absorb some of their impact on voting, we lag these

variable at time t − q − 1, i.e., one year just before the earliest modelled lag of disas-

ter losses (t − q). With W jt−k we also control for general state-level weather variables

(precipitation, and temperature) and their lags (similar to disaster losses). Time fixed

effects, νt, capture common national factors that vary across years.

Finally, we include senator-by-term fixed effects, µit̂, that vary across senators (i)

and their terms (t̂) and control not only for time invariant unobserved senator hetero-

geneity, but also allows these unobserved factors to vary with senators’ political terms.

Senator fixed effects alone may not be adequate because, first, some senators hold of-

fice for decades and second, senator turnover is endogenous. For example, if a senator
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in a conservative area decides to vote for an environmental issue they may then be

elected out of office in the following election cycle, which would make the new senator

less likely to vote for environmental issues. As such senator-by-term fixed effects also

absorb any state specific time invariant factors. Arguably, after controlling for these

fixed effects, any differences in statewide extreme climate event exposure should only

capture random, unanticipated realisations of their local distributions.12

Of course whether an climate event translates into a natural disaster depends also

on time varying ex-ante population exposure, disaster mitigation policies, and local

infrastructure, all of which could feasibly also be correlated with voting patterns. We

assume that these concerns are controlled for through our rich set of time varying state

specific controls. Standard errors are clustered at the state level in all specifications

to capture shock correlations across senators through the extreme climate events.

4 Results

4.1 Baseline regression

Table 2 shows the results from our baseline specification in Equation (1) using human

losses as the proxy for shock. In Columns (1)-(4), we show the results of incrementally

increasing q from 0 to 3, i.e., allowing for an increasing lagged impact of the extreme

climate losses. As can be seen, while there is no contemporaneous or t − 1 impact

of extreme climate damages on voting behaviour, two years after the event senatorial

voting for environmentally friendly legislation increases. This effect disappears, how-
12We thank an anonymous referee for the suggestion to include senator-term fixed effects.
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ever, by t − 3.13 Thus, the impact is delayed and is short-lived. One should note that

the impact of unusual human losses at t − 2 is significant at the 1% level if we set

q = 2 (Columns 3 and 7) and at the 5% level if we set q = 3 (Columns 4 and 8). The

estimates on the two year lag are slightly larger and more accurate if we restrict the

time horizon to q = 2. The smaller standard errors suggest the redundancy of lags

beyond t − 2.

[Table 2 about here]

In Columns (5) through (8) we consider monetary losses as the shock proxy, simi-

larly incrementally allowing for increasing lagged impacts. In contrast, to human losses

there is no significant impact of monetary damages on senatorial voting. One may want

to note in this regard that, while the standard errors are similar, the coefficients on

the lagged coefficients tend to be substantially smaller.

We also explore whether the t − 2 effect of human extreme climate related losses

is robust to simultaneously including monetary losses rather than using the latter as

an alternative proxy. The results are shown in the final four columns of Table 2.

The results do not change qualitatively and only marginally increase the estimated

coefficient on the significant human loss term at t − 2.14 Hence, for the remainder

of the analysis we simply use human losses as our proxy of extreme climate natural

disaster events.

Using Column (3) as our preferred benchmark regression, the estimated coefficient
13Compared with the full sample (N=4,414), we lose 100 and 200 observations when extend the time hori-

zon to q = 2 (Column 3) and q = 3 (Column 4), respectively due to the unavailability of (lagged) control
variables in earlier years. The significance of t− 2 and the insignificance of earlier shocks hold when we move
between Columns (3) and (4) despite the difference in sample size.

14A z-test suggests that the coefficients in either Columns (3) or (4) are not significantly different from their
counterparts in Columns (11) and (12), respectively.
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on t − 2 suggests that unusual damages to humans by climate-related disasters in a

particular state adds 2.24 points to a senatorial environment score two years after

the event. To put this in context, the average senatorial environmental score is 47.20

(N=4,314) for the corresponding sample, 69.25 for Democratic senators (N=2,238) and

23.42 for non-Democratic senators (N=2,076).

4.2 Robustness Checks

To ensure our results are not sensitive to changes in specification we conduct a number

of robustness checks. First, in Table 3, we compare the findings of our preferred

benchmark specification of Column (3) in Table 2 (for convenience we repeat these

results in Column 1) to a range of alternative specifications (Columns 2 to 10). More

specifically, to address any concern that ideology and party affiliations could be bad

controls if some senators switch parties or change their ideology as a consequence of

previous natural disasters, we remove these controls in Column 2. Reassuringly the

estimated coefficients appear almost unchanged and the impact at t−2 of shock remains

significant at the 1% level.

[Table 3 about here]

Another concern might be that once we control for senator-by-term fixed effects our

proxy for ideology varies very little (since it can only change due to a switch of party

or a change to another political position), so may be capturing ideological changes

concurrent with extreme losses only by chance. To further investigate we replace the

NOMINATE measures by a more time-varying ideology proxy, namely Liberal Quo-

tient (LQ) by American for Democratic Action (ADA). The LQ is a ‘standard measure
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of political liberalism’ (Americans for Democratic, 2017) and is constructed for each

senator from the records of 20 selected votes each, which in addition to environmental

concerns, cover a wide range of issues, including domestic and international social and

economic issues. As for the other time varying controls, we lag the LQ alternative

proxy for ideology at t − 3 to avoid it potentially acting as a bad regressor. Unfortu-

nately, this entails a reduction of our sample to 3,318 because the LQ variable does

not have the same level of coverage. Results including this alternative ideology proxy

are presented in Column (3) of Table 3. While the coefficient of human loss shocks

at t − 2 is reduced to 1.76, possibly due to sample variation, it nevertheless remains

significant at the 5% level.

