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Abstract: Railway track maintenance plays an important role in enabling safe, reliable, and seamless
train operations and passenger comfort. Due to the increasing rail transportation, rolling stocks tend
to run faster and the load tends to increase continuously. As a result, the track deteriorates quicker, and
maintenance needs to be performed more frequently. However, more frequent maintenance activities
do not guarantee a better overall performance of the railway system. It is crucial for rail infrastructure
managers to optimize predictive and preventative maintenance. This study is the world’s first to
develop deep machine learning models using three-dimensional recurrent neural network-based
co-simulation models to predict track geometry parameters in the next year. Different recurrent
neural network-based techniques are used to develop predictive models. In addition, a building
information modeling (BIM) model is developed to integrate and cross-functionally co-simulate
the track geometry measurement with the prediction for predictive and preventative maintenance
purposes. From the study, the developed BIM models can be used to exchange information for
predictive maintenance. Machine learning models provide the average R2 of 0.95 and the average
mean absolute error of 0.56 mm. The insightful breakthrough demonstrates the potential of machine
learning and BIM for predictive maintenance, which can promote the safety and cost effectiveness of
railway maintenance.

Keywords: track geometry prediction; recurrent neural network; long short-term memory; gated
recurrent unit; attention; building information modeling; railway; asset management; co-simulation;
digital twins

1. Introduction

Due to the growth of the world economy, transportation demand tends to increase
continuously [1]. This results in the increasing impact load that makes the track deteri-
orates rapidly [2] not only railway track but also other infrastructures such as overhead
infrastructure [3]. Maintenance needs to be performed efficiently. Too little maintenance
result in deteriorated track. At the same time, too much maintenance results in the exceed
unnecessary maintenance cost. Therefore, proper maintenance is a goal. To be able to
perform railway track maintenance properly, a tool to allow the current condition of the
track is required. There are many criteria used to evaluate the condition of tracks. Track
geometry is a criterion used to evaluate the quality of the track. The track with good quality
results in smooth operation, safe service, and more passenger comfort. Track geometry
needs to be maintained in a good condition. Normally, track geometry can be measured
regularly using different methods. One of the popular methods is the use of track geometry
cars (TGC). TGC is used to collect track geometry parameters and then they will be used to
calculate the track quality index (TQI) based on the standards of each country. To maintain
track geometry, different approaches can be used such as corrective maintenance, preven-
tive maintenance, and predictive maintenance. Corrective maintenance is used to correct
when problems take place. Therefore, this approach is not effective and requires high
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cost because problems may disturb operation and heavy maintenance normally requires a
higher cost than light maintenance. In the case of track geometry, corrective maintenance
can be used when any track geometry parameters exceed the defined values. Preventive
maintenance is the planned maintenance to keep tracks in a good condition although track
geometry parameters do not exceed the standard limit. Therefore, preventive maintenance
has the benefit of keeping track in the good condition. However, the cost effectiveness
might not be good if the maintenance plan is not performed efficiently. Another approach is
predictive maintenance which is a data-driven approach. This technique is used to evaluate
the condition of tracks and predict the condition in the coming period. This allows planners
to be able to predict the future conditions of tracks and plan the maintenance effectively.
However, predicting track geometry is complex and non-linear due to many factors.

This study aims to develop an information management platform for railway mainte-
nance for being a data exchange platform to perform maintenance activities in the railway
industry. At the same time, deep machine learning models will be developed to pre-
dict track geometry parameters for predictive maintenance purposes. This will allow
railway operators to be able to know the current and future conditions of tracks based
on track geometry parameters. The contribution of the study is expected to support the
decision-making of railway maintenance agencies for better actions in the aspect of railway
maintenance. Machine learning models which are used to develop predictive models are
three-dimensional recurrent neural network-based models consisting of vanilla or tradi-
tional recurrent neural network (RNN), long short-term memory (LSTM), gated recurrent
unit (GRU), and attention.

Track geometry parameters consist of seven parameters which are superelevation,
longitudinal level of both rails, alignment of both rails, gauge, and twist. From the literature
review, most previous studies apply machine learning to predict deterioration rates, track
a quality index, and track geometry parameters. The deterioration rate and track quality
index are the summary of calculations from seven track geometry parameters so each
parameter cannot be predicted. This study aims to develop machine learning models to
predict each track geometry parameter because they can be used to calculate the deteriora-
tion rate and track the quality index further and maintenance planning can be done more
effectively because maintenance activities can be planned based on each parameter. More
detail is presented in Section 3.

