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EXTENDING CSR DECOMPOSITION TO TROPICAL INHOMOGENEOUS
MATRIX PRODUCTS*

ARTHUR KENNEDY-COCHRAN-PATRICK' AND SERGEi SERGEEV?

Abstract. This article presents an attempt to extend the CSR decomposition, previously introduced for tropical
matrix powers, to tropical inhomogeneous matrix products. The CSR terms for inhomogeneous matrix products are
introduced, then a case is described where an inhomogeneous product admits such CSR decomposition after some
length and give a bound on this length. In the last part of the paper a number of counterexamples are presented to
show that inhomogeneous products do not admit CSR decomposition under more general conditions.

Key words. max-plus algebra, matrix product, factor-rank, walk, matrix decompositions

AMS subject classifications. 15A80, 68R99, 16Y60, 05C20, 05C22, 05C25

1. Introduction. Tropical (max-plus) linear algebra is the linear algebra developed over the set
Rmax = RU{—o0} equipped with the additive operator @ : a & b = max(a,b) and the multiplicative
operator ® : a ® b = a + b. For brevity we denote € = —oo: this element of the semiring is neutral
with respect to addition, thus playing the role of semiring zero. In turn, the usual zero 0 plays the
role of semiring unity, being neutral with respect to multiplication. Note that for any a € R there is
a multiplicative inverse: element a~ = a such that a” ® a =a® a™ = 0.

We will be working with the max-plus multiplication of matrices A ® B defined by the operation

(A0 Blis= €D our©bes = ma (@ + bey)

1<k<n

using two matrices A = (a; ;) and B = (b; ;) of appropriate sizes.
Consider the tropical dynamical system of equations given by

z(0) = o
zk)=zk—-1)® A, fork>1
(k) =20 ® A1 ®...0 Ap = 20 @ T (k).

Here the matrices A; are taken in some unspecified order from a possibly infinite set of matrices X.
In practical terms, this represents a dynamical system where some accidental changes may occur
over time. This has useful applications in modelling scheduling systems that are subject to change.

Much work has been done for the case where the matrix A; is the same at each step. Cohen
et al. [8, 7] were the first to observe that, under some mild conditions, the tropical powers {A’};>1
become periodic after a big enough time. A number of bounds on the transient of such periodicity
were then obtained, in particular, by Hartmann and Arguelles [9], Akian et al. [2], and Merlet et
al. [17, 16]. In particular, Merlet et al. [17] offer an approach based on the CSR decompositions
and CSR expansions of tropical matrix powers introduced by Sergeev and Schneider [20, 22]. Let
us note that a preliminary version of such decompositions was introduced and studied before by
Nachtigall [19] and Molndrova [18], and that similar decompositions appear in Akian et al. [2].

It is difficult to speak of ultimate periodicity in the case of inhomogeneous products. However, one
can observe that CSR decompositions are an algebraic expression of turnpike phenomena occurring in
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2 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

tropical dynamical systems driven by one matrix. Namely, they express the fact that in such systems
there are optimal trajectories (or walks) with a special structure: after a finite number of steps they
arrive to a well-defined group of nodes called critical nodes, then dwell within that group of nodes,
and then use a finite number of steps to reach the destination. The same phenomena will likely occur
in inhomogeneous products as well, but only under certain restrictive conditions. In particular, we
can agree that all matrices constituting these inhomogeneous products have the same sets of critical
nodes, and for a starter, we can consider the case where all these matrices have just one critical node.
Under this and some other assumptions, Shue et al. [24] found that products I'(k) become tropical
rank-1 matrices (i.e., tropical outer products) when k is sufficiently big. Kennedy-Cochran-Patrick et
al. [13] improved this result by giving a lower bound for k to guarantee that I'(k) becomes a rank-1
matrix (i.e., a tropical outer product). In the present paper we show that the above results of [13, 24]
can be generalised further by introducing the factor rank transient: the length of the product after
which the product is guaranteed to have a tropical factor rank not exceeding certain number. Rather
than directly proving the factor rank property from an inhomogeneous product, a CSR analogue is
used, which changes the aim to develop bounds on CSR transients rather than factor rank transients.
Upon showing that the analogue definition of CSR exhibits similar properties to the original CSR
(see the apper by Sergeev and Schneider [22]) then we can use similar proof methods and results
from Merlet, Nowak, Schneider and Sergeev [16] as well as Brualdi and Ryser [5] to develop the
key result, which is Theorem 5.8, together with Corollary 5.9, which gives an explicit bound on the
length of the product after which it becomes CSR. However there are limitations to this approach,
namely, where it can be shown for other cases that no bound exists for the CSR transient, and then
we cannot guarantee a factor rank property. Three cases where CSR does not work are given along
with the counterexamples that demonstrate this. In all these counterexamples we present families of
words of infinite length, in which the product made using such a word is not CSR.