In Column (4) we exclude (lagged) controls for economic conditions from the bench-

mark regression, while Column (5) drops the the contemporaneous and t − 1 values

of shock. Our results are not sensitive to these modifications in that the changes in

coefficient of the shocks at t − 2 and their significance are negligible. Columns (6) and

(7) modify the specification in Column (1) by adding one and two lags of the depen-

dent variable, respectively, in order to allow for dynamics in environmental legislative

voting by senators. Our findings remain significant at the 5% level.

The remainder of Table 3 explores how important it is to control for senator-by-

term fixed effects in trying to capture any correlated unobservables. In this regard

Column (8) replaces senator-by-term FE by simple senator FE, thus assuming that

term-invariant characteristics of senators throughout their political career at the Senate

are sufficient to account for unobserved confounders.15 Column (9) uses state FE
15As senators do not change their constituencies, senator FE also accounts for time-invariant unobserved

characteristics of states.
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instead and only considers time-invariant unobserved confounders at the state level

(besides senate-wide time-varying factors).16 The results show that compared to the

benchmark results the impact of extreme climate event losses falls somewhat in both

magnitude (by about 4%) and in precision (larger standard errors). Using only state

FE further reduces the coefficient, again estimated with less precision than the senator-

by-term fixed effects (Column 1).

Finally, Column (10) presents the results of a specification that excludes any state

or senator fixed effects FE and retain only year FE. The magnitude of impact at t − 2

is similar to the state FE, while also losing some precision. Overall, the results are

remarkably consistent to different specifications.

4.3 Granger-style causality tests

After purging the impact of fixed effects and relevant controls, we assume that the

extreme climate related losses are unanticipated realisations of their state level distri-

butions and as such our estimates can be interpreted causally. A potential counter-

argument is that the dependent variable (LCV score of elected senator) may serve

as a proxy of local elite attitudes and public opinion towards the environment in the

associated state, which could possibly be correlated with natural hazard prevention

and preparedness and predicts the actual loss caused by natural disasters later.

To shed a light on this issue, in Figure 4 we conduct a test for causality inspired

by Granger (Granger, 1969) as suggested by Angrist and Pischke (2008). Hence, we
16Note that in this specification (and other alternative specifications where appropriate), we add gender as

an additional control as this would have been absorbed by the senator-by-term fixed effects in our preferred
benchmark specification.
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take the the leads of the climate extreme event proxy and incrementally add them to

the baseline specification in Columns (6) to (8) of Table 2. We present the estimated

coefficients and show the 95% confidence intervals of the full set of coefficients on our

shock variable. More precisely, the modified specifications in Figure 4 are labelled m1,

m2, m3 with an assumed symmetric structure, where the lead lengths are set equal

to the lag lengths (at 1, 2 and 3 respectively). The point estimates of the shock lags

change little with the inclusion of future shocks in that the impact at t − 2 remains

significant at the 5% level in all models. Importantly, the coefficients of all future

shocks are small in magnitude and insignificant. This provides evidence of a lack

reverse causality, where the environmental voting process might predict climate events

translating into natural disasters.

[Figure 4 about here]

4.4 Monte-Carlo permutation test

To ensure that our significant results are not due to a chance occurrence of extreme

climate shocks and changes in environmental voting we also undertake a randomization

(Monte Carlo permutation) test. More precisely, within each state, climate shocks are

randomly assigned to a year with a probability of 10 per cent, corresponding to their

10-year return period exceedance probability, using a binomial distribution. Then the

benchmark specification of Column (3) of Table 2 is re-estimated 1,000 times, where

for each simulation we construct the t-statistics on our climate shock indicator and its

lags. The corresponding p-values of our actual estimates relative to the distribution

obtained from the simulations are provided in Figure 5. As can be seen, the test
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confirms the significance (at the 1% level) at time t − 2 of a human loss shock (p-

value=0.005). At the same time the values of the t-statistics for the shocks at time

t and t − 1 are not unusual given the simulated distribution, with p-values 0.623 and

0.82, respectively.

[Figure 5 about here]

4.5 Alternative definition of extreme climate events

Thus far we have defined extreme climate event losses as those that had a return

period of at least 10 years. To explore how sensitive our results are to this choice we

also investigate different return levels to define an extreme shock and re-estimate the

benchmark regression of Column (3) of Table 2.

Figures 6 show the estimated contemporaneous and lagged coefficients on shock,

along with their 95% confidence bands, using various return period thresholds ranging

from 2 to 20 years. Accordingly, while the coefficients at t and t − 1 are consistently

insignificant no matter what return period threshold is chosen, this is no longer the

case for the coefficients of the t−2 lags. Rather, significant (at the 95% level) effects are

found only at return period thresholds between 6 years and 11 years, which correspond

to the possibility of extreme events between 16.7% and 9.1%. The point estimates

are all positive and gradually increase when we raise the rarity bar to the 11-year

return level then fluctuates slightly. After that point the confidence intervals widen

considerably, possibly because the estimates are based on fewer treated observations

in the underlying POT model.
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[Figure 6 about here]

4.6 Compounding of extreme climate shocks

So far our baseline specifications implicitly assume the independence of the impact of

climate extreme events on voting across years. Alternatively, we may want to explore

whether their effect may compound over time. To this end we construct a measure

that sums the number of extreme climate events over a given t to t−q period, where we

allow q to range from 1 up to 4 in Columns (1) to (4) of Table 4 and shocks based on

the 10-year return level (similar to the baseline specification). In Columns (5) to (8)

we mimic the previous columns but instead use the lower threshold of 5-year return

level events.17 As the results in Table 4 show, allowing events to compound, no matter

over how many years and what return level, renders any impact insignificant. Thus,

arguably, as our benchmark specification suggested, the impact of extreme climate

events is short-lived and independent over time.

