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AN IMPROVED VIBRATION TECHNIQUE FOR ENHANCING TEMPERATURE UNIFORMITY 

AND HEAT TRANSFER IN VISCOUS FLUID FLOW 

 

Shuai Tian and Mostafa Barigou* 

School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 

 

 

Abstract 

Radial heat transfer in viscous pipe flow is controlled by thermal conduction which leads to a wide radial 

temperature distribution and slow heating of the core region of the flow.  This is highly undesirable in many 

industrial processes as it results in a grossly uneven distribution of fluid heat treatment.  The use of static 

in-line mixers to promote radial mixing and, thus, heat transfer and temperature uniformity, engenders large 

pressure drops and the devices are generally prohibited in processes where hygiene is paramount as they are 

difficult to keep clean.  We recently reported a Computational Fluid Dynamics (CFD) study which showed that 

the superimposing of transverse mechanical oscillations on the steady flow of a viscous fluid in a pipe with an 

isothermal wall, results in a large enhancement in wall heat transfer, as well as a considerably more uniform 

radial temperature distribution accompanied by rapid heating of the inner region of the flow.  Such a transverse 

vibration also causes the thermal boundary layer to grow more rapidly and, thus, the temperature profile to 

develop very rapidly in the axial direction.  In this paper, we report on an enhanced vibration technique which 

combines transverse oscillations with a step rotation of oscillation orientation.  The technique produces much 

more improved effects compared to transverse vibration alone, and it also excels in comparison with the 

well-known Kenics helical static mixer. 
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1. Introduction 

When laminar fluid flow in a pipe is accompanied by radial heat transfer, the associated parabolic radial velocity 

profile leads to a wide radial temperature distribution as heat transfer is controlled by slow conduction.  Such 

conditions pose a considerable challenge in a number of industrial processes, such as the processing of food 

products, polymer melts and pharmaceutical formulations, where the fluid to be heated (or cooled) is often 

viscous and temperature dependent.  This problem has been recognised for a long time but effective 

technological solutions are still missing. 

 

In the heating stage of continuous food sterilisation, for example, heat is transferred from the hot pipe wall to the 

fluid such that the fastest core region of the flow is the coldest, thus, resulting in an undesirable wide variation 

of product sterility and nutritional quality across the pipe which leads to poor product quality (Jung and Fryer, 

1999).  The challenge is, therefore, to be able to sterilise the fastest parts in the core region of the pipe without 

over-processing the slowest parts near the wall so that, ideally, all parts of the fluid should receive equal heat 

treatment.  The optimisation of such thermal processes poses a challenging manufacturing problem.  The 

overriding importance of safety often results in the food being exposed to a more severe process than is 

desirable from a quality aspect, resulting in poor sensory and nutritional attributes, especially with sensitive 

products.  In the cooling stage of the process the problem is reversed and instead of rapid uniform cooling of 

the product, the central parts of the flow incur the slowest cooling rates, again leading to significant losses in 

product quality.  These problems become even more complicated when more than one phase is present such as 

in solid-liquid flows. 

 

To improve the uniformity of the temperature distribution, methods are needed to promote radial mixing in 

viscous fluid flow.  Radial mixing can be enhanced by operating under turbulent flow conditions, but the high 

fluid viscosities encountered in practice make this proposition impractical and/or uneconomical.  Various ways 

have been proposed to improve heat convection by adding internal screw-thread structures on the wall to disrupt 

the boundary layer (Shrirao et al., 2013), but such technological solutions are limited by their manufacturing 

complexity, cost, their high proneness to fouling and clogging, and the difficulty to keep them clean.  Similarly, 

inserts or inline static mixers are used to promote radial fluid mixing and a number of designs exist (Hobbs and 

Muzzio, 1997; Saatdjian et al., 2012).  In viscous flow, such devices can achieve a high degree of fluid mixing 

but usually at the expense of a high pressure drop.  These inserts too are generally prohibited in hygienic 

processes because of the risk of contamination as their complex geometries also promote fouling and make them 

difficult to clean. 
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A number of studies have also demonstrated the effects of pulsating flow on the heat flux and Nusselt number in 

pipe flows (Gundogdu and Carpinlioglu, 1999). However, the effects on the radial temperature distribution in 

viscous fluids do not seem to have been reported. 

 

We recently reported a Computational Fluid Dynamics (CFD) study which showed that superimposing 

transverse mechanical oscillations on the steady flow of a viscous fluid in a pipe with an isothermal wall, results 

in a large enhancement in wall heat transfer, as well as a considerably more uniform radial temperature 

distribution accompanied by a substantial heating of the inner region of the flow (Eesa and Barigou, 2010; 2011).  

Transverse vibration also causes the thermal boundary layer to grow more rapidly and, thus, the temperature 

profile to develop very rapidly in the axial direction.  It should be noted that this type of flow is different from 

the pulsatile (oscillatory) flow mentioned above. 

 

In this paper, we report on an enhanced vibration technique which combines transverse oscillations with a 

stepwise angular motion to achieve a high degree of radial fluid mixing, temperature uniformity and heat 

transfer.  We use a validated CFD model to assess and compare the performance of this new method to our 

previous results using simple transverse vibration, as well as to the performance of the well-known Kenics 

helical static mixer, one of the best in this category of mixers. 