Recall that tropical factor rank of a matrix A, studied together with many other concepts of
rank in Akian et al. [1], can be defined as follows: for a matrix A € RX™, the tropical factor rank r

max

of A is the smallest » € N such that A = U ® L where U € R% and L € R} X" for some n,m € N.
Note that the factor rank of A is also equal to the minimum number of factor rank-1 matrices whose
sum is equal to A, see [1][Definition 7.1].

For wider reading, Hook [11] shows that, by approximating the rank of the product in a min-plus
setting, one can find and express the predominant structure in the associated digraph of the matrices
forming the product. Hook has also looked at turnpike theory with respect to the max-plus linear
systems in [12]. In this paper he studies infinite length products, then uses a turnpike property to
develop a factorisation of said matrix product. In terms of turnpikes, many results were obtained for
them in the context of dynamic programming, in both discrete and continuous settings. Specifically,
Kontorer and Yakovenko [15] used turnpike theory and Bellman equations to work with discrete
optimal control problems. Following his work, Kolokoltsov and Maslov [14] developed turnpike theory
for discrete optimal control problems in the context of idempotent analysis and tropical mathematics.

The paper will proceed as follows. The first section will cover the necessary definitions and
notation as well as a brief overview of [13] to give a more concrete background for the ensuing work.
In section 5 we generalise the work from [13] to a general case. For section 6 we look at the cases
where no bound can exist using counterexamples.

2. Definitions and Notation.

2.1. Weighted digraphs and tropical matrices. This subsection presents some concepts and
notation expressing the connection between tropical matrices and weighted digraphs. Monographs [6,
10] are our basic references for such definitions.

DEFINITION 2.1 (Weighted digraphs). A directed graph (digraph) is a pair (N, E) where N is
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109

112
113
114

129
130

EXTENDING CSR DECOMPOSITION TO TROPICAL INHOMOGENEOUS MATRIX PRODUCTS 3

a finite set of nodes and E C N X N ={(i,5): 4, € N} is the set of edges, where (i,]) is a directed
edge from node i to node j.

A weighted digraph is a digraph with associated weights w; ; € Ryax for each edge (i,7) in
the digraph.

A digraph associated with a square matrix A is a weighted digraph D(A) = (Na, Ea) where
the set Na has the same number of elements as the number of rows or columns in the matrixz A.
The set Ex C Na X Ny is the set of edges in D(A), where (i, j) is an edge if and only if a; ; # €, and
in this case the weight of (i, j) equals the corresponding entry in the matriz A, i. e. w; ; = a; j € Rpax.

DEFINITION 2.2 (Walks, paths and weights). A sequence of nodes W = (ig,...,4;) is called
a walk on a weighted digraph D = (N, E) if (is—1,is) € E for each s: 1 < s <. This walk is a cycle
if the start node iy and the end node i; are the same. It is a path if no two nodes in ig,...,i; are
the same. The length of W is I(W) = 1.
The weight of W is defined as the maz-plus product (i. e., the usual arithmetic sum) of the weights of
each edge (is—1,1s) traversed throughout the walk, and it is denoted by pp(W'). Note that a sequence
W = (ig) is also a walk (without edges), and we assume that it has weight and length 0.
The mean weight of W is defined as the ratio pp(W)/I(W).

For a digraph, being strongly connected is a particularly useful property.

DEFINITION 2.3 (Strongly connected, irreducible, completely reducible). A digraph is strongly
connected, if for any two nodes i and j there exists a walk connecting i to j. A square matriz is
irreducible if the graph associated with it in the sense of Definition 2.1 is strongly connected.

A digraph is called completely reducible, if it consists of a number of strongly connected compo-
nents, such that no two nodes of any two different components can be connected to each other by a
walk.

Note that, trivially, any strongly connected digraph is completely reducible.
The following more refined notions are crucial in the study of ultimate periodicity of tropical
matrix powers, and also for the present paper.

DEFINITION 2.4 (Cyclicity and cyclic classes). Suppose that a digraph is completely reducible.
Then the cyclicity of that digraph is the lowest common multiple of the greatest common divisors of
the lengths of cycles within each strongly connected component. It will be denoted by .

Suppose now that a digraph with set of nodes N and cyclicity v is strongly connected. For two
nodes i,j € N we say that i and j are in the same cyclic class if there exists a walk of length modulo
v connecting © to j or j to i. This splits the set of nodes into v cyclic classes: Cy,...,Cy—1. The
notation C; — Cn, means that some (and hence all) walks connecting nodes of C; to nodes of Cp,
have lengths congruent to k modulo ~v. The cyclic class containing i will be also denoted by [i].

The correctness of the above definition of cyclic classes follows, for example, from [5, Lemma
3.4.1]: in fact, every walk from i to j on D has the same length modulo ~.