[Table 4 about here]

4.7 Spillover effects

Another empirical concern is whether extreme losses in one state might affect voting

behaviour of senators in nearby states (for example through flows of migrants from

the affected state or economic redistribution). To explicitly test for spillover effects

we construct two measures. The first is a binary variable that records a value of 1
17As shown in section 4.5, the impact at t − 2 in the benchmark regression remains positive and significant

if we replace the 10-year return level by the 5-year return level to define the shock.
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if any neighbouring states experience extreme climate related losses. The second is

a continuous variable bounded between 0 and 1 that is the average value of shock in

all neighbouring states. We add these variables and their lags (up to t − 2) to the

benchmark regressions and the results are shown in Columns (2) and (3) of Table

5, respectively shown next to the results for our preferred specification taken from

Column (3) of Table 2). As can be seen, the impact from neighbouring states is

insignificant, inducing essentially no change in the estimated magnitude of the local

shocks.

[Table 5 about here]

5 Counter-factual analysis

In this section we ask how the Senate might have performed if there had been no

extreme climate shocks. To this end we use the preferred benchmark regression results

(Column 3 of Table 2) and sum up the effect of losses as measured at t − 2 for each

senator-by-year observation. Figure 7 visualises this counterfactual analysis, where we

compare the average LCV scores of senators by party affiliation (upper panel) and

the average impact of shocks across all modelled senators (lower panel). In general an

average Democratic senator (blue line) is more likely to vote for more environmentally

friendly legislation than his Republican counterpart (red line) during this period. The

gap between their LCV scores is fairly narrow initially but then widens considerably

in the 1990s, reflecting the well known increased polarisation along party lines in the

US environmental politics from that period onward. The average impact of extreme

climate shocks on voting appear to be modest (even if compared to the average LCV
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score of non-Democratic senators) with a peak at 0.6 percentage points (in 1976) and

an average of 0.22 percentage points.

[Figure 7 about here]

6 Heterogeneous treatment effects

6.1 Heterogeneity over time and topics

Our baseline regressions implicitly assume that legislators’ responses to ND shocks

are stable over time. However, it is well known that American politics, at both the

general public and elite level, has become more polarised over time (Garand, 2010).

This also applies to environmental politics in general and environmental legislation

in particular (Kim and Urpelainen, 2017). As can be seen from the upper panel of

Figure 7, the divergence in environmental voting patterns between parties seems to

have emerged from early 1990s onward. Thus, in order to investigate the potential

heterogeneity in treatment effects over time we split our sample by the year 1990 with

results shown in Table 6. Notably, the latter period also coincides with an increasing

backlash against climate scepticism in the US after the Intergovernmental Panel on

Climate Change (IPCC) raised the alarm about science-backed human-made global

warming (Collomb, 2014).

[Table 6 about here]

In Table 6, we show the results of the the two sub-samples split by voting year:

before 1990 (Column 2) and since 1990 (Column 3) against the benchmark regression
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on the full sample in Column (1) (equivalent to Column (7) in Table 2). Despite

changes in political polarisation and the salience of climate issues, for both periods

our key finding of extreme damages due to climate-related disasters in a constituency

driving a tendency to vote more environmentally friendly at the Senate two years later

still holds. Qualitatively, the impact is slightly lower in the later period (a coefficient

of 2.08 compared to 2.86). A possible explanation is that senators in the later period

might weight ideology more heavily and hence be less responsive to non-partisan events

such as natural disasters when make a decision on legislative voting.

We also construct two alternative measures for the dependent variable and explore

how they respond to our treatment in the full sample as well as two sub-samples. In

Columns (4) to (6) of Table 6, we split the LCV environmental votes into those that are

specifically concerned with climate, and closely-linked issues including air pollution,

energy, and transportation, versus the remainder.18 In Columns (4) to (9) we present

the estimates using these two different dependent variables computed for the full as

well as the sub-period samples. As expected, the Climate-related Score (Columns 4-6)

is responsive to natural disasters and reassuringly the Other Score (Column 7-9) is

not. This may suggest that the relevance of issues matters when it comes to changing

the voting behaviour of senators.

What is noteworthy is that there appears to be a shift in the response timing

between two periods. Before 1990, i.e., the response of the climate related score at t−2

is large (4.3) and significant at the 5% level. For the later period, the signal is somewhat
18More specifically, the climate-related score is derived from issues that belong to at least one group from

(1) Air, (2) Clean Energy, (3) Dirty Energy/Toxins/Public Right to Know issues (excluding Toxins/Public Right
to Know subcategories), (6) Transportation, (7) Climate change. Unfortunately we are not able to decompose
the LCV variable further since single issues like climate change are absent in many voting years. Given that
this may be due to reporting and classification changes over time, one should thus view results from this more
stringent score with caution.
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mixed. We now find an instantaneous large increase by 4.32 points (significant at the

5% level) followed a weaker increase at t − 2 by 2.83 points (significant at the 10%

level). The earlier response could be explained by the recently increasing awareness

of the climate urgency and senators reacting more quickly to natural disasters given

increased media coverage and the role of social media and more effective lobbying.