 

2. CFD model 

2.1．．．．Fluid viscosity 

The fluid used is an incompressible, temperature-dependent Newtonian fluid whose viscosity is assumed 

constant at a given temperature and is described by the well-known Arrhenius relationship:  

 

� � ����� 	 
�
���                          (1) 

 

where k0 is a pre-exponential factor, Rg is the ideal gas constant, T is temperature and Ea is the activation energy 

for viscosity.  The constants k0 and Ea are determined experimentally and their values for various fluids have 

been reported in the literature (e.g. Steffe, 1996).  These parameters, as well as other physical properties 

(density ρ, specific heat capacity Cp, and thermal conductivity λ) were assumed constant and their values are 

given in Table1. 
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2.2. Transverse oscillations 

In our previously reported technique, transverse oscillations are imposed on the pipe wall in a direction 

perpendicular to the pipe axis, as illustrated in Figure 1(a), and the wall displacement x is described by the 

function: 

 

� � �sin����                             (2) 

 

where A is the amplitude of vibration, t is time, and ω is the angular function of the frequency of vibration, f, 

such that ω=2πf.  The linear transversal velocity of the pipe wall is then: 

 

� � ��
�� � ��cos����                             (3) 

 

In the new enhanced technique being reported here, the pipe is continuously oscillated transversally but the 

orientation of oscillation is rotated instantly in a stepwise manner by an angle of 45 degrees about the pipe axis, 

as depicted in Figure 1(b).  The time interval, ∆t, between change of orientation steps, needs to be optimized 

for a given set of flow conditions.  For the conditions investigated in this work, a value of ~ 10 s was 

determined via numerical experimentation, thus, the frequency of the step rotation, Ω, is (and is expected to 

always be) very low compared with the frequency of lateral oscillations; for example, in this case Ω is ~ 0.1 Hz 

compared to f = 50 Hz. 

 

In all the numerical experiments conducted, under steady state, the flow regime was always laminar with a 

Reynolds number � � � !"# �⁄ � less than 100, where D is pipe diameter and " is mean axial velocity.  

When the pipe was vibrated, the vibration Reynolds number: 

 

 �% � &'()
*                    (4) 

 

was always less than 1500, so flow remained laminar throughout, in all the unsteady-state cases studied. 

 

2.3. Governing equations 
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The governing transport equations can be written in their general form (Bird et al., 1987), thus: 

 

Continuity:  + · - � 0                  (5) 

Momentum:  ! )-
)� � /+� 0 +1�- 0 !2               (6) 

Energy:  !34 )�)� � 5+16 0 �78 1            (7) 

 

where p is fluid pressure, g is gravitational acceleration, - is the velocity field and 78  is the second invariant 

of the shear rate tensor, defined as 78 9 :;1  �78 : 78 �=
>
?
.  

 

2.4. Mean temperature and pressure 

The coefficient of variation is used as a measure of temperature uniformity across the pipe: 

 

Cv = 
@A
�B                        (8) 

 

where C� is the standard deviation of T.  The volume-flowrate weighted mean temperature across the pipe, 6B, 

is obtained by dividing the pipe cross-section into a large number of cells (N = 1860), as shown in Figure 2, 

which can be identified by their polar coordinates r and θ.  The analysis was conducted using this regular grid 

implemented in MATLAB to avoid the difficulties associated with the complex and varied cell shapes of the 

computational CFD grid.  The temperature and axial velocity in a given cell are denoted by 6�D, F� and 

"�D, F�, respectively, and are considered at their nearly constant time-average values reached after a vibration 

time equivalent to the fluid residence time in the pipe.  Thus, ∑ "�D, F�H�D, F�IJK; � L  represents the 

volumetric flowrate through a cell, where H�D, F� is the cross-sectional area of the cell.  The volume-flowrate 

weighted mean temperature over the pipe cross-section is, therefore, given by: 

 

6 � ;
M∑ 6�D, F�"�D, F�H�D, F�IJK;                    (9) 

 

In the limit as H�D, F� N 0, i.e. for large N, the uniformity of the temperature distribution over the pipe 

cross-section can be well described by the standard deviation: 
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C� � O ;
M?∑ P6�D, F�"�D, F�H�D, F� / 6"�D, F�H�D, F�Q1IJK;             (10) 

 

and the coefficient of variation Cv (Eq. 8). 

 

Similarly, to compute the total pressure drop, ∆p, along the pipe, the area-weighted mean pressure across the 

pipe is needed and is computed, thus: 

 

� � R
S)?∑ ��D, F�H�D, F�IJK;                   (11) 

 

2.5 Mean wall heat transfer coefficient 

The mean wall heat transfer coefficient was calculated using the heat balance equation: 

 

T8 34�6BUV� / 6JW� � XY∆6[                    (12) 

 

where T8  is the mass flowrate, a is the pipe wall surface area, 6BUV�  is the volume-flowrate averaged 

temperature at the pipe exit, Tin is the uniform temperature at inlet, Tw is the temperature of the isothermal wall, 

and the log mean temperature difference is defined as ∆6[ � ��\]�B^_`�]��\]�ab�
cde��\]�B̂ _`�/��\]�ab�g (Sinnott, 2005). 

 

3. CFD simulations 

Three-dimensional simulations were set up and executed using the commercial software package ANSYS 

Workbench 14.5.  The flow geometries were created and meshed using the software ICEM, while flow 

specification, solving and post-processing were all performed using CFX 14.5.  The geometry consisted of a 

straight pipe 30 mm in diameter and 2400 mm in length with three surface boundaries: inlet, outlet, and wall.  The 

geometry was meshed with hexahedral cells.  To optimise the mesh size it was necessary to carry out a 

mesh-independence study; this was done by performing a number of simulations with different mesh sizes, 

starting from a coarse mesh and refining it until results were no longer dependent on the mesh size.  The mesh 

thus achieved contained approximately 4000 hexahedral cells per centimetre of pipe length and around 1000 cells 

across the pipe section, giving a mesh size in the core region of about 1 mm.  The mesh size near the wall was 
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progressively reduced down to 0.1 mm to enhance mesh resolution in this region where high velocity and 

temperature gradients exist.  The quality of the mesh measured by its orthogonality and warpage was over 0.75, 

well above the generally accepted minimum value of 0.4 for a good mesh. 