Because this study uses time-series data based on distances, times, and maintenance
activities to predict track geometry parameters, an ability or platform that can store infor-
mation is required. Therefore, this study develops a building information modeling (BIM)
model to store, manage, and exchange information. Normally, BIM models are used in
the design and construction stages. When the construction completes, BIM models are
no longer used. However, the maintenance and operation stages are the longest stages in
railway projects. Applying the BIM concept to the maintenance and operation of railway
projects brings significant benefits because the amount of information in these stages of
railway projects is enormous. It is predicted that results from the study will present the
potential of BIM and machine learning integration in railway maintenance. The novelties
of the study are this study purposes a workflow to cross-functionally co-simulate BIM
with machine learning, which is the highest BIM maturity (BIM Level 5) [4], in order to
predict track geometry parameters and there has never been a study focusing on this topic.
This can develop automated track maintenance in the railway industry. In addition, using
three-dimensional recurrent neural network-based models to predict track geometry pa-
rameters is also another novelty of the study because other studies use different features to
predict them. In summary, the integration between BIM and machine learning can provide
many benefits. First, it supports automating design and analysis tasks. Machine learning
can be used to analyze BIM models and extract useful information such as identifying
issues in different phases of projects, optimizing the performance of asset management,
and performing predictive maintenance. Second, it enhances collaboration and commu-
nication by linking information between different stakeholders. Last, BIM can be used to
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facilitate data management. Machine learning is suitable to manage and analyze the large
amount of data generated during the BIM process, such as design documents, construction
schedules, and maintenance records. This can help improve the accuracy and efficiency of
data management and decision-making.

2. Exploration of Track Geometry Measurement and Prediction

Track geometry can be measured using different methods such as linear displacement
transducers, tachometers, laser optics [5,6], and track gauges [7]. Normally, track geometry
parameters are measured every foot [5]. Track geometry parameters consist of superele-
vation, longitudinal level of both rails, alignment of both rails, gauge, and twist [8]. To
evaluate the track quality, indexes are calculated based on seven-track geometry param-
eters. Each country has different standards and calculation methods. For example, an
average standard deviation of seven track geometry parameters is popularly used in many
countries such as the United Kingdom and Australia [9]. Examples of standard responses
based on track geometry are shown in Table 1 and the definition of response is shown in
Table 2.

Table 1. Example of responses based on track geometry by TMC 203 [10].

Longitudinal Level Track Speed (Normal/Passenger) km/h
20/20 40/40 60/60 80/90 100/115 115/160

0–16 N N N N N N
17–20 N N N N P3 P2
21–24 N N N P3 P2 P1
25–27 N N P3 P2 P1 E2
28–30 N P3 P2 P1 E2 E2
31–32 P2 P2 P1 E2 E2 E2
33–34 P1 P1 E2 E2 E2 E1
35–40 E2 E2 E2 E2 E1 E1
>40 E1 E1 E1 E1 E1 E1

Table 2. Definition of responses [10].

Responses Category Inspect and Verify Responses Action

Emergency 1 (E1) Prior to passage of next train Prior to passage of next train

Emergency 2 (E2) Within 2 h. or before the next train,
whichever is the greater Within 24 h

Priority 1 (P1) Within 24 h. Within 7 days
Priority 2 (P2) Within 7 days Within 28 days
Priority 3 (P3) Within 28 days Program for repair
Normal (N) Nil Routine inspection

Besides using TGCs, sensors can also be used to measure track geometry. In 2002,
Network Rail applied unattended geometry measurement systems (UGMS) which were
installed on regular rolling stock to measure track geometry. Two accelerometers and
transducers were used as sensors. However, they could not measure all track geometry
parameters. They could only measure vertical profiles [11]. Ágh [12] studied the relation-
ship between track geometry irregularity and axle box acceleration (ABA). In the study,
longitudinal level and alignment were measured using decoloring of chord offset. The
measurement was done every 0.25 m. The frequency of the measurement was 300 Hz. It
was found that the correlation between vertical ABA and track geometry was 0.63. In the
study, it was found that ABA could be used to predict longitudinal level and alignment,
but it could not be used to predict twist because the correlation was too weak. Li et al. [13]
tried to find the relationship between track geometry and vehicle response. They applied
a neural network to develop predictive models for vehicle responses such as vertical and
lateral wheel loads. The performance of the model was acceptable. Tsunashima et al. [14]



Sensors 2023, 23, 391 4 of 18

estimated track geometry using car-body vibration. They applied Kalman Filter to trans-
form data. The error from the proposed method was 3 mm. However, it was not clear how
they calculate track geometry or which parameters they considered. These studies aimed
to estimate current track geometry using different values.