6.2 The roles of geography, public partisanship, economic conditions

and personal exposure

We also explore heterogeneity in treatment effects, the results of which are presented

in Figure 8. To this end, we interact the (lagged) losses variables in the benchmark re-

gression with relevant indicators to explore the roles of geography, public partisanship,

economic conditions, and senator exposure to the event.

[Figure 8 about here]

In Panel (i) of Figure 8, we interact each treatment variable with four indicators

of Census regions. Accordingly, the pro-environmental impact in legislation of natural

disaster damages at t − 2 seems to be driven by senators in the Midwest and the

Northeast. The coefficients corresponding to these regions are 4.8 (significant at the 5%

level) and 3.1 (significant at the 10% level), respectively. One should note that among

climate-related disasters that cause injuries and fatalities, the Midwest is particularly

vulnerable to tornadoes, while the Northeast is vulnerable to hurricanes and winter

weather. The near-zero coefficient of the West could be explained by its lower exposure

to climate related disasters and as such the damages are less likely to translate into
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political pressure. However, a similar argument does not appear to hold for senators

from the South given the insignificant impact of disasters on voting behavior despite

being exposed to disasters such as tornadoes and hurricanes. This may suggest the

influence of other factors that coincide with a general North-South divide.

Panel (ii) examines the role of state partisanship. To this end, we construct yearly

estimates of party identification of the voters following Caughey and Warshaw (2018),

where, for each year we label a state as ‘Blue’ if its proportion of Democratic supporters

is estimated to exceed Republican supporters, and otherwise the state is labelled as

‘Red’. In this regard Blue states may serve as a proxy for the liberalism of a senator’s

constituency and as such it is correlated with electoral preference for environment

protection. The point estimates of the impact at t − 2 are very similar for either state

types (around 2.2-2.3). However the corresponding standard errors of Blue states are

much lower than for the Red states (0.9 compared to 1.3). As such the impact in Blue

states is estimated more precisely and is significant at the 5% level. Meanwhile, the

impact in Red states is significant at the 10% level.

When we look at the role of economic conditions, Panel (iii) suggests that the

impact at t − 2 is qualitatively larger for senators representing high-income states,

where a state is classified as ‘high income’ if it belongs to the top quintile of (average)

personal income in a given year. The corresponding coefficient is 3.6 (significant at

the 5% level), i.e., double its low income counterpart (significant at the 10% level).

This result is consistent with the previous finding that exceptional monetary damages

by natural disasters does not support environmental legislation, where a preference for

environment stringency is thought to be associated with better economic conditions
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(Elliott et al., 1997; Kahn and Kotchen, 2011; Scruggs and Benegal, 2012; Shum, 2012)

Finally, Panel (iv) explores heterogeneous effects according to the personal expe-

rience of senators. The impact at t − 2 is significant (at the 5% level) if the senator

held office when the disasters struck (as compared to only becoming senator after the

disaster). Otherwise the impact is statistically insignificant.

7 Discussion

One of our main findings is that extreme climate disasters impact senatorial voting

on environmental legislation two years after the event. There are several factors that

could help explain this result. Arguably, for a senator to change voting behavior

requires four conditions: (1) that a senator is aware of salient damages caused by a

natural disaster in their constituency and the need to respond to such an event; (2)

they are convinced that environmental legislation may appropriately address such a

need; (3) their interaction with the environmental legislation at the Senate provides an

opportunity to address the issues; and (4) a constituency must want to change. Each

of these conditions can be time-consuming for the following reasons.

First, as states are large administrative territories, it may take months and even

years to obtain a reliable tally on actual losses. Indeed, it is not an easy task to

verify whether a loss is attributable to a disaster or to other causes. In our study,

natural disaster shocks are a combination of damages from all extreme climate events

rather than a single extremely rare catastrophe. Our underlying assumption is that

when designing and voting for laws, legislators are affected by the real socioeconomic
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consequences of a disaster rather than their physical intensity.

Second, even when a senator is keen to support legislation that aims to reduce the

frequency or intensity of disasters, there are challenges to overcome that begins with an

ideology that may have been developed over long political career. To this end, external

social factors, such as lobbying from interest groups (Yu, 2005; Prieur and Zou, 2018;

Pacca et al., 2021), and pressure from media and the families of victims, may mediate

against a senator changing their historical stance on environmental legislation.

Finally, throughout the legislative processes, senator voting is a last stage of the

process. In the first instance, if a senator wants to demonstrate greater support for

environmental legislation they need to either propose a new legislation, amend an

existing law, or change their historical voting pattern when new legislation is put to

the senate. In this study we were able to only consider voting behavior. In this regard,

when we trace 216 roll call votes in the Scorecard database between 1989-2014, we find

that it took a prominent piece of environmental legislation up to 472 days (on average

118 days) from beginning (introduced in either chamber of the Congress) to reach a

roll call vote at the Senate.19

Hence, our finding of a two year effect is entirely consistent with how the voting

process in the US operates.
19We scraped the Senate website (https://www.senate.gov) to extract the action history of all legislation

(bills, amendments, resolutions) related to roll call votes listed in the LCV Scorecard database. Several roll
call votes may be related to a same issue if the issue was rejected before but voted again after amendment(s).
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8 Conclusions

Ideally elected politicians act in their voters’ best interests. The occurrence of natural

disasters offers researchers a quasi-natural experiment to investigate how large events

affect the way in which a senator votes. More precisely, the often large losses due

to natural disasters provide a context for possibly bringing about sudden changes in

politicians’ support for environmental issues. While, on the one hand, they may be

inclined to prioritise the immediate economic needs of their constituents after a disas-

trous event, casting environmental concerns aside, they may also consider supporting

environmental issues more enthusiastically under the belief that legislation will reduce

the impact of natural hazards and associated environmental disasters in the future.