 

Other simulations were conducted using the same setup with 48 segments of the helical Kenics static mixer, 

shown in Figure 3, inserted to fill the whole inside of the pipe.  The mixer consists of left and right twisting 

helical elements with a standard length to diameter ratio of 1.5; detailed dimensions are given in Table 2.  The 

same type and size of cell used above in the straight pipe was also used to mesh this geometry, as shown in Figure 

4. 

 

In the numerical simulation, a uniform temperature Tin = 20 °C and a mass flowrate T8 � 0.0281 kg s]; were 

specified at the pipe inlet, and a zero gauge pressure was set at the pipe outlet.  The mass flowrate was chosen to 

give a mean flow velocity " � 4.0 cm s];, which is typical of values used in the processing of viscous food 

materials (Jung and Fryer, 1999; Steffe, 1996).  A constant uniform wall temperature and a no-slip condition 

were assigned at the wall.  In food processing, wall temperatures lower than 180 °C are usually used in practice; 

here, the bulk of the work was done with Tw = 140 °C, but simulations were also run for Tw = 180 °C to investigate 

the effects.  Other simulation parameters are summarised in Table 3. 

 

The CFD code uses a finite-volume-based method to discretise the governing transport Eqs. (5), (6), (7).  In 

this method, the variable value at an integration point, ipφ , is calculated from the variable value at the upwind 

node, upφ , and the variable gradient, φ∇ , thus 

 rrrr∆∇+= φβφφ upip                   (13) 

 

where β is a blend factor and ∆r is the vector from the upwind node to the integration point.  With β = 0, the 

scheme is first order accurate and does not result in non-physical variable values.  On the other hand, with β = 1, 

the scheme is second order accurate but it may result in non-physical values.  In the so-called ‘High Resolution 

Advection Scheme’ implemented here, the value of β is calculated locally to be as close to 1 as possible without 
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resulting in non-physical variable values (Barth and Jesperson, 1989).  This scheme is therefore intended to 

satisfy the requirements of both accuracy and boundedness. 

 

Simulations involving steady flow were conducted in the steady-state mode, whereas simulations of vibrational 

flow were conducted in the transient mode.  For a transversely moving boundary, the mesh deformation option in 

CFX was used which allows the specification of the motion of nodes on boundary regions of the mesh.  The 

motion of all remaining nodes is determined by the so-called displacement diffusion model which is designed to 

preserve the relative mesh distribution of the initial mesh. The mesh displacement was specified using Eq. (2), and 

an oscillatory velocity function defined by Eq. (3) was applied at the wall. 

 

The transient scheme used for the solution to march in time was the ‘Second Order Backward Euler Scheme’.  

The simulation was solved over the entire mean residence time of the fluid which is determined by the pipe length 

and mean flow velocity.  For example, for a pipe length of 2400 mm and flow velocity of 4.0 cm s
-1

, as used here, 

the fluid residence time in the pipe is 60 s.  This time duration was divided into equal time steps, the size of which 

(1.6667×10
-3 

s) was determined by dividing the vibration cycle into an optimised number of 12 equal time steps.  

Using a larger number of time steps per vibration cycle did not change the simulation results but prolonged the 

simulations considerably.   

 

Convergence of the numerical solution was assumed when the root mean square (RMS) of mass, momentum and 

energy residuals all reached 10
-4

 at each time step which is a good level of accuracy given the complexity of the 

problem.  Achieving this level of convergence typically required 8-12 iterations per time step for vibrational flow 

and about 50 iterations for steady flow.  In practice, however, most of the equations generally reached RMS 

residual values well below the specified target. 

 

4. Validation of CFD model 

Though CFX is a generally well validated code as it is widely used, the computational work reported here was 

further validated where possible either by comparing results with theoretical solutions or experimental data from 

the literature.  The intention here was to try and validate the CFD model as much as possible so as to maximise 

confidence in the numerical results.  The various stages of the validation process are described below. 
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4.1 Adiabatic isothermal steady flow through a straight pipe 

CFD simulation of the adiabatic isothermal steady flow of inelastic non-Newtonian fluids has been extensively 

validated in our recent studies for a variety of rheological behaviours, namely power law, Herschel-Bulkley and 

Bingham plastic, showing excellent agreement with exact analytical solutions within approximately ±1% (Eesa 

and Barigou, 2008).  

 

4.2 Steady flow through a straight pipe with heat transfer 

Three different cases were considered, as follows: 

(i) Laminar flow of an isoviscous (i.e. temperature-independent viscosity) Newtonian fluid through the 

straight pipe described above, was simulated using an isothermal wall at 140°C and a uniform inlet temperature 

set at 60°C.  This is a classic problem which was analytically described and solved by Jakob (1949), as 

follows: 

 

2" p1 / qr�s
1t uvAuw � x

&yz q
u?vA
ur? 0 ;

r
uvA
  urs                        (14) 

 

Subject to boundary conditions: 

 

F� � 0 at D �   

 

uvA
ur � 0 at D � 0 

 

where r is radial position, R is pipe radius, z is axial position, and the dimensionless temperature F� is defined 

as F� � �6 / 6{�/�6JW / 6{�.  We compared the axial temperature variations obtained from the solution of 

the above differential equation to our CFD predictions at three different radial positions: centre, mid-radius and 

near the wall.  The agreement between CFD and theory was excellent, as shown in Figure 5. 

 

(ii) The numerical solution of Eq. (14) for the case of laminar flow of an isoviscous non-Newtonian power law 

fluid was first obtained and tabulated by Lyche and Bird (1956) (see also, for example, Chhabra and Richardson 

(1999) for graphical representation of the data).  Comparison of this solution in Figure 6 with the 

CFD-predicted axial temperature profile for a considerably shear-thinning power law fluid (k = 1 Pa s
0.5

, n = 0.5), 

shows an excellent agreement. 
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(iii) Since the variation of viscosity with temperature alters the flow field of the fluid considerably, the velocity 

profile in the pipe computed by CFD under the conditions of a temperature-dependent viscosity was also 

validated against experimental results from Kwant et al. (1973), as shown in Figure 7.  Comparison shows a 

close agreement between CFD and experiment with a mean difference well within ±3.0%.  It should also be 

noted that in all simulations undertaken in this study, including steady flow and vibrated flow, the energy 

balance was verified to a very high degree of accuracy (±1.0%). 