In tropical algebra, we often have to deal with two digraphs: 1) the digraph associated with A
and 2) the critical digraph of A. The latter digraph (being a subdigraph of the first) is defined below.

DEFINITION 2.5 (Maximum cycle mean and critical digraph). For a square matriz A, the max-
imum cycle mean of D(A) denoted as A\(A) (equivalently, the mazimum cycle mean of A) is the
biggest mean weight of all cycles of D(A).

A cycle in D(A) is called critical if its mean weight is equal to the mazimum cycle mean (i.e., is
mazximal).

The critical digraph of A, denoted by C(A), is the subdigraph of D(A) whose node set N. and
edge set €. consist of all nodes and edges that belong to the critical cycles (i.e., that are critical).

his manuscript is for review purposes only.
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4 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

Note that any critical digraph is completely reducible. As shown already in [8, 7], the cyclicity of
critical digraph of A is the ultimate period of the tropical matrix powers sequence {A'};>1, provided
that A is irreducible and A(A) = 0. See also Butkovi¢ [6] and Sergeev [20] for more detailed analysis
of the ultimate periodicity of this sequence.

Below we will use notation for walk sets and their maximal weights that is similar to that of
Merlet et al. [17].

DEFINITION 2.6 (Sets of walks). Let D = (N, E) be a weighted digraph and let i,j € N. The

three sets Wp (i — 7), WE(i — j) and Wp (i N, J), where N'C N is a subset of nodes, are defined
as follows:

Whp (i — j) is the set of walks over D connecting i to j;

Wi (i — 7) is the set of walks over D of length k connecting i to j;

Wh (i ﬁ) J) is the set of walks over D connecting i to j that traverse at least one node of N.
The supremum. of the weights of walks in these sets will be denoted by p(W).

2.2. Main assumptions. In this subsection, we set out the main assumptions about X and
the matrices A, that are drawn from this set and give some relevant definitions.

DEFINITION 2.7 (Geometrical equivalence). Let the matrices A and B have their respective
digraphs D(A) = (Na, Ea) and D(B) = (Ng, Eg). We say that A and B are weakly geometrically
equivalent if No = Np and E4 = Ep, and they are strongly geometrically equivalent if they are
weakly geometrically equivalent and C(A) = C(B).

We cannot assume that the maximum cycle mean of each A, € X is zero therefore we normalise
each matrix to give the new set of matrices ), where
Yy={A, A, =\ (4,) ® A, VA, € X}.
Here A7 (An) = —A(An). From Assumption A stated below it follows that A(A,) € R, thus the
inverse A~ (A,) is well defined.

NOTATION 2.8 (A% and Anf).

ASUP - entrywise supremum of all matrices in Y. In formula, AP =, . ey Aa-
A entrywise infimum of all matrices in Y.

Note that the concept of A%"P has been used before for various purposes. In [4], Gursoy, Mason
and Sergeev use the same definition to develop a common subeigenvector for the entire semigroup of
matrices used to create AS'P which is a technique we will use later on. In [3], Gursoy and Mason use
AP and A\(A%"P) to develop bounds for the max-eigenvalues over a set of matrices.

We now state the main assumptions to be used in the paper.

ASsSUMPTION A. Any matriz A, € X is irreducible.

ASSUMPTION B. Any two matrices Ay, Ag € X are strongly geometrically equivalent to each
other and to AS"P, which has all entries in Ry ayx.

The following notation is defined under assumptions A and B.

NOTATION 2.9. The common associated digraph of the matrices from X will be denoted by
D(X) = (N, E), and the common critical digraph by C(X) = (N, &.). In general, this critical
digraph has m > 1 strongly connected components, denoted by C,, forv=1,...,m.

ASSUMPTION C. Any matriz A, € X is weakly geometrically equivalent to A™ . In other words,
for each (i,7) € E, we have (A™);; # —oc.

ASSUMPTION D1. For the matriz AS*P, we have A(A%'P) = 0.

This manuscript is for review purposes only.
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EXTENDING CSR DECOMPOSITION TO TROPICAL INHOMOGENEOUS MATRIX PRODUCTS b)

The first three assumptions come from the previous works by Shue et al. [24] and Kennedy-
Cochran-Patrick et al. [13]: however, we will no longer assume that the critical graph consists just of
one loop.

The final assumption below is inspired by the visualisation scaling studied in Sergeev et al [23],
see also [21] and references therein for more background on this scaling.

DEFINITION 2.10 (Visualisation). Matriz B is called a visualisation of A if there exists a diagonal
matriz X = diag(x), with entries X;; = x; on the diagonal and X;; = € off the diagonal (i.e., if
i #j), such that B= X"'AX and B satisfies the following conditions: B;j = \(B) for (i,j) € E.(B)
and B;; < X(B) for (i,j) ¢ E.(B).