Our study, using a long panel of senatorial environmental voting behavior and

state level extreme climate disaster losses, shows that senators are indeed responsive

to the losses of their electorates after important natural disasters. However, their re-

action in terms of voting for environmental friendly legislation is not immediate and

is relatively short-lived. The observed gap of two years between the occurrences of

the natural shocks and changes in the environmental friendliness of senators perhaps

suggests that such changes are not solely driven by immediate self-reflection and self-

motivation of senators themselves, but also through gradual interactions with external

pressures, such as media coverage, public opinion, and advocacy groups. We find that

the favourable conditions for pro-environmental legislation impact of natural disasters

include electoral liberalism, good local economic condition and the senator holding

the office when the (past) disasters struck. Geographically, the impact seems to be

driven by Midwestern and Northeastern senators. In addition, the fact that any im-

32



pact appears to be short-lived may reflect bounded rationality: the impact of natural

disasters on senators disappears rapidly as other concerns arise.

When considering how senators react to natural disasters we find strong evidence

that a senator is more likely to vote favourably on environmentally friendly legislation

if there is a large number of injuries and fatalities in their constituency after a climate

related natural disaster. In contrast, they do not respond to exceptional monetary

losses. Possibly human losses matter more politically, but it could also be that a

damaged economy constrains the preference for environmental stringency. It should

also be noted that monetary losses are based mostly on insurance claims and thus may

be the less accurate measure of extreme damages due to climate events.

Finally, it should be acknowledged that one weakness of our study is that in iden-

tifying the important natural disaster event years used to identify any causal effects

between extreme climate and senatorial voting behavior we are assuming that the dis-

tribution of possible losses has remained stable over our 44 year sample period and

that there is no temporal clustering of events. This may be an arguably unrealistic

assumption and one could possibly explore this by modelling such changes explicitly,

although our sample period may be too short to detect such effects. In addition, it

is also interesting to test whether similar voting patterns might be observed at the

House of Representatives. A difficulty that may arise in doing so, however, is that

the boundaries of congressional districts have not been consistent over time due to

redistricting.
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Figures and Tables

Figure 1: Cumulative damages by climate-related natural disasters in the US
(1960-2014)

Source: Authors aggregated SHELDUS data between 1960-2014 excluding disasters not related to climate
(namely Avalanches, Tsunami/Seiches, Volcanoes, and Earthquakes). Human damages are calculated as the
total number of people injured or killed. Economic damages are calculated as the total damages to crops and
properties (in 2014 USD).
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Figure 2: Estimates of the 10-year return level for annual damages caused by climate-related natural disasters by state (1960 - 2014)

Source: Authors calculations using SHELDUS data between 1960-2014 for 50 states that have Senators. Human damages are calculated as the total number of people injured
or killed per one million people. Economic damages are calculated as the total damages to crops and property (in 2014 USD) per capita. Our calculations only include
climate-related disasters (Figure 1). See text for details. The x-axes of the bar charts are 2-letter state postal abbreviations.
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Figure 3: Natural disaster shocks over time

Source: Authors calculations using the SHELDUS data for 50 states that have Senators. Human losses are
the sum of fatalities and injuries. Economic losses are the sum of damages (in 2014 dollars) to crops and
properties caused by natural disasters. Our calculations only include climate-related disasters (Figure 1).
Economic/human loss shocks are the years that economic/human losses (per capita) of a particular state exceed
their 10-year return levels as detailed in Figures 2.
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Figure 4: Granger-style causality test

Note: Figure 4 presents the coefficients and 95% confidence intervals of Granger-style causality tests that
regress LCV score of senators on contemporary term of human loss shock and its lags and leads, senator-by-
term FE, year FE, and other control variables identical to the baseline specifications (Table 2). Models m1,
m2, m3 respectively set the length of lags and leads at 1, 2 and 3. Standard errors are clustered at the state
level.
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Figure 5: Monte-Carlo permutation Test

Note: Figure 5 illustrates the t-statistics (vertical red lines) of natural disaster shocks and their lags in the
benchmark regression (column (7) of Table 2) and the 2-tail p-values of these statistics derived from a Monte
Carlo permutation test. The distribution of t-statistics (blue histogram) is constructed from the 1,000 repetitions
of the benchmark regression with natural disaster shocks randomly reassigned to each state-year pair by a
binomial distribution with a probability of 10%. The p-values are calculated as the percentage of t-statistics in
the distribution that are more extreme than the benchmark values.
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Figure 6: Return period sensitivity for human loss shocks

Note: Figure 6 illustrates the coefficients and 95% confidence intervals of human loss shocks and their 2 lags
in the benchmark regression using FE (Column 3 of Table 2), where the shocks are defined by varying values
of return periods in the EVT model.
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Figure 7: Counterfactual analysis: Baseline regression

Note: Figure 7 illustrates the average LCV scores of (modelled) senators by affiliation (upper panel) and the
yearly average of cumulative impact of human loss shocks and their lags (lower panel) using the benchmark
specification.
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Figure 8: Heterogeneous Treatment Effects