For the prediction, Lee et al. [15] applied a support vector machine (SVM) to develop
a machine learning model to predict TQI in terms of alignment and longitudinal level.
The limitation of the study was not every track geometry parameter was considered. In
addition, compared to other deep learning techniques, SVM is not suitable for the non-linear
problem and the training time is long. Hu and Liu [16] also applied SVM to predict track
degradation. They focused on three defects which were longitudinal level, superelevation,
and dip. They tried to predict amplitudes of defects. Inputs of the models were track
class, traffic volume, and time interval. The average accuracy of their model was 0.81.
Guler [8] applied a neural network to develop a model to predict deterioration. Inputs were
track structure, traffic characteristics, track layout, environmental factors, track geometry,
and maintenance and renewal data. Data were collected from 2009–2011. The number of
samples was 820. The average R2 is 0.77. Soleimanmeigouni et al. [17] used field data to
develop a machine learning model using binary logistic regression to predict longitudinal
levels. The period of data collection was January 2015 to July 2018. The length of the
considered section was about 200 m. Inputs of the models were speed, TQI, defect, and
types of assets. The prediction of the models consisted of two classes which were the
occurrence of defects. They found that the sensitivity of the model is 0.89. Machine learning
is also used to detect railway defects such as corrugation [18] which the performance was
satisfying. Besides the mentioned literature, machine learning and mathematical models
were used in different areas such as supply chain [19], railway design [20], inspection
scheduling [21], and cost management [22]. The summary of related studies is shown in
Table 3.

Table 3. Summary of previous studies.

Year Predicted/Measured
Parameter Input Performance Limitation Reference

2019 Longitudinal level and
alignment ABA R2 = 0.63

Only parameters were
predicted Ágh [12]

2006 Vehicle response such
as loads

Track geometry and
speed Acceptable

The benefit of railway
maintenance was
limited

Li, Meddah, Hass and
Kalay [13]

2014 Track geometry ABA Error = 3 mm. Each parameter could
not be measured

Tsunashima,
Naganuma and
Kobayashi [14]

2020 TQI Time-series data R2 = 0.84
Only alignment and
longitudinal level
were considered

Lee, Hwang, Choi and
Choi [15]

2016
Longitudinal level,
superelevation,
and dip

Track class, traffic
volume, and time
interval

Accuracy = 0.81 Only three parameters
were considered Hu and Liu [16]

2014 Deterioration

Track structure, traffic
characteristics, track
layout, environmental
factors, track geometry,
and maintenance

R2 = 0.77
Limited data and
samples Guler [8]

2020 Occurrence of
longitudinal defects

speed, TQI, defect, and
types of assets Sensitivity = 0.89

Only one parameter
was considered and no
regression

Soleimanmeigouni,
Ahmadi, Nissen, Xiao
and Engineering [17]
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From the literature review, it can be seen that there are research gaps in this topic.
First, there has not been a study predicting all seven track geometry parameters. Most
studies focused on some parameters only which could not provide a comprehensive ability
to predict track geometry and maintenance activities for each defect. Inputs or features of
machine learning models can be more explored to find new potential in track geometry
prediction. Deep learning has not been used to develop predictive models. Other minor
limitations were the limited timeframe of data collection and section length which were
too high that might not practical in realistic maintenance. Therefore, this study tries to
fill research gaps by trying to predict every track geometry parameter using RNN-based
models which are deep learning techniques. In addition, this study uses field data collected
by track geometry cars during 2016–2019 with a section of 30 km that provide an abundance
of data for machine learning model development. It is expected that the performance of
models will be satisfied and improve the overall railway maintenance aspect.

3. Exploration of Track Geometry and BIM Application

BIM has been widely used in the architecture, engineering, and construction (AEC)
Industry while it has not been popular in the railway industry. However, in recent years,
the application of BIM in the railway industry during the design and construction pro-
cesses is booming [23]. The advantages of BIM can be beneficial to the railway industry
because of visualization, detailed drawings, document and information management, cost
management, construction scheduling, and crash detection. It was found that using BIM
can reduce up to 40% unnecessary costs, improve the accuracy of cost estimation by 3%
compared to the traditional method, and reduce cost estimation time by up to 80%. In total,
the construction cost can be reduced by 10% by using BIM, and construction time can be
reduced by 7% [24].