Once \(A) # ¢, a visualisation of A always exists and, moreover, vectors = providing a visualisation
by means of diagonal matrix scaling A — X ' AX are precisely the tropical subeigenvectors of A,
i.e., vectors satisfying Az < A\(A)z. Using this information we have the following lemma.

LEMMA 2.11. Suppose that the vector x satisfies AS*Px < x. Then x provides a simultaneous
visualisation for all matrices of X (and Y ).

Proof. Let x be the vector that satisfies APz < z. By construction, A®"P is the supremum matrix
of all the normalised generators in X'. Therefore for these normalised generators A,, A, < A'P.
Hence the vector x also satisfies A,z < = and it can be used to visualise A,. As this applies for all
« then they can be simultaneously visualised. As ) is the set of normalised matrices from X then
the same applies to any matrix from ) as well. 0

This is referred to as the set of matrices having a common visualisation, therefore, in what follows
we assume that we have performed this common visualisation on all of the matrices in X (and )) to
give the final core assumption.

ASSUMPTION D2. For all A, € Y, we have (Ay)i; = 0 and (A%"P);; = 0 for (i,j) € &, and
(Aoz)ij S 0 and (ASUp)ij S 0 f07’ (Zvj) ¢ gc-

From now on we will use Assumption D2 instead of Assumption D1. Note however, if the theory
developed in this paper is applied to a set of matrices satisfying Assumption D1, then the parameters
appearing in the bounds are computed using the entries of their visualised counterparts.

2.3. Extension to inhomogeneous products. Recall now that we have a set of matrices ),
from which we can select matrices in arbitrary sequence.

DEFINITION 2.12. The word associated with the matriz product T'(k) is the string of characters
(subscript) i from A; € Y that make up said I'(k).

Let us also introduce the trellis digraph associated with a matrix product I'(k) = A1 ®A2®...Q Ay
(as in [13], inspired by Viterbi algorithm).

DEFINITION 2.13. The trellis digraph 7 (P) = (N, &) associated with the product I'(k) = A1 ®
Ay ® ... ® A made from the word P is the digraph with the set of nodes N' and the set of edges £,
where:
(1) N consists of k+ 1 copies of N which are denoted Ny, ..., Ny, and the nodes in N; for each
0<I<karedenoted by 1:1,...,n:1;
(2) & is defined by the following rules:
a) there are edges only between Ny and Ny for each l,
b) we have (i: (I —1),7:1) € € if and only if (i,7) is an edge of D(Y), and the weight of
that edge is (Ar); ;.
The weight of a walk W on T (P) is denoted by pr(W).

his manuscript is for review purposes only.
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6 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

Below we will need to use 1) walks that start at one side of the trellis and end at an intermediate
node, 2) walks that start at an intermediate node and end at the other side of the trellis, 3) walks
that connect one side of the trellis to the other. More formally, we give the following definition.

DEFINITION 2.14. Consider a trellis digraph T (P).

By an initial walk connecting i to j on T (P) we mean a walk on T (P) connecting node i : 0 to
7 :m, where 0 < m < k.

By a final walk connecting i to j on T(P) we mean a walk on T(P) connecting node i : 1 to
j:k, where 0 <1 <k.

A full walk connecting i to j on T(P) is a walk on T(P) connecting node i : 0 to j : k.

We will mostly work with the following sets of walks on 7.

NOTATION 2.15 (Walk sets on 7 (P)).
WE (i = 3), Wo (i = §) and Wi g (i — 5) = set of full walks (of length k), and sets
of initial and final walks of length I on T connecting i to j.
WE qan(i Ne,y 3)s Wi e (4 Ne,y ) and Wh ¢ (i Ne, J) : set of full walks (of length k), and
sets of initial and final walks of length | on T traversing a critical node and connecting i to j;
W it (0 = NC||): set of initial walks connecting i to a node in N, so that this node of N,
is the only node of N. that is visited by the walk and it is visited only once;
W inal(INe = 7): set of final walks connecting a node in N, to j so that this node of N is
the only node of N, that is visited by the walk and it is visited only once.
i — j : this denotes the situation where i : 0 can be connected to j: k on T by a full walk.

Recall that p(WW) denotes the optimal weight of a walk in a set of walks W. The optimal walk
interpretation of entries of I'(k) in terms of walks on 7 = T (P) is now apparent:

(1) L(k)ij=p (Wéf’,full(i - J)) .

We will also need special notation for the optimal weights of walks in the sets Wy init (i — N¢||)
and Wy final (| Ve = j) introduced above.

NOTATION 2.16 (Optimal weights of walks on T (P)).
wy nr = PV inie (i — Nel|)) ¢ the mazimal weight of walks in Wr i (i — Nel|),
vy, ; = POVT final(INe — 7)) © the mazimal weight of walks in W gnal(|Ne — 7).