Note: Figure 8 presents coefficients and confidence intervals (at 95% and 90% levels) of regressions that
explore the heterogeneity in treatment effects. Panel (i) compares responses of senators from different regions.
Panel (ii) compares senators from constituencies with different state partisanship. Using time-varying estimates
of party identification of mass public by Caughey and Warshaw (2018), we code a pair of state-year as "Blue
state" if estimated proportion of Democratic identifiers exceeds Republican identifiers, otherwise "Red state".
Panel (iii) analyses the role of economic condition with high income states defined as those at the top quintile
of (average) personal income. Panel (iv) analyses responses of senators who held the office when the past
shocks occurred versus those did not. The dependent variable is LCV score of senators. All regressions
include senator-by-term FE, year FE, and other control variables identical to the baseline specification (Table
2). Standard errors clustered are at state level.
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Tables

Table 1: Summary statistics

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max
Annual legislators’ score (0-100 scale) 4,414 47.02 34.54 0 100
Human loss shocks (10-year return) 4,414 0.100 0.301 0 1
Economic loss shocks (10-year return) 4,414 0.118 0.322 0 1
NOMINATE dim. 1 (Economic/Redistributive) 4,414 0.00264 0.354 -0.762 0.919
NOMINATE dim. 2 (Other Vote) 4,414 -0.0663 0.449 -1 1
Democrat [binary] 4,414 0.519 0.500 0 1
First year at the Senate [binary] 4,414 0.0662 0.249 0 1
Senator in election year [binary] 4,414 0.167 0.373 0 1
Age 4,414 58.55 10.37 31 100
Male senator [binary] 4,414 0.927 0.260 0 1
Share of black voters 4,414 0.0998 0.0936 0.00186 0.380
Share of 18-29 voters 4,414 0.257 0.0438 0.178 0.420
Share of 30-44 voters 4,414 0.285 0.0360 0.213 0.443
Share of 45-64 voters 4,414 0.293 0.0386 0.203 0.395
Personal income, $2014 4,414 32.58 9.403 13.96 66.86
Real growth rate, % 4,414 3.030 4.050 -28.18 43.55
Average temperature (0C) 4,414 11.11 5.020 -5.403 24.56
Precipitation (inches) 4,414 37.89 14.90 6.240 94.31
Share of Air issues, % 4,414 7.369 13.15 0 66.67
Share of Clean Energy issues, % 4,414 10.73 12.16 0 50
Share of Climate change issues, % 4,414 5.833 11.97 0 40
Share of Dirty Energy issues, % 4,414 35.77 13.94 0 66.67
Share of Land issues, % 4,414 33.57 19.94 0 85.71
Share of Other issues, % 4,414 19.60 13.42 0 50
Share of Transportation issues, % 4,414 8.000 11.30 0 53.85
Share of Water issues, % 4,414 28.74 13.90 0 71.43

Note: Dirty Energy issues is short for Dirty Energy/Toxics/Public Right to Know issues. Water issues is short
for Water, Oceans and Drilling issues. Land issues is short for Lands/Forest/Wildlife issues.
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Table 2: Senatorial votes for environment related issues in response to natural disaster(s)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
FE FE FE FE FE FE FE FE FE FE FE FE

Human loss shock (t) 0.17 0.12 0.48 0.81 0.052 0.0098 0.43 0.73
(0.82) (0.81) (0.89) (0.92) (0.84) (0.83) (0.91) (0.94)

Human loss shock (t-1) 0.086 0.23 0.27 0.051 0.19 0.25
(0.90) (0.94) (0.98) (0.90) (0.94) (0.98)

Human loss shock (t-2) 2.24∗∗∗ 2.06∗∗ 2.42∗∗∗ 2.20∗∗

(0.78) (0.86) (0.79) (0.89)
Human loss shock (t-3) -0.19 -0.18

(0.74) (0.71)
Economic loss shock (t) 0.67 0.69 0.50 0.67 0.67 0.69 0.42 0.55

(0.79) (0.81) (0.82) (0.87) (0.82) (0.83) (0.85) (0.91)
Economic loss shock (t-1) 0.20 0.065 0.064 0.19 0.015 0.019

(0.78) (0.81) (0.84) (0.78) (0.81) (0.84)
Economic loss shock (t-2) -0.69 -0.56 -1.06 -0.89

(0.69) (0.75) (0.72) (0.78)
Economic loss shock (t-3) -0.11 -0.072

(0.83) (0.79)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 4414 4414 4314 4214 4414 4414 4314 4214 4414 4414 4314 4214

Note: The dependent variable is the annual LCV score of senators. Besides senator-by-term fixed effects and year fixed effects, the regressions also
include: (1) controls for senator characteristics such as ideology, party affiliation, tenure characteristics, age, gender (2) lags of state characteristics
just prior to the earliest modelled shocks (demographic and macroeconomic conditions of constituency), (3) contemporaneous terms and lags of
weather controls and (4) controls for issue composition. Standard errors clustered at state level are in parentheses. *,**,*** are estimates significant
at 10%, 5% and 1%, respectively.
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Table 3: Robustness check: Alternative specifications

Senator-by-term FE Senator FE State FE OLS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Human loss shock (t) 0.48 0.43 0.31 0.54 -0.33 0.13 1.07 0.77 1.07

(0.89) (0.89) (0.96) (0.89) (0.84) (0.87) (0.79) (0.87) (0.91)
Human loss shock (t-1) 0.23 0.18 -0.73 0.29 0.26 0.052 0.67 0.65 0.81