BIM can be categorized into three levels based on the comprehensiveness of its appli-
cation. In this study, 6D BIM level 3 which integrated project schedule, cost and quantity,
and maintenance aspects is a goal to achieve. A definition of BIM level 3 which is the
ultimate goal of BIM application is a single BIM model that is shared by all stakeholders at
any time. However, achieving this goal is not easy. The application of BIM in the railway
industry needs a high-level decision and takes a long time to be effective. Crossrail in the
United Kingdom applied BIM in 2007 however it was effective in 2019 [25]. However, many
countries aim to make BIM mandatory for public projects such as the United Kingdom
in 2016 and France in 2017. Examples of railway projects that applied BIM in the design
and construction phases were Project Mälarbanan in Sweden, Schuman-Josaphat Tunnel
in Belgium, Crossrail (Elisabeth Line) in the United Kingdom, and ONCF 40 electrical
substations in Morocco. Although BIM starts being applied in the railway industry, it is
mostly limited to design and construction.

Société Nationale des Chemins de Fer Français (SNCF, Saint-Denis, France) is one of the
first departments that applied BIM in railway maintenance. They used reverse engineering
to create BIM models for existing projects and used them for predictive maintenance. The
pilot project was started in 2015. They stated even though it was the very early stage but
they believe in the potential of BIM [26].

From the literature review, it can be seen that most railway projects only apply BIM in
design and construction. If BIM can be applied in the following stages of projects, it will be
highly beneficial to the railway industry because the operation and maintenance phases
are the longest phases of railway projects. Information occurring in the phases is enormous.
An ability to utilize the information will help improve the efficiency of asset management.
Therefore, this study aims to apply BIM to railway maintenance integrated with machine
learning. It is expected that this approach can support decision-making in the early stage
and its potential can be extended when more information is added to the BIM model. The
developed concept of integrated BIM and machine learning can solve significant problems
in the railway industry where the severity of rail defects and location cannot be determined
properly, resulting in excessive additional track inspection.



Sensors 2023, 23, 391 6 of 18

4. Data Characteristics and Processing

Data used in this study are from two sources. First, track geometry was collected
using TGCs in 2016–2019. The frequency of data collection is one foot. The length of the
section is 30 km. Collected raw data consists of location, track number, superelevation,
radius, longitudinal level of both rails, alignment of both rails, gauge, inclinations of both
rails, test speed, a maximum speed of the track, and twist. However, some values will
be removed because they are not used in this study. Outstanding values will be locations
and seven track geometry parameters which are superelevation, longitudinal of both rails,
alignment of both rails, gauge, and twist. Second, maintenance data was collected from
maintenance reports. Maintenance reports consist of seven activities which are (1) tamping,
leveling, and alignment, (2) rail grinding, (3) ballast cleaning, (4) sleeper replacement,
(5) rail replacement, (6) fastening replacement, and (7) ballast unloading. Maintenance
activities are matched which track geometry parameters to develop machine learning
models later.

Raw data are processed to feed into machine learning models. In this study, Visual
Basic for Applications (VBA) is used to process data. Data used to train machine learning
models consists of three time-series data based on distances, times, and maintenance
activities. Data for 2016–2019 is available. Therefore, the aim is to predict seven track
geometry parameters in 2019. To do this, data from 2016–2018 are used. For time-series
data based on distances, parameters of previous track sections in 2018 are used as features.
For time-series data based on time, parameters of the same section in 2016–2018 are used as
features. For time-series data based on maintenance activities, maintenance activities in
2016–2018 are used as binary features. If that maintenance activity was performed in that
year, it will 1. Otherwise, it will be 0. There are seven maintenance activities in maintenance
reports which are (1) tamping, leveling, and alignment, (2) rail grinding, (3) ballast cleaning,
(4) sleeper replacement, (5) rail replacement, (6) fastening replacement, and (7) ballast
unloading. The number of samples is 14,538 which will be split with the proportion of
70/30 to be training and testing data. In total, nine time-series data are used as features to
train machine learning models which are shown in Figure 1 when section n represents an
interesting section.
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5. Machine Learning Model Development

Machine learning techniques used in the study are RNN, LSTM, GRU, and attention.
They are RNN-based models. Inputs or features used to train models are described in
Section 4. The features are stacked with each other before being fed into machine learning
models. there are nine layers of features fed into models. Each feature is 1D data or time-
series data. Based on the characteristics of the data, RNN-based models are suitable because
the data are time-series, and the sequence of data is not very long. Therefore, RNN-based
models should provide a good result. Other machine learning models are preliminarily
tested; however, the performance is not as good as RNN-based models. Therefore, this
study will focus on RNN-based models. a brief about each model is explained as follows.