The following notation is for optimal values of various optimisation problems involving paths
and walks on D(AS"P), D(A™), which will be used in our factor rank bounds.

NOTATION 2.17 (Optimal weights of walks on D(AS"P) and D(A™)).
a; n., : the weight of an optimal path on D(AS'P) connecting node i to a node in Ng;
Bn,,; © the weight of an optimal path on D(AS"P) connecting a node in N, to node j;
vi.j © the weight of an optimal path on D(A®'P) connecting node i to node j without traversing
any node in N..
w; n. © the weight of an optimal path on D(Ainf) connecting node i to a node in N;
un..j ¢ the weight of an optimal path on D(A™) connecting a node in N, to node j;
ufj : the weight of an optimal walk on D(A™) of length k connecting node i to node j.

We remark by saying that the Kleene star, which is explored in [6] and is defined as (A)* =
Is A A% ..., of AS'P can be used to find the values of a; o7, and By, ;. Similarly the Kleene star
of A" can be used to find w; N, and vy, ;. Let us end this section with the following observation,
which follows from the geometric equivalence (Assumptions 55 and C)

LEMMA 2.18. The following are equivalent: (1) i —7 j; (i) (T'(k)):,; > e; (iii) uf] > €.

This manuscript is for review purposes only.
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260 3. CSR products. In this section we introduce CSR, decomposition of inhomogeneous products
261 and study its properties. It should be noted that in this section we will use Assumptions A, B and D2
262 for every proof presented. We will give the two definitions of the CSR decomposition of I'(k) and
263 prove their equivalence. However in order to do that we require another definition.

264 DEFINITION 3.1. Let the matriz A have cyclicity v. The threshold of ultimate periodicity of
265 powers of A, is a bound T(A) such that Vk > T(A), AF = AF+7.
266 This threshold is required to develop the CSR decomposition for I'(k) as seen in the following
267  definitions.
268 DEFINITION 3.2 (CSR-1). LetT'(k) = A1 ®...® Ay be a matriz product of length k made using
269 the word P. Define C, S and R as follows:
270 S is the matriz associated with the critical graph, i.e.
0 if (i,j) € &

271 2 S =(si;) =

I @ (i) {6 otherwise.
272 Let v be the cyclicity of critical graph, and t be a big enough number, such that ty > T(S),
273 where T'(S) is the threshold of ultimate periodicity of (the powers of) S.
274 C and R are defined by the following formulae:
975 C = F(k‘) ® S(H—1)’y—k(mod'y)7 R = S(t—&-l)’y—k(mody) ® F(k‘)
276 The product of C', S¥™°d7) gnd R will be denoted by CS*™dV R[T(k)]. We say that T'(k)
277 is CSR if CS*mod ) R[T(k)] is equal to T'(k).
278 For completeness we must also state that for any matrix in A € R2X?, A® = I, where [ is the

279 tropical identity matrix, i.e. I = diag(0). In the next definition, we prefer to define CSR terms
280 corresponding to the components of the critical graph.

281 DEFINITION 3.3 (CSR-2). LetT'(k) = A1 ® ... ® Ag be a matriz product of length k, and let
282 C,, forv=1,...,m be the components of C(}). For each v =1,...,m define C,, S, and R, as
283 follows:

284 S, € RYXY is the matriz associated with the s.c.c. C, of the critical graph, i.e.,

0 if(i,5) € C,,
285 (3) S, = (81‘73') = ( )

€ otherwise.
286 Let v, be the cyclicity of critical component, and t, be a big enough number, such that
287 t,y, > T(S,), where T(S,) is the threshold of ultimate periodicity of (the powers of ) S,,.
288 C, and R, are defined by the following formulae:
289 C, =T(k)® Sl(/tu+1)%—k(mod7u), R, = Slgty"l‘l)’)’u_k(mOd'Yu) @ T(k).

The product of C,y, SE™°47) and R, will be denoted by Cl,Sf(mOd%)R,,[F(k)}. We say that
I'(k) is CSR if

(k) = @ C, S5 R, [D(K)).
v=1

This manuscript is for review purposes only.
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8 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

Using the definitions given above, we can write out the CSR terms more explicitly:

Csk(mod'y)R[l—\(k)] F(k) ® S(t—i—l)w—k(mod’y) ® Sk(mod'y) ® S(t+1)'y—k(rnod'y) ® F(k)
F(k’) ® S2(t+1)'yfk(mod7) ®F(k’),

(k) © S3He M40 @ (),

Cy 8,0 Ry [ (k)]

Since the powers of S are ultimately periodic with period v and the powers of S, are ultimately
periodic with period +,, and since also we have ty > T'(S) and t,7v, > T(S,), we can reduce the
exponents of S and S, to (¢t + 1)y — k(mod ) and (¢, + 1), — k(mod v, ), respectively, and thus
CSFmdNRIN(E)] =T(k) @ S* @ T(k), C,S¥medw)R [D(k)] =(k) ® S @ (k),

for v = (t+ 1)y — k(mod~), v, = (t, + 1)y, — k(mod ), ty > T(S), tuy, > T(S,).