 

4.3. Adiabatic isothermal flow in a straight pipe with superimposed vibration 

The modelling by CFD of adiabatic isothermal non-Newtonian flow under forced vibration was reported and 

experimentally validated in our previous studies (Deshpande and Barigou, 2001; Eesa and Barigou, 2008; Eesa, 

2009).  Comparison with experiment showed that CFD is able to predict such complex flows with a very good 

accuracy, within approximately ±10%, under a wide range of vibration conditions and for a variety of 

rheological behaviours, namely power law, Herschel-Bulkley and Bingham plastic.  There are, however, no 

experimental data available on the temperature profile in non-isothermal flows when subjected to vibration.  

Nonetheless, given the excellent agreement achieved between CFD and theory or experimental results in all the 

above stages of the validation process, we believe that the present CFD model is sufficiently robust and reliable 

for the purposes of studying the effects of vibration on the heat transfer characteristics of the flows considered 

here. 

 

5. Results and discussion 

Simulation results for the laminar flow with heat transfer of a Newtonian fluid with temperature-dependent 

viscosity through a pipe with an isothermal wall are discussed in the following sections for four cases: (i) steady 

flow through a straight pipe; (ii) steady flow through a straight pipe fitted with a Kenics static mixer; (iii) flow 

through a straight pipe subjected to transverse oscillations; and (iv) flow through a straight pipe subjected to 

transverse oscillations with step rotation of vibration orientation. 

 

5.1 Steady flow through a straight pipe 

Simulations of the steady pipe flow of a Newtonian fluid with a temperature-dependent viscosity confirmed the 

usual features of viscous flow, i.e. straight streamlines and a highly non-uniform radial temperature distribution, 
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as shown in Figure 8.  At the pipe exit, there is a substantial cold fluid core which is at temperatures close to 

the inlet temperature surrounded by outer layers of hot fluid within a sharp temperature gradient.  There is little 

improvement in temperature uniformity along the pipe because of the lack of radial mixing and the reliance on 

slow thermal conduction for radial heat transfer.  The coefficient of radial temperature variation at the pipe exit 

cross-section defined in Eq. (8) is Cv ~ 0.5. 

 

5.2 Steady flow through a straight pipe fitted with a Kenics static mixer 

The Kenics static mixer is widely used in industry to promote radial fluid mixing in pipes, especially where flow 

is viscous, to improve heat transfer or chemical reactions (Hobbs and Muzzio, 1997; Rahmani et al., 2006).  

This popular static mixer was selected here as a reference for high quality mixing of viscous flow in a pipe.  As 

described in section 3 above, simulations were conducted of the steady flow through the same straight pipe 

fitted with 48 segments of the Kenics mixer (Figure 3).  The flow pattern generated by this configuration is 

characterised by complex winding fluid streamlines, as shown in Figure 9, and the resulting temperature contour 

is fairly uniform across the pipe exit section.  The static mixer achieves a coefficient of radial temperature 

variation at the pipe exit of ~ 0.027 which is a vast improvement on steady flow without it (Cv ~ 0.5).  The 

mean fluid temperature increases from 20 °C at the pipe inlet to ~ 61 °C at the exit in the straight pipe without 

static mixer, but it increases to ~ 108 °C with the static mixer.  This substantial improvement in the heating of 

the fluid was caused by a large enhancement in the mean wall heat transfer coefficient, h, a factor of 3 

approximately.  However, this enhancement in heat transfer comes at the expense of a large pressure drop, an 

increase of approximately 8 folds. 

 

5.3 Flow through a straight pipe subjected to transverse oscillations 

Simulations of flow in the same straight pipe but with superimposed oscillations in the transverse direction 

revealed a very different flow pattern.  Vibration induces a swirling or spiralling motion in the fluid as clearly 

represented by the complex fluid trajectories depicted in Figure 10(b).  Such a flow pattern is characterised by 

significant vortical structures which cause considerable radial mixing, thus, leading to a much more uniform 

temperature distribution, as shown in Figure 10(a).  Thus, the coefficient of radial temperature variation, 

improved from Cv ~ 0.5 for simple steady flow to ~ 0.07 for vibrated flow.  The mean fluid temperature 

increased from 20 °C at the inlet of the straight pipe to ~ 61 °C at the exit when flow was steady, but it increased 

to ~ 117 °C when flow was vibrated.  This considerable improvement in the heating of the fluid was caused by 
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a large enhancement in the mean wall heat transfer coefficient, a factor of 4 approximately.  In recent work 

(Eesa and Barigou, 2010; 2011) we showed that these effects depend, amongst other factors, on the vibration 

amplitude and frequency but are more sensitive to the amplitude than the frequency.  In fact, results showed 

that the scale of vorticity nearly doubled as A/D increased from 0.05 to 0.1.  Since the strength of transverse 

fluid motion is directly responsible for the observed radial mixing, this explains its strong dependence on A/D. 

 

Whilst the imposition of transverse oscillations gives a substantial improvement in heat transfer compared with 

simple steady flow, and despite the considerable improvement in radial mixing, the degree of mixing averaged 

across the pipe section (Cv ~ 0.07) is still short of the level achieved by the static mixer (Cv ~ 0.027), albeit the 

pressure drop caused by the latter system is a factor of ~ 5.6 higher. 