RNN is the most fundamental of other RNN-based models. It has memory units to
process sequential data which is different from normal neural networks. Therefore, features
are processed in multiple units or nodes. RNN can output single or multiple outputs based
on its architecture. In this study, predictions are track geometry parameters in the target
year so it requires only one output. RNN has a limitation when the length of sequences
is too long or more than a thousand. It suffers from a vanishing gradient according to its
calculation process. The equation of RNN can be shown in (1) where hn is the hidden state
at time n, xn is the input at time n, and θ is the function of the RNN. Examples of RNN
applications are language processing and financial application [27].

ht = f
(

ht−1, xt; θ
)

(1)

LSTM is developed to solve the vanishing gradient in RNN. It solves the issue by
including three types of gates in the architecture, input gate, output gate, and forget gate.
The forget gate has a function to filter out unnecessary or meaningless data. Therefore, the
model does not need to memorize all data and has a better performance. The equation of
LSTM is shown in (2)–(4) where it is the input gate function, f t is the forget gate function,
ot is the output gate function, σ is the sigmoid function, wx is the weight of gate x, hn is the
hidden state at time n, xn is the input at time n, and bx is the biases of gate x. Examples of
LSTM application are language processing and weather forecast [28].

it = σ
(

wi
[

ht−1, xt
]
+ bi

)
(2)

f t = σ
(

w f
[

ht−1, xt
]
+ b f

)
(3)

ot = σ
(

wo
[

ht−1, xt
]
+ bo

)
(4)

GRU is more advanced than LSTM. It contains two gates which are update gates and
reset gates. Compared to LSTM, the update gates are a combination between the input gate
and forget gate. Therefore, the complexity of an architecture is reduced, and the model
can train faster. Reset gates are used to determine how much data should be forgotten.
Moreover, when the sequence of data is not very long, GRU tends to perform better than
LSTM. The equation of GRU is shown in (5)–(8) where zt is the update gate vector, σ is the
sigmoid function, wn is the weight of vector n, xt is the input vector, hn is the hidden state
at time n, bn is the biases of gate n, rt is the reset gate vector, ĥt is the candidate activation
vector, and ∅ is the hyperbolic tangent function. Examples of GRU applications are stock
price prediction [29] and time-series forecast [30].

zt = σ
(

wzxt + uzht−1 + bz
)

(5)

rt = σ
(

wrxt + urht−1 + br
)

(6)

ĥt = ∅
(

whxt + uh
(

rt × ht−1
)
+ bh

)
(7)

ht = zt × ĥt +
(
1 − zt)× ht−1 (8)
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Attention is one of the latest RNN-based models. It has sub-neural networks to
determine the influence of data and their significance. Data are screened before they are
trained. Therefore, the architecture of the attention is similar to vanilla RNN but there is a
loop to screen the data first. This is done by using the softmax function.

From the brief about each model, although some models are the improved version
of another model, it cannot be guaranteed which model provides the best performance.
Therefore, models have to be tested for the model section. To test machine learning models,
mean absolute error (MAE) is used as the main criterion because it is simple to translate
and conform to the requirement of the industry. R2 is also presented to demonstrate the
relationship between true and predicted values.

To find the best possible architecture of each model, hyperparameter tuning is used.
In this study, grid search is used for hyperparameter tuning. Hyperparameters of each
model which are tuned are shown in Table 4. Each parameter affects the performance
of the models in some ways. Therefore, combinations of different parameters have to be
explored to find the most suitable combination. Examples of hyperparameters’ effects
are the number of nodes and layers directly affecting the complexity or nonlinearity of
model architecture, batch size affecting the processing time and accuracy of prediction, or
activation function affecting how data are processed when sent through layers.

Table 4. Tuned hyperparameter of each model.