(0.94) (0.93) (0.94) (0.93) (0.95) (0.93) (1.02) (0.89) (0.93)
Human loss shock (t-2) 2.24∗∗∗ 2.17∗∗∗ 1.76∗∗ 2.26∗∗∗ 2.13∗∗∗ 1.86∗∗ 2.10∗∗ 2.16∗∗ 1.99∗∗ 2.17∗∗

(0.78) (0.78) (0.82) (0.79) (0.73) (0.79) (0.88) (0.85) (0.97) (1.01)
Senator Score (t-1) -0.066∗∗∗ -0.096∗∗∗

(0.022) (0.026)
Senator Score (t-2) -0.13∗∗∗

(0.019)
Ideology & Party controls Yes No No Yes Yes Yes Yes Yes Yes Yes
ADA score control (lagged) No No Yes No No No No No No No
Other senator char. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Economic controls (lagged) Yes Yes Yes No Yes Yes Yes Yes Yes Yes
Other constituency controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Issue controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 4314 4314 3318 4314 4314 4028 3659 4314 4314 4314

Note: The dependent variable is annual LCV score of senators. Column (1) of Table 3 replicate the benchmark specification in
column (3) of Table 2 (including senator-by-term FE, year FE and other controls). Other columns modify this specification as
indicated in the table. See text for more details. Standard errors clustered at state level are in parentheses. *,**,*** are estimates
significant at 10%, 5% and 1%, respectively.
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Table 4: Compound Shocks

10-year return level shocks 5-year return level shocks

(1) (2) (3) (4) (5) (6) (7) (8)
From

t-1
From

t-2
From

t-3
From

t-4
From

t-1
From

t-2
From

t-3
From

t-4
Number of human loss shocks -0.095 0.99 0.54 0.44 0.29 0.58 0.29 -0.087

(0.65) (0.61) (0.59) (0.49) (0.52) (0.44) (0.39) (0.37)
Observations 4314 4314 4314 4314 4314 4314 4314 4314

Note: The dependent variable is annual LCV score of senators. The variable of interest is cumulative
number of human loss shocks from the year specified in column title. Human loss shocks are defined using
either 10-year return level or 5-year return level. All regressions also include senator-by-term FE, year
FE and other controls identical to Table 2. Standard errors clustered at state level are in parentheses.
*,**,*** are estimates significant at 10%, 5% and 1%, respectively.

Table 5: Spillover effects

(1) (2) (3)
Senator Score Senator Score Senator Score

Human loss shock (t) 0.48 0.50 0.47
(0.89) (0.88) (0.88)

Human loss shock (t-1) 0.23 0.26 0.30
(0.94) (0.95) (0.95)

Human loss shock (t-2) 2.24∗∗∗ 2.25∗∗∗ 2.24∗∗∗

(0.78) (0.77) (0.78)
Human loss shocks in any neighboring state (t) -0.31

(0.59)
Human loss shocks in any neighboring state (t-1) -0.80

(0.73)
Human loss shocks in any neighboring state (t-2) -0.064

(0.67)
Average human loss shocks in neighboring states (t) -0.065

(1.79)
Average human loss shocks in neighboring states (t-1) -2.81

(2.09)
Average human loss shocks in neighboring states (t-2) 0.024

(1.76)
Observations 4314 4314 4314

Note: The dependent variable is annual LCV score of senators. Column (1) of Table 5 replicates the
benchmark specification in column (3) of Table 2 (including senator-by-term FE, year FE and other
controls). Other columns modify this specification by adding different measures of human loss shocks in
neighbouring states. *,**,*** are estimates significant at 10%, 5% and 1%, respectively.
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Table 6: Different Periods and Alternative Scores

Full Score Climate-related Score Other Score

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Full

sample
Before
1990

Since
1990

Full
sample

Before
1990

Since
1990

Full
sample

Before
1990

Since
1990

Human loss shock (t) 0.48 0.032 1.27 3.03∗ 2.43 4.32∗∗ -1.09 -2.25 -0.039
(0.89) (1.20) (1.15) (1.61) (3.16) (1.82) (1.03) (2.18) (1.22)

Human loss shock (t-1) 0.23 0.26 0.64 1.16 2.28 1.38 -0.96 -3.34 0.89
(0.94) (1.60) (0.98) (1.32) (2.15) (1.49) (1.39) (2.46) (1.31)

Human loss shock (t-2) 2.24∗∗∗ 2.86∗∗ 2.08∗∗ 3.28∗∗ 4.30∗∗ 2.83∗ 1.09 1.09 1.20
(0.78) (1.37) (0.82) (1.30) (1.99) (1.46) (1.20) (1.88) (1.27)

Observations 4314 1798 2516 4311 1798 2513 4302 1796 2506

Note: The dependent variable is indicated in the first row. Full Score is annual LCV score of senators calculated from all issues. Climate-related Score is calculated from a
subset of LCV issues concerning climate change, air, energy, and transportation. Other Score is calculated from the rest of the recorded LCV issues. All regressions also include
senator-by-term FE, year FE and other controls identical to Table 2. Standard errors clustered at state level are in parentheses. *,**,*** are estimates significant at 10%, 5%
and 1%, respectively.
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A Appendix A: Extreme Value Theory (EVT) and Peaks

Over a Threshold model (POT)

Appendix A outlines how we apply the Extreme Value Theory (EVT) and a Peaks

Over a Threshold model (POT) to construct our measures of natural disaster shocks.