 

The vibrated flow is characterized by four salient symmetrical regions of relatively colder fluid being trapped in 

swirling flow inside clearly delineated vortices located in the four quadrants of the pipe cross-section, as shown 

in Figure 10, which hamper fluid mixing.  The local temperature in the centre of these vortex regions is ~ 99 

°C compared to ~ 128 °C in the centre of the pipe.  Whilst the results reported in our previous study on heat 

transfer enhancement via vibration are in agreement with present findings, it should be noted that these 

relatively cold vortex regions were not clearly apparent in our previous analysis (Eesa and Barigou, 2010; 2011).  

However, it has been possible to identify them here because of the superior quality of the hexahedral mesh used 

in the present simulations compared with the tetrahedral mesh used previously.  Hexahedral meshes are known 

to achieve a higher solution accuracy than tetrahedral meshes for the same cell amount, and provide the best 

resolution of the boundary layer close to walls with significantly fewer cells.  Hexahedral elements also reduce 

numerical diffusion, aid convergence, and have important computing cost and stability advantages over 

tetrahedral elements (see for example, Biswas and Strawn, 1998; Tadepalli et al., 2011). 

 

The velocity field in a plane normal to the direction of flow is depicted in Figure 11.  The velocity vector plot 

shows how hot fluid is forced by the transverse oscillations to flow inwards from the wall and recirculate around 

the vortex regions before returning to the wall.  Therefore, better fluid mixing is needed in these regions for 

optimal heat transfer and temperature uniformity.  To improve on this situation, we propose to rotate the 

orientation of transverse oscillation in a stepwise manner by an angle of 45-degrees, as described in section 2.2 

and illustrated in Figure 1(b), in order to force the centres of the four cold regions to move around and, hence, 
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enable the relatively cold fluid in these regions to better mix with hotter fluid flowing inwards from the wall. 

 

5.4 Flow through a straight pipe subjected to transverse oscillations with a superimposed step rotation of 

vibration orientation 

This regime of flow creates much more intense radial fluid mixing, as demonstrated by the fluid trajectories 

shown in Figure 12(b).  As a result, the cold vortex regions have disappeared from the temperature contour plot 

and a much improved temperature distribution is obtained, as depicted in Figure 12(a).  A comparison is drawn 

in Table 4 between the four regimes of flow studied, i.e. simple steady pipe flow, steady flow with a Kenics 

static mixer, vibrated flow, and vibrated flow with a superimposed step rotation of orientation.  The vibrated 

flow with a step rotation of oscillation orientation exhibits huge improvements in heat transfer characteristics 

compared with simple steady flow in a straight pipe.  For example, the uniformity of the temperature 

distribution is vastly improved and the heat transfer coefficient h is enhanced by ~ 5 folds.  With respect to 

vibration alone, the step rotation of oscillation orientation brings about considerable improvements in these 

parameters; for example, Cv reduces from ~ 0.07 down to ~ 0.02.  Even when compared with flow through the 

Kenics mixer, Cv shows a significant improvement from ~ 0.027 to ~ 0.02, whilst the pressure drop incurred in 

the pipe fitted with the static mixer is much greater, ~ 6.2 times.  It is worth noting that when using static 

mixers, Cv ~ 0.05 is generally accepted in the literature as a target level for good fluid mixing (Reed et al., 2002).  

This corroborates the conclusion that transverse vibration with step changes in orientation provides an elegant 

non-invasive technique for enhancing radial fluid mixing and heat transfer. 

 

The effects of vibration on the development of the thermal boundary layer are depicted in Figure 13 where the 

mean temperature profile along the pipe is shown to develop fastest in the vibrated flow with step rotation of 

orientation.  Such information is also graphically illustrated in the form of mean temperature variations as a 

function of axial position in Figure 14, where vibration with rotation surpasses the other flow regimes by a wide 

margin. 

 

To put the above results in context, in order to obtain the same mean temperature achieved by transverse 

vibration with step rotation of orientation at the exit of the 2.4 m pipe used here, the length of pipe would 

have to be, approximately, 26 m in simple steady flow, 18 m compared with transverse vibration alone, and 

14 m with the Kenics static mixer.  However, to achieve the same level of temperature uniformity at exit, 

i.e. the same Cv, approximately 40 m would be needed in simple steady, 22 m with transverse vibration 
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alone, and 35 m with the Kenics mixer. 

 

The effect of varying the frequency, Ω, of the step rotation of oscillation orientation was investigated and radial 

temperature profile results are displayed in Figure 15.  It turns out that the value of this frequency is quite 

significant in achieving the highest mean temperature at the pipe exit, the best temperature uniformity across 

radius, and the best wall heat transfer coefficient whilst ∆p is more or less unchanged (Table 5).  As discussed 

above, efficient radial fluid mixing is achieved through transverse vibration by forcing the hot liquid to 

continuously flow from the wall to the centre of the pipe, mix with fluid in the cold regions, before returning to 

the wall.  Out of the frequency values which were tested for the flow conditions investigated, the best 

temperature uniformity (and correspondingly the best temperature development along the pipe) corresponded to 

 Ω = 0.1 Hz (i.e. a time interval between rotation steps of ∆t = 10 s).  The value of this optimum step rotation 

frequency is expected to depend on process conditions, however.   

 

As shown in Figure 16, with higher frequencies (e.g. Ω = 0.2 Hz; ∆t = 5 s; distance travelled z = 0.2 m) the hot 

fluid does not get to reach the pipe centre, thus, there is insufficient mixing of the hot fluid flowing inwards 

from the wall with cold fluid conveyed in the cold vortex regions before recirculating back; whilst with lower 

frequencies (e.g. Ω = 0.067 Hz; ∆t = 15 s; distance travelled z = 0.6 m) the cold vortex regions are moved 

around too slowly for optimum heat transfer to take place from the hot fluid flowing inwards from the wall; thus, 

the temperature gradient between cold and hot fluid is not as high as it could be for efficient heat transfer.  In 

this case, a rotation frequency of 0.1 Hz (i.e. ∆t = 10 s; distance travelled z = 0.4 m) gives the best condition for 

radial mixing and heat transfer. 