Models Tuned Hyperparameters

RNN Normalization Batch size
Number of RNN nodes Number of dense layers
Number of hidden nodes Activation functions
Optimizer

LSTM Normalization Batch size
Number of LSTM nodes Number of dense layers
Number of hidden nodes Activation functions
Optimizer

GRU Normalization Batch size
Number of GRU nodes Number of dense layers
Number of hidden nodes Activation functions
Optimizer

6. BIM Model Development

To develop a BIM model, Autodesk Civil 3D and Ferrovia are used. The BIM model is
created based on the drawing of the project. This study aims to develop a 6D BIM model.
Sequences of creation are explained as follows.

The process starts by importing google map using Ferrovia. In the process, elevation
data and a raster image can be imported. Elevation data will be used later when a profile
is designed. The raster image is used to see the topography of the area. Then, Digital
Terrain Model (DTM) is created using the imported elevation data. Triangles, boundaries,
or contours can be created depending on the purpose of the application. This study mainly
uses triangles. The next step is creating alignments. In the software, design speed and
gauge can be defined to make sure that the design conformed to the defined standard. In
this step, drawings of the project are used to re-create the alignment of the project. Sample
lines are used to section the alignment. This study develops the BIM model for maintenance
purposes. Therefore, the size of the sections needs to be related to the maintenance. The size
of the sections is defined to be 2 m sections. When the alignments are designed, the profiles
are created based on the drawings of the project. The next step is creating cross-sections of
the railway line. This step is critical because it defines the railway structure and is used to
calculate the bill of quantity. After that, a 3D model can be created based on defined cross-
sections. The outcome of the model is multiple solid 3D that can be exported to other BIM
software for further applications. Making solid 3D that can contain information for BIM
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applications, it can be done by defining property set definitions as shown in Figure 2. In this
study, parameters used as features for machine learning models, maintenance responses in
the current year, predicted track geometry parameters, and maintenance responses in the
next year are added. The data can be stored in the BIM model itself. However, if the amount
of data is too big, the size of the BIM model will be also big which may be obstructed
the application. Therefore, in the case of big data, the data can be stored in the cloud or
offline repository. These approaches are suggested because there is no limitation in terms
of the data size. This can be merged with the BIM model using a hyperlink to store the link
to the data or location in the offline repository. Information exchange between the BIM
model and machine learning can be done using Autodesk Dynamo and VBA as shown in
Figure 3. Dynamo is used to manage the BIM model including the data export and import
while VBA is used to process data. Dynamo has some limitations regarding complicated
processing. When they are used together, data management and exchange are seamless.
The integration between the BIM model and machine learning can be done by using the
developed workflow as shown in Figure 4.
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Until this step, the 3D BIM model has been created and is ready to be integrated with
information. For the 4D model, it includes the cost and quantity. Ferrovia has a built-in
function for quantity takeoff. The Bill of quantity can be exported as a spreadsheet file and
used to calculate cost estimation. To develop a 5D model, 3D solid objects in Civil 3D can
be exported as Industry Foundation Classes (IFC). Ferrovia also has a function to do this.
These objects can be imported to Autodesk Navisworks for project scheduling. Last, to
develop a 6D BIM model from the 5D BIM model, the maintenance information mentioned
can be integrated into the BIM model through the property set definitions as mentioned.
Now, the 6D BIM model is available for integration with machine learning models.

7. Result and Discussion
7.1. Machine Learning Model Development

From machine learning model development and hyperparameter tuning, the best
performance to predict each track geometry based on MAE can be shown in Table 5. Other
indicators are also included to demonstrate the performance of models for a clearer view.
R2 is presented to demonstrate the correlation between the true and predicted values.
Maximum absolute error is presented to demonstrate the boundary of error. This value
is compared to the track construction tolerance to make sure that the predictions can be
used in reality. If the maximum absolute error exceeds the track construction tolerance, the
prediction is not reliable because it may affect the operation safety although the MAE is
small and R2 is high.

Table 5. The best performance to predict each track geometry parameter.