Below we will also need the following elementary observation.

LEMMA 3.4. Let v = (t + 1)y — k(mod ~), where tv > T(S). Then, for any v, we can find t,
such that v = (t, + 1)y, — k(mod ~,) and t,v, > T(S,).

Proof. The existence of ¢, such that v = (¢, + 1), — k(mod~, ) follows since ~ is a multiple of
v, and then we also have t,v, >ty > T(S) > T(S,). u|

This lemma allows us to also write
(5) C,Skmed ) R T (k)] = T(k) ® S @ D(k),
with v as in (4).

ProrosITION 3.5. T'(k) is CSR by Definition 3.2 if and only if it is CSR by Definition 3.3.
Proof. We need to show that

0 €5 R (1)) = €D €, S5 R, (L ()

v=1

for arbitrary k. Using (4) and (5) we can rewrite this equivalently as

(7) F(k) ® S(tJrl)'yfk(mod'y) ® F(k) _ F(k) ® <@ S£t+1)vk(mod'y)> ® F(k:) O

v=1

with ¢y > T'(S). To obtain this equality, observe that S = @!-, S, and as S,, ® S,, = —cc for
any v; and v, we can raise both sides to the same power to give us S* = @, S!, for any ¢. This
shows (7), and the claim follows.

For a similar reason, we also have the following identities:

e nbon
v=1 v=1

C & Sk(mody) _ @C’/ ® S’]j(mod’)/u)’ Gh(mod") o p — @ S’;(mod ) ® R,.

v=1 v=1

(®)

To give an optimal walk interpretation of CSR, we will need to define the trellis graph corre-
sponding to these terms, by modifying Definition 2.13.

This manuscript is for review purposes only.
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316 DEFINITION 3.6 (Symmetric extension of the trellis graph). Let v = (t + 1)y — k(mod ), where
317t is a large enough number such that ty > T(S).
318 Define T'(T(k)) as the digraph T' = (N",E’") with the set of nodes N' and edges £, such that:

319 (1) N consists of 2k +v + 1 copies of N which are denoted Ny, ..., Nogy, and the nodes for N
320 for each 0 <1 <2k + v are denoted by 1:1,...,n:1;
321 (2) £ is defined by the following rules:
322 a) there are edges only between Ny and Njyq,
323 b) for 1 <1<k wehave (i:1—1,7:1) € & if and only if (i,5) € E(Y) and the weight of
324 the edge is (A1) j,
325 c) fork+v+1<1<2k+v wehave (i:1—1,5:1) €& if and only if (i,7) € E(Y) and
326 the weight of the edge is (A—k—v)ij,
327 d) fork <l<k+4+v+1 wehave (i:1—1,7:1) €& if and only if (3,5) € C(Y) and the
328 weight of the edge is 0.
329  The weight of a walk on T'(I'(k)) is denoted by pr(W).

2k+v

330 If we consider the walks in W ’,full(i — 7) then, in the middle of the walk for [ satisfying k <[ <
331 k4 v+ 1, the walk is confined in one of the components of C()). The set of walks confined in the

332 v component of C()) in the middle of the walk for [ satisfying k < [ < k + v + 1, is denoted by

N
333 Wzl‘fﬁ’u(i Wel, 7). The following optimal walk interpretation of CSR terms on 7~ is now obvious.

334 LEMMA 3.7 (CSR and optimal walks). The following identities hold for all i, j

(Csk(mod'y)R[F(k)])iJ =p (WQI?,J;&]ll(i — j)> )

335 (9) ,
mo v . INZTO.
(G, SEmI ) R, [D(k)])ss = p (W”f,tuw e, ﬁ) ,

336 where v = (t + 1)y — k(mod ), with ty > T(S).

337 Proof. With (4), the first identity follows from the optimal walk interpretation of I'(k) ® S ®T'(k),
338 and the second identity follows from (5) and the optimal walk interpretation of I'(k) ® SY @ T'(k).O

339 In what follows, we mostly work with Definition 3.3, but we can switch between the equivalent

340  definitions if we find it convenient.

341 We now present a useful lemma that shows equality for columns of C), and rows of R, with

342 indices in the same cyclic class.