Our approach is to examine the sequence of intensity of annual damages (in terms

of either economic or human cost) {X j1, X j2, ...X jt} caused by ND in state j (among 50

states), in year t of which, thanks to the SHELDUS database, we have observations

over 55 years (between 1960 and 2014). We are interested in modelling the unknown

‘fat-tail’ distribution of the maximum of the intensity sequence, which is assumed to

be independent and identically distributed (i.i.d): M jt = max{X j1, X j2, ..., X jt}. If we can

normalise {M jt} by the appropriate sequences of constants {a jt > 0} and {b jt} we can

obtain a non-degenerate distribution function G j for all y ∈ R:

Pr
{

M jt − b jt

a jt
≤ y

}
→ G(y) as t → ∞ (A.1)

then by the Extremal Types Theorem (Fisher and Tippett, 1928), G(y) must fall into

one of three extreme value distribution families: Fréche, Gumbel or Weilbell. Further-

more, these families are specific cases of a single parametric distribution, namely the

Generalised Extreme Value (GEV) (Jenkinson, 1955). This allows us to approximate

the distribution of its maximum {M jt} by a GEV distribution, which is characterised

by three parameters: location (µ j), scale (σ j), and shape (ξ j):20

20We use subscription j for the GEV distribution function and its parameters here to hightlight the fact that
we model state j separately. As revealed by its name, the parameter ξ j controls the shape of the GEV. It falls
into either the Fréche, Gumbel or Weilbell family if ξ > 0, ξ → 0 and ξ < 0, respectively.
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Pr{M jt ≤ z} ≈ G j(z) = exp
{
−

[
1 + ξ j

(
z − µ j

σ j

)]−1/ξ j}
, −∞ < z < ∞ (A.2)

Then the positive excesses over a threshold u j are large enough (y jk = X jk−u j conditional

on X jk > u j) to approximate a generalised Pareto distribution (GPD) (Pickands, 1975):

Pr{X jk − u j ≤ y|X jk > u j} ≈ H j(y) = 1 −
(
1 +

ξ jy
σ j + ξ j(u j − µ j)

)−1/ξ j

(A.3)

Intuitively, as we are modelling the upper tail of an i.i.d distribution, only observations

on the right matter. Hence, the approach requires the selection of a threshold u j to

determine the observations to be used for the approximation. The GPD H j(y) includes

2 parameters: a shape parameter ξ j, which is the same as the shape parameter of the

GEV in (A.2) and a scale parameter σ̃ j = σ j + ξ j(u j − µ j), both of which can be esti-

mated using a Maximum Likelihood Estimator (MLE) and observed positive threshold

excesses. The approach is sensitive to the choice of threshold u j as there is a trade off

between unbiasedness and accuracy of the estimates. As only observations that exceed

the threshold enter the estimation, a lower threshold retains more observations, yield-

ing lower standard errors but at the cost of possible violation of the asymptotic basis

of the model, which may cause biasness. In practice, a small threshold is preferable as

long as the limit model can provide a reasonable approximation (Coles, 2001).

The selection of such a threshold can be aided by the use of relevant visualising

tools. From the GPD (A.3), we have:

E{X jk − u j|X jk > u j} =
σ j + ξ j(u j − µ j)

1 − ξ j
(A.4)
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Note that (µ j, σ j, ξ j) are the fixed parameters of the GEV G j(z) in (A.2). Thus,

(A.4) is obviously a linear function of threshold u j as long as u j is large enough to

validate the asymptotic approximation behind the EVT. This motivates the use of the

mean residual life plot (MRL), which visualises the relationship between the average

of positive excesses corresponding to threshold u j and the threshold:

MRL =
{(

u j,
1

nu j

∑
X jk>u j

(X jk − u j)
)

: u j < Xmax
j

}
(A.5)

where nu j is the number of all exceedances defined by the threshold u j in the dataset (all

X jt exceeding the threshold u j). The strategy is to pick the lowest threshold u j, above

which the MRL illustrates a reasonable line, taking into account the sample variations

(i.e., incorporating the confidence intervals derived from the approximate normality of

sample means). Once a reasonable threshold is obtained, the log-likelihood functions

as detailed in Coles (2001) were adopted to estimate the pair of parameters ξ̂ j and ˆ̃σ j.

Note that as long as the asymptotic approximation is valid (u j is large enough), the

shape parameter ξ j and the transformed scale parameter σ̃∗j = σ̃ j − ξ ju j = σ j − ξ jµ j are

independent of the threshold u j. This enables a post-estimation strategy to assess the

selection of threshold u j: to plot the estimates of ξ j and the transformed σ̃ j against a

range of corresponding u j and validate whether the estimates become stable when u j

increases above the chosen threshold.

Finally, the estimation can also be validated by a number of diagnostic plots in-

cluding probability plots, quantile plots, return level plots, and density plots (Coles,

2001). The first three plots compare the model-based and empirical estimates of the

distribution function. The last one compares the density function of the fitted model
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with a histogram of the data.

Once we obtain the satisfactory ML estimates of the parameters (ξ̂ j; ˆ̃σ j), the N-year

return level is estimated by:

ẑ j(N) = u j +
ˆ̃σ j

ξ̂ j
[(Nζ̂u j)

ξ̂ j − 1] for ξ̂ j , 0 (A.6)

ẑ j(N) = u j + ˆ̃σ jlog(Nζ̂u j) for ξ̂ j = 0 (A.7)

where ζu j is the probability of an individual observation X jt greater than the threshold

u j and can be estimated by the ratio between the number of observations in the sample

that exceed the chosen threshold (k j) and the total observation number (n j): ζ̂u j = k j/n j.

The standard errors and confidence intervals of the return levels can be computed by

the delta method, taking into account the uncertainty due to ζu j (Coles, 2001).
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