 

Simulations for a higher wall temperature of 180 °C gave similar results under all conditions of flow 

investigated, respectively; however, because of the large temperature gradient across the pipe radius, to achieve 

a degree of temperature uniformity similar to that attained in the 140 °C case required a slightly longer pipe (~ 

2.6 m). 

 

5.5. Mechanical energy consumption through vibration 

The mechanism of superimposing a step rotation of oscillation orientation on the vibrated flow should not be 

difficult to implement in practice and should provide an elegant technological solution for enhancing heat 
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transfer operations in viscous flows, as discussed above.  The technique excels in comparison with the Kenics 

helical mixer which suffers from its unsuitability for hygienic processes, as well as the relatively high energy 

losses caused by the large pressure drops it engenders.   

 

To complete the evaluation of the vibration process, we estimate the mechanical energy involved in 

implementing the mechanical oscillations, as shown in Appendix A.  The estimation for the flow case 

discussed above indicates that the power required to run the vibration process is rather modest (~ 130 W), and 

the benefits in terms of temperature uniformity and enhanced heat transfer should far outweigh this additional 

cost.   

 

6. Conclusions 

Forced transverse vibration superimposed on the steady laminar flow of a fluid in a pipe with an isothermal wall 

generates a vigorous swirling fluid motion represented by a strong vorticity field and complex spiralling fluid 

streamlines and trajectories.  The method has been shown to have substantial benefits for heat transfer 

including a large (several folds) increase in wall heat transfer, a much more uniform radial temperature profile, a 

rapid development of the temperature profile along the pipe, rapid heating of the core region of the flow, and 

relatively short processing pipes.   

 

A new enhanced technique has been introduced in this work which combines transverse vibration with a step 

rotation of oscillation orientation.  This technique produces much more improved effects compared to 

transverse vibration alone, resulting in much shorter processing pipes.  It also excels in comparison with the 

well-known Kenics helical static mixer which has the disadvantages of being unsuitable for hygienic fluid 

processing and causes large pressure drops.  On the other hand, the mechanical power input associated with the 

vibration process is modest. 
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Appendix A −−−− Mechanical energy consumption through vibration 

From equation (2) which describes the pipe wall displacement, the acceleration can be obtained as:  

 

�8 � |V
|� � |?�

|�? � /��1sin����                     (A1) 

 

The vibration force is given by Newton's second law of motion, thus: 

 

} � T ~ �8 � /T ~ ��1sin����                 (A2) 

 

where m is the mass of the pipe full of fluid.  The elemental work developed across the infinitesimal 

displacement d� is given by: 

 

d� � } ~ d�  

 

d� � /T ~ ��1sin���� ~ ��cos���� ~ d�               (A3) 

 

So through a whole oscillation cycle, ignoring any energy losses due to friction or imperfect transmission, the 

total work is obtained from:  

 

� � � /T�1��sin����cos����
>
�
� d�                (A4) 

� � � /T�1�� sin���� cos����
>
��

�
d� 0 � /T�1�� sin���� cos����

>
?�
>
��

d� 0 � /T�1�� sin���� cos����
�
��
>
?�

d�

0 � /T�1�� sin���� cos����
>
�
�
��

d� 

 

The total algebraic work given by the above expression through a complete vibration cycle amounts to zero as 

the 2nd integral negates the 1st integral, and the 4th integral negates the 3rd integral.  Note that the 2nd and 4th 

integrals represent work dissipated during the deceleration parts of the cycle.  Therefore, the net work input in 

one cycle is given by the sum of the 1
st
 and 3

rd
 integrals, thus: 
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� � /T�1�1                    (A5) 

 

Assuming, for example, a pipe wall thickness of 2.5 mm, a stainless steel density of 8000 kg m-3, and using the 

values of the various other parameters introduced for the flow case set out above, the power consumption turns 

out to be rather modest: 

 

� � � ~T�1�1 ≈ 130 W                  (A6) 
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Nomenclature    

A Vibration amplitude, m 

Cp Specific heat capacity, J kg
-1

 K
-1

 

Ea Activation energy for viscosity, J mol
-1

 

f Vibration frequency, Hz 

h mean wall heat transfer coefficient, W m
-2

 K
-1

 

k0 Pre-exponential factor, Pa s 

p Pressure, Pa 

∆p  Pressure drop, Pa 

r Radial position, m 

R Radius of pipe, m 

Rg Gas constant, J mol-1 K-1 

t Time, s 

∆t  Time interval, s 

T Temperature, °C 

6B Volume-flowrate weighted mean temperature, °C 

Tin Inlet temperature, °C 

6BUV�   Volume-flowrate averaged temperature at the pipe exit, °C 

Tw Wall temperature, °C 

u Velocity in radial direction, m s
-1 

w Velocity in axial direction, m s
-1

 

" Mean axial velocity at inlet, m s-1 

x Wall displacement, m 

z Axial position, m 

 

Greek symbols 
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� Temperature-dependent viscosity of Newtonian fluid, Pa s 

! Density, kg m
-3

 

λ Thermal conductivity, W m
-1

 K
-1 

F� Dimensionless temperature, - 

F Azimuthal position, rad or deg 

� Angular function of frequency of vibration, rad s-1  

Ω Frequency of step rotation of vibration orientation, Hz 
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Table 1:  Rheological parameters used. 

k0 

(Pa s) 

Ea 

(J mol-1) 

Rg 

(J mol-1 K-1) 

ρ 

(kg m-3) 

Cp 

(J kg-1 K-1) 

λ 

(W m-1 K-1) 

µ (Pa s) 

20°C  140°C 

5.0 × 10
-7

 35000 8.314 998 4180 0.668 0.868 0.0134 

 

 

 

 

Table 2:  Dimensions of Kenics static mixer (Figure 3). 