343 LEMMA 3.8. For any i and for any two nodes x and y in the same cyclic class of the critical

344 component C, we have

345 (10) (Oy)ivz = (Cz/)i,y and (Ry)m,i = (Ry)yﬂl

346 Proof. We prove the lemma for columns, as the case of the rows is similar.

347 For any 4, z, denote (Cy); 4 by ¢i 5. From the definition of C,, it follows that ¢; , is the weight
_ NY

348  of an optimal walk in ijri(:li”tﬂ)% k(mod 7”)(i — j) where t,v, > T(S,), and such walk consists of

349  two parts. The first part is a full walk on 7~ connecting i to the critical subgraph at some node s.
350 The second part is a walk over the critical subgraph of length (¢, + 1), — k(mod~,) connecting s to
351  a with weight zero. As the length of the second walk is greater than T'(S,), a walk connecting s
352 to x exists if and only if [s] = _p(mod~,) [#]. If a full walk connecting i to [s] on T exists then, for
3 arbitrary x,y in the same cyclic class, ¢; , and c¢;, are both equal to the optimal weight of all walks
354 connecting i to [s] on T, where [s] = _i(mod~,) [#], otherwise both ¢;, and ¢;, are equal to —oo.
This shows that ¢; ; = ¢; 4.

w W
ot Ot Ot

w
a
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The case of rows of R, is considered similarly, but instead of initial walks one has to use final
walks on T". 0

We can use this to prove the same property for C' and R of Definition 3.2.

COROLLARY 3.9. For any i and for any two nodes x and y in the same critical component and
the same cyclic class of said critical component, we have

(11) Ci,w = Ci’y and Rm,i == Ry,i

Proof. We will prove only the first identity, as the proof of the second identity is similar. Let
z,y belong to the same component C,, of C()), and let them belong to the same cyclic class of that
component. By Lemma 3.8 we have (Cy,); > = (Cy)iy, and we also have (C,); » = (Cy);,y = € for
any v # p. Using these identities and (8), we have

Oi,x = (@ Ou) = (Cu)i,ac = (Cu)i,y = <@ CV) = Cm,. a
v=1 v=1

i,

Y

The next theorem explains why CSR is useful for inhomogeneous products. Note that in the
proof of it we use the CSR structure rather than the I'(k) ® S¥ ® I'(k) representation that was used
above.

THEOREM 3.10. The factor rank of each C'VS,]f(mOd%)RV[F(k)} is no more than ,, for v =
1,...,m, and the factor rank of CS*™°dY R[T(k)] is no more than >, 7.

Proof. For each v = 1,...,m, take all the nodes from G, and order them into cyclic classes
Cg,...,CY 4. Take two columns with indices z,y € C; from the matrix C,. As they are in the same
cyclic class, by Lemma 3.8 the columns are equal to each other. This means that we can take a
column representing a single node from each cyclic class and since there are ~, distinct classes then
there will be ~, distinct columns of C,. The same also holds for any two rows of R,: if the row

indices are in the same cyclic class, then the rows are equal, so that we have =, distinct rows.

Let us now check that the same holds for S,]f(mOd W) ® R,. By the construction of Sl]f(m()d ") we
know that if (Sf(mOd%))ij # 0 then [i] —=4(mod~,) [j]. Therefore
(S’Vf(mOdWU) ® Ru)i,~ = @ (Sllj(mOd’yu))ij ® (Ru)j,' = @ (Sllj(mOd%/))ij ® (Rl/)j,' = (Ru)j"'

JEN. E [i]*}k(mod'y,,)[j]

This means that for a row i such that [i] =4 (mod~,) [J] We have (S,]f(m()d ") & R,);. = (Ry);. and all

such rows of S’lf(mOd 2 ® R, are equal to each other.

Our next aim is to define, for each v, matrices C!, and R, with 7, rows and =, columns, such
that C, SE™°17) R, [['(k)] = C, ® R,,. To form matrix C},, we select a node of C,, from each cyclic
class Cf,...,CY _; and define the column of C}, whose index is the number of this node to be the
column of C,, with the same index. The rest of the columns of C/, are set to —co. To form matrix
R!,, we use the same selected nodes, but this time (instead of taking columns of C,, and making them
columns of C’)) we take the rows from SE™°47) @ R, whose indices are the numbers of selected
nodes and make them rows of R],. The rest of the rows of R], are set to —co. Since the rows of C,,
with indices in the same cyclic class are equal to each other and the same is true about the rows
of SEmed) @ R we have C, 554 R, [['(k)] = C, ® R, thus the factor rank of any of these
terms is no more than ~,.

This manuscript is for review purposes only.
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We next form the matrices ¢’ = @, ; C}, and R’ = @, | R,,. Obviously, C}, ® R, = —oo for
V1 # vy and therefore

C'eR =PC, o R, =D C,8,m R, [D(k)] = CSCRIT(K)). 0
v=1 v=1
Finally, as C’ and, respectively, R’ have > ", 7, columns with finite entries and, respectively, rows
with finite entries with the same indices, C.S*™°d7MR[T (k)] = C’ ® R’ has factor rank at most
Dot Yo
COROLLARY 3.11. IfT'(k) is CSR, then its rank is no more than .| v, .
Let us also prove the following results that are similar to [22, Corollary 3.7].