Track Geometry Parameters Models MAE (mm) R2 Maximum Absolute
Error (mm)

Track Construction
Tolerance (mm) [31]

Superelevation Attention 1.46 0.99 5.00 5.00
Longitudinal level (right rail) GRU 0.28 0.96 11.26 12.00
Longitudinal level (left rail) GRU 0.33 0.95 10.06 12.00

Alignment (right rail) LSTM 0.13 0.98 5.61 7.00
Alignment (left rail) LSTM 0.20 0.97 6.66 7.00

Gauge LSTM 1.20 0.84 5.99 6.00
Twist LSTM 0.33 0.93 5.60 6.00

From the table, it can be seen that the MAEs for all parameters are less than 1.5 mm.
which is small compared to their original values. For R2, they are higher than 0.8 in all
cases so it can be concluded that the true values and predicted values are correlated, or the
developed machine learning models can provide prediction with reliability. Based on the
MAEs, attention performs best in predicting superelevation, and GRU performs best in
predicting longitudinal levels. Other than that, LSTM performs best in predicting other
track parameters. Hyperparameters of each model are fixed and used to predict every
track geometry parameter. the above table presents the models which perform the best
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in predicting each track geometry parameter. Therefore, four models are developed in
total. It can be seen that RNN cannot perform best in any parameter prediction. This can
be inferred that RNN is the traditional model that was developed a long time ago. There
are some limitations in the model while other models have been developed in some ways
based on the vanilla RNN. In addition, it can be seen that LSTM provides the lowest MAEs
from four out of seven parameters even though GRU and attention are further developed
by the concept. This indicates that it cannot be concluded that the more advanced models
always provide better performance than the less advanced models. It is based on the
characteristic of data and models have to be tested before conclusion and application. The
authors have tested other neural network models and found that the performances of the
RNN-based models provide the best performance. For optimization, the crucial aspect is
the completeness, availability, and variety of the data. This is because the optimization
requires varied data to improve the performances of the models. Therefore, if the data are
limited, the efficiency of the optimization will be worse.

It can be seen that the maximum absolute errors of all parameters are less than the
track construction tolerance based on Australian Rail Track Corporation LTD [31]. The
maintenance criteria shown in Table 1 are not used because the track construction tolerance
is stricter and the railway industry must keep the track condition in the good condition as
much as possible because safety is the priority. Therefore, the ability to predict accurate
values is also crucial.

Compared to previous studies as shown in t, both individual and average R2 of this
study are higher than previous studies. The average R2 of this study is 0.95 and the average
MAE is 0.56 mm. which is lower than previous studies as well. It can be inferred that
machine learning models in this study provide better performance because this study
applies deep learning techniques that previous studies did not, and the features of the
models are more suitable. R2 and the correlation between the true and predicted value can
be shown in Figures 5–11.

An example of a time-series plot is shown in Figure 12. The plot presents the superele-
vation in each year including the prediction from KM 22+000 to 30+000. It can be seen the
true value of superelevation in 2019 is similar to the predicted superelevation. Therefore, it
can be concluded that the developed machine learning models are reliable.
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From grid search, hyperparameters that provide the best performance of LSTM, GRU,
and attention are present in Table 6. A limitation of the study that should be noted is this
study applies time-series data with three-dimension data, so the model required data with
this characteristic and completeness. However, if the data are not available, non-time series
data can also be used with an easy modification of the model to support non-time series
data that is similar to traditional studies.

Table 6. Tuned hyperparameters that provide the best performance.

Models Tuned Hyperparameters Tuned Values

RNN Normalization No
Batch size 32

Number of RNN nodes 200
Number of dense layers 5

Number of hidden layers 3
Activation functions Sigmoid

Optimizer Adam

LSTM Normalization No
Batch size 8

Number of LSTM nodes 3
Number of hidden layers 2
Number of hidden nodes 100

Activation functions ReLu (dense1) and Linear (dense2 and dense3)
Optimizer Adam

GRU Normalization No
Batch size 64

Number of GRU nodes 3
Number of hidden layers 2
Number of hidden nodes 100

Activation functions ReLu (dense1 and dense2) and Linear (dense3)
Optimizer Adam
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Table 6. Cont.