Segment length 

(mm) 

Gap width 

(mm) 

Element length 

(mm) 

Mixer diameter 

(mm) 

Element thickness 

(mm) 

Twist angle 

(rad) 

50 2.5 45 30 1 π 

 

 

 

 

Table 3:  Simulation parameters used. 

Flow regime Simulation 

time 

t (s) 

Vibration 

frequency 

f (Hz) 

Vibration 

amplitude 

A (mm) 

Frequency of step rotation 

of vibration orientation 

ΩΩΩΩ (Hz) 

Temperature of 

isothermal wall 

Tw (°°°°C) 

Steady flow through 

straight pipe 
- - - - 140, 180 

Steady flow through 

Kenics static mixer 
- -

 
- - 140, 180 

Transverse oscillations 60 50 2 - 140, 180 

Transverse oscillations 

with step rotation of 

vibration orientation 

60 50 2 0.2, 0.1, 0.067 140, 180 
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Table 4:  Comparison of the four different flow regimes studied (Tw =140 °C). 

 

Steady flow 

through 

straight pipe 

Steady flow 

through Kenics 

static mixer 

Flow with 

transverse 

oscillations 

Flow with transverse 

oscillations and step rotation 

of vibration orientation 

Mean temperature at exit 

����� (°°°°C)  
61.3 108.1 116.8 126.5 

Coefficient of radial 

temperature variation 

Cv (-) 

0.49 0.026 0.069 0.021 

Mean wall heat transfer 

coefficient 

h (W m
-2

 K
-1

) 

297.8 935.3 1160.7 1544.7 

Pressure drop 

∆∆∆∆p (Pa) 
195.0 1500.7 267.5 244.0 

 

 

 

 

 

 

 

 

Table 5:  Effects of frequency of step rotation of vibration orientation. 

Step rotation frequency 

ΩΩΩΩ ���� 0.2 0.1 0.067 

Mean temperature at pipe exit 

����� (°°°°C)  
121.1 126.5 121.3 

Coefficient of radial temperature 

variation at pipe exit 

Cv (-) 

0.045 0.021 0.062 

Mean wall heat transfer coefficient 

h (W m
-2

 K
-1

) 
1304.0 1544.8 1311.1 

Pressure drop 

∆∆∆∆p (Pa) 
241.2 244.0 228.5 
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Figure 1:  Viscous flow in a straight pipe: (a) under transverse vibration; (b) under transverse vibration coupled 

with superimposed 45-degree step rotation of vibration orientation. 
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Figure 2:  Illustration of grid used 

area-weighted pressure over pipe section 

 

  

 

 

 

 for evaluation of volume-flowrate weighted mean temperature and 

over pipe section (total number of cells, N = 1860 cells). 
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temperature and 



 

 

Figure 3:  Geometry of helical 

 

 

  

element 

 

 

 

 

 

Geometry of helical Kenics static mixer showing two adjacent mixer segment

 segment 

gap 

element 
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segments. 
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Figure 4:  Schematic mesh of pipe fitted with Kenics static mixer. 
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Figure 5:  Comparison of CFD-predicted and theoretical (Eq. 14) axial temperature profiles at three different 

radial positions for isoviscous Newtonian fluid in steady laminar pipe flow: Tin = 60 °C; Tw = 140 °C; D = 30 

mm; "�  = 4.0 cm s
-1

; µ  = 0.001 Pa s; ρ = 998 kg m
-3

; Cp = 4180 J kg
-1

 K
-1

; λ = 0.6 W m
-1

 K
-1

. 
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Figure 6:  Comparison of CFD-predicted and theoretical (Eq. 14) axial temperature profiles for isoviscous 

non-Newtonian power law fluid in steady laminar pipe flow: Tin = 27 °C; Tw = 127 °C; D = 30 mm; "�  = 1.0 cm 

s
-1

; ρ = 998 kg m
-3

; k = 1 Pa s
0.5

; n = 0.5; Cp = 4180 J kg
-1

 K
-1

; λ = 0.6 W m
-1

 K
-1

. 
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Figure 7:  Comparison of CFD-predicted and experimental velocity profiles for a temperature-dependent 

Newtonian fluid in steady pipe flow with heat transfer: Tin = 27 °C; Tw = 127 °C; D = 30 mm; "�  = 2.0 cm s
-1

; µ  

= 1.3exp[(T – 25 °C)/(Tw - Tin)] Pa s; ρ = 998 kg m
-3

; Cp = 4180 J kg
-1

 K
-1

; λ = 0.6 W m
-1

 K
-1

. 

 

 

 

 

  



 

 

(b) 

 

 

 

 

 

Figure 8:  Steady viscous flow of a temperature

distribution along the pipe; (b) temperature distribution at

Tin = 20 °C; Tw = 140 °C; D = 30 mm; 

Cp = 4180 J kg
-1

 K
-1

; λ = 0.668 W m
-1

 K

  

 

    

(a) 

  

(c) 

 

of a temperature-dependent Newtonian fluid in a straight pipe:

temperature distribution at pipe exit; (c) fluid streamlines. 

= 30 mm; L = 2400 mm;  = 4.0 cm s-1; µ  = k0 exp(Ea /RgT) Pa s;

K
-1

. 
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pipe: (a) temperature 

; ρ = 998 kg m-3; 



 

 

 

 

 (a) 

 

 

 

 

Figure 9:  Viscous flow of a temperature

static mixer: (a) temperature distribution at pipe exit; (b) fluid trajectories.

Tin = 20 °C; Tw = 140 °C; D = 30 mm; 

Cp = 4180 J kg-1 K-1; λ = 0.668 W m-1 K

 

  

  

                    (b) 

:  Viscous flow of a temperature-dependent Newtonian fluid in a straight pipe fitted with a Kenics 

static mixer: (a) temperature distribution at pipe exit; (b) fluid trajectories. 