Models Tuned Hyperparameters Tuned Values

Attention Normalization No
Batch size 64

Type of attention Self-attention
Attention activation functions ReLu

Number of hidden layers 2
Number of hidden nodes 100

Activation functions ReLu (dense1 and dense2) and Linear (dense3)
Optimizer Adam

7.2. BIM Model Development and Integration with Machine Learning

In Section 6, the workflow of the 6D BIM model is presented. The outcome is shown
in Figure 13. Any components of the track structure can be included based on the required
detail. From the figure, sleepers, baseplates, foundations, and retaining walls are included.
However, more detail and components required more memory and computational power
to use the BIM model. the size of sections and the number of 3D solid objects also affect
the required memory and computational power. As mentioned, each 3D solid object can
be calculated for quantity and used to prepare the bill of quantity to achieve the 4D BIM
model. The 3D solid objects can be exported to Navisworks to prepare the project schedule
in terms of construction schedules or maintenance schedules as shown in Figure 14 to
achieve the 5D BIM model.
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For the 6D BIM model, the information is integrated with the BIM model using the
workflow shown in Figure 3. Information integrated with the BIM model can be shown in
Figure 15. The information included are features or inputs for machine learning models
and results from the prediction including the maintenance activities that are required in
each track section.

Sensors 2023, 22, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 13. A 3D BIM model. 

 
Figure 14. Railway BIM model imported to Navisworks for scheduling. 

 
Figure 15. Information integrated into the BIM model. 

The developed 6D BIM model can be integrated with machine learning seamlessly 
and data exchange can be done automatically. The benefit of the developed BIM model, 
machine learning models, and workflow is they can be used together to predict each track 
geometry parameter and inform required maintenance responses to keep tracks in a good 
condition. Therefore, railway maintenance can be done more efficiently because it con-
forms to the predictive maintenance concept. 

  

Figure 15. Information integrated into the BIM model.

The developed 6D BIM model can be integrated with machine learning seamlessly
and data exchange can be done automatically. The benefit of the developed BIM model,
machine learning models, and workflow is they can be used together to predict each track
geometry parameter and inform required maintenance responses to keep tracks in a good
condition. Therefore, railway maintenance can be done more efficiently because it conforms
to the predictive maintenance concept.

8. Application in Real Situations

The developed concept, BIM model, and machine learning models in this study can be
used to predict track geometry parameters in the coming year. The prediction ability will
improve the maintenance efficiency of the railway maintenance in the aspect of predictive
maintenance. Railway operators can use TGCs to measure track geometry parameters.
Then, collect data can be integrated with BIM models which are used as data management
platforms. BIM models can store data and information. Stored data are in time-series
data form. Then, they can be used to predict future track geometry. Besides preparing
maintenance responses based on the measurement in the current year, railway operators can
prepare, or schedule future maintenance responses based on predictions. Predictions can
also be used to predict the following track geometry parameters. However, the sequence
of data in this study is not long enough to test the performance of this concept. This
should be further studied in the next step of the study. The developed BIM model can be
used for data management along the project life cycle for asset management. This will
improve the efficiency of BIM applications which are normally used in the design and
construction stages only. It is believed that using BIM for the whole project life cycle will
improve the overall asset management in different aspects such as cost, quality, availability,
maintainability, and reliability.

9. Conclusions

This study aims to integrate BIM and machine learning to predict track geometry
parameters which consist of superelevation, longitudinal level of both rails, alignment
of both rails, gauge, and twist. The study applies RNN-based machine learning models
which are RNN, LSTM, GRU, and attention to predict the parameter. Features of machine
learning models are stacked as 3D to feed into models. Track geometry measurements
are collected by TGCs from 2016–2019 and the length of the section is 30 km. Time-series
data in terms of time, distance, and maintenance activities are used as features. The study
presents the process of developing the 6D BIM model to integrate with machine learning.



Sensors 2023, 23, 391 17 of 18

Initially, 3D BIM models are developed. Then, cost and quantity, schedule, and maintenance
information are added to the BIM model to achieve the goal of 4D, 5D, and 6D, respectively.

From the machine learning model development, the performances of developed
models are satisfied. The average R2 and MAE are 0.95 and 0.56 mm., respectively, which
can overcome the state-of-the-art performances. Moreover, this study proposes models that
can predict each track geometry parameter. The study demonstrates the potential of the
integration between BIM and machine learning for predictive maintenance. In addition, it
is practical and improves the overall maintenance performance in the railway industry.

A limitation of the stud is some railway operators might not have data in the format
proposed in the study. However, the dimension of inputs can be adjusted in the machine
learning model codes. For further study and improvement, more data should be acquired
to test whether models still well perform when the sequence of data is longer. Moreover, the
length of prediction or window concept can be tested whether predictions can be used to
predict further parameters. Other features can be added and explored for influence on the
track geometry parameters. More advanced machine learning models should experiment
with whether they can provide better performance than the models used in this study.
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