= 30 mm; L = 2400 mm;  = 4.0 cm s
-1

; µ  = k0 exp(Ea /RgT) Pa s; 

K-1. 
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straight pipe fitted with a Kenics 

) Pa s; ρ = 998 kg m
-3

; 



 

 

 

 
 

 (a) 

 

 

 

 

Figure 10:  Viscous flow of a temperature

oscillations: (b) temperature distribution at pipe exit; (b) fluid trajectories.

Tin = 20 °C; Tw = 140 °C; D = 30 mm; 

Cp = 4180 J kg-1 K-1; λ = 0.668 W m-1 K

 

  

 

                     (b) 

Viscous flow of a temperature-dependent Newtonian fluid in a straight pipe subjected to transverse 

oscillations: (b) temperature distribution at pipe exit; (b) fluid trajectories. 

= 30 mm; L = 2400 mm;  = 4.0 cm s
-1

; µ  = k0 exp(Ea /RgT) Pa s; 

K-1; A = 2 mm; f = 50 Hz. 
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pipe subjected to transverse 

) Pa s; ρ = 998 kg m
-3
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Figure 11:  Velocity vector plot superimposed on temperature distribution across

 

  

 

superimposed on temperature distribution across the oscillated 
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oscillated pipe. 



 

 

 

 
 

 (a) 

 

 

 

 

 

Figure 12:  Viscous flow of a temperature

oscillations with a superimposed step rotation

(b) fluid trajectories. 

Tin = 20 °C; Tw = 140 °C; D = 30 mm; 

Cp = 4180 J kg
-1

 K
-1

; λ = 0.668 W m
-1

 K

 

 

  

 

                     (b) 

Viscous flow of a temperature-dependent Newtonian fluid in a straight pipe subjected to transverse 

rotation of vibration orientation: (a) temperature distribution at pipe exit; 

= 30 mm; L = 2400 mm;  = 4.0 cm s-1; µ  = k0 exp(Ea /RgT) Pa s; 

K
-1

; A = 2 mm; f = 50 Hz. 
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straight pipe subjected to transverse 

(a) temperature distribution at pipe exit; 

) Pa s; ρ = 998 kg m-3; 
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Figure 13:  Development of azimuthally

(b) steady flow through helical static mixer; (c) flow with 

oscillations and step rotation of vibration 

Tin = 20 °C; Tw = 140 °C; D = 30 mm; 

Cp = 4180 J kg
-1

 K
-1

; λ = 0.668 W m
-1

 K

 

  

 

 

 

 

 

azimuthally-averaged temperature profile along the pipe: (a) simple steady flow; 

(b) steady flow through helical static mixer; (c) flow with transverse oscillations; (d) flow with 

vibration orientation. 

= 30 mm; L = 2400 mm;  = 4.0 cm s
-1

; µ  = k0 exp(Ea /RgT) Pa s; 

K
-1

; A = 2 mm; f = 50 Hz. 
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(a) simple steady flow; 

; (d) flow with transverse 

) Pa s; ρ = 998 kg m
-3

; 
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Figure 14:  Mean temperature development along the pipe: Tin = 20 °C; Tw = 140 °C; D = 30 mm; L = 2400 

mm; "�  = 4.0 cm s
-1

; µ  = k0 exp(Ea /RgT) Pa s; ρ = 998 kg m
-3

; Cp = 4180 J kg
-1

 K
-1

; λ = 0.668 W m
-1

 K
-1

;  

A = 2 mm; f = 50 Hz. 
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Figure 15:  Effects of frequency of step rotation of vibration orientation on t

of vibrated viscous flow: (a) Ω = 0.2 Hz; (b) 

Tin = 20 °C; Tw = 140 °C; D = 30 mm; 

Cp = 4180 J kg
-1

 K
-1

; λ = 0.668 W m
-1

 K

 

  

  

  (b)    (c)

 

 

Effects of frequency of step rotation of vibration orientation on temperature distribution at pipe exit 

= 0.2 Hz; (b) Ω = 0.1 Hz; (c) Ω = 0.067 Hz. 

= 30 mm; L = 2400 mm;  = 4.0 cm s-1; µ  = k0 exp(Ea /RgT) Pa s; 

K
-1

; A = 2 mm; f = 50 Hz. 
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(c) 

emperature distribution at pipe exit 

) Pa s; ρ = 998 kg m-3; 



 

 

 

 

 

 

(a) 

 

 

 

Figure 16:  Effect of step rotation frequency on radial flow and t

s; z = 0.2 m); (b) Ω = 0.1 Hz (∆t = 10 s; 

Tin = 20 °C; Tw = 140 °C; D = 30 mm; 

Cp = 4180 J kg
-1

 K
-1

; λ = 0.668 W m
-1

 K

 

Highlights 

 

- Transverse vibration with a step rotation of orientation has many benefits

- Wall heat transfer in viscous pipe flow is greatly enhanced

- Much improved radial temperature uniformity is achieved

- Thermal boundary layer grows rapidly along the pipe

- Short processing pipes can be used

 

 

 

 

  

(b) (c) 

 

 

Effect of step rotation frequency on radial flow and temperature distribution: (a) Ω 

= 10 s; z = 0.4 m); (c) Ω = 0.067 Hz (∆t = 15 s; z = 0.6 m). 

= 30 mm; L = 2400 mm;  = 4.0 cm s
-1

; µ  = k0 exp(Ea /RgT) Pa s; 

K
-1

; A = 2 mm; f = 50 Hz. 

with a step rotation of orientation has many benefits 

Wall heat transfer in viscous pipe flow is greatly enhanced 

Much improved radial temperature uniformity is achieved 

Thermal boundary layer grows rapidly along the pipe 

Short processing pipes can be used for heating of viscous fluid flow 
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 = 0.2 Hz (∆t = 5 

) Pa s; ρ = 998 kg m
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