PropOSITION 3.12. For eachv =1,...,m
(C, @ SEIM @ R,). ;= (C, ® SEM1)) 5 for jeNY
(C, @ Skmedw) @ R ), = (§Fmedv) @ R)), — for i NY.

Proof. As the proofs are very similar for both statements we will only prove the first and omit
the proof for the second statement. We begin by observing that
(€@ SEN ), = p (Wi = 9))
where we used the definitions of C,, and S, and the identity Sl Stev (since t,7y, > T(S,)).
Here it is convenient to choose ¢, that satisfies (¢, + 1)y, — k(mod ~,) = (t + 1)y — k(mod ), with ¢
used in the definition of 77. With this choice t,7, < 7.
. VY]

Using (9), all we need to show is that p (W%E’H(z RALLIN ])) =9 (WkHWV (i — j)), where

7 init

v = (t+ 1)y — k(mod ). We will achieve this by proving these two inequalities:

VL Kt s L

p (Wi X5 5)) 20 (WG - ).
(12) A
p (Wit 25 5)) <p (Wit G- )

To prove the first inequality of (12) we first consider Wktf;iz" (¢ = j'), where j' € [j]. Optimal walk
in any of these sets can be decomposed into 1) an optimal full walk on 7 connecting i to a node
of [j], and 2) a walk of weight 0 and length ¢,v, on C, connecting that node of [j] to j', whose
existence follows since ¢,7, > T(S,). This decomposition implies that the weights of all these optimal

walks are equal. One of them, denote it by W7 can be concatenated with a walk W5 on C, of length
NV
k — k(mod~,) + v and ending in j. We see that p(W1W3) = p(W1) and W1 W, € Wmfjgfu(i Wel, 7).

. . . NI .
To prove the second inequality of (12) we take a walk in ngfjgfn(z Wel, j) and decompose it

into 1) a walk in W2 (i — j/), where j' € [j], 2) a walk in Wk,_fif]r:fd%H% (4" — 7). The weight

7 init
of the first walk is bounded by p (Wktfﬂ” (i—j )), and the weight of the second walk is bounded

by 0, thus the second inequality also holds. 0

COROLLARY 3.13. For CSR as defined in Definition 3.2 we have,
(C @ 8§kmed @ R) & = (C'® §HmedMy o for je N,

.

(C @ §kmedm @ R), = (SFmdD) @ RY,  for ie N..
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12 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

Proof. The proofs for both statements are similar so we will only prove the first one.

Let 7 € Ne. As all nodes from N, can be sorted into Y for some v = 1,...,m, assume without
loss of generality that j € N/,

Taking the right-hand side of the first statement and using (8), we have

(C ® Sk mod'y) ) <®C ® Sk)(modvu ) )
J

v=1

)

By Definition 3.3, if j € N# then for all v # u, (C, ® Sk mOdv”)).,j = —00. Therefore, for every v,
(C,® Gh(med 7”)).,j will be dominated by (C,, ® Sk(mOd'y")).J. Hence,

(13) (EB C,® 55<m°d%>> = (C,, ® SFmedm))
v=1

J

Turning our attention to the left-hand side of the first statement, by (8) we get

(C ® §kmed") @ R). (@C ® Skmedw) g R, ) .
J

v=1

)

Now we must show that, for j € M¥ and for all v, (C, @ S5™ " @R,).; < (C,@SE™ " gR,).
By (9) this is the same as saying

v WY1 v . N
p<W2I?:~1;ull( —>])) (Wg]?-if_ull( —>=7))

for some arbitrary node i. Let W be the walk of length 2k + v connecting i to j that traverses

N, such that p(W) = p (W%EJH(Z Wel, ])) As j € N¥ then W is also a walk of length 2k + v

NH
connecting i to j that traverses N, hence W € W2+t fan (i — Jj) and the inequality holds.

Therefore, as with the right-hand side, we have

v=1

m
(14) (EB Cy ® 551 @ R”) = (Cu® SK™W @ R,). ;.
~J

Finally the first statement of Proposition 3.12 gives us equality between (13) and (14). As j was
chosen arbitrarily, this holds for any j € N, and the result follows. 0

4. General results. This section presents some results that hold for general inhomogeneous
products satisfying Assumptions A, B and D2. Before we proceed, let us introduce the following
piece of notation, inspired by the weak CSR expansion of Merlet et al. [17]:

NOTATION 4.1 (B®"P and \,). Denote

(A%P); 5, otherwise

(B, — {5 if i € N or j € N,

and by A. the mazimum cycle mean of BS'P.

This manuscript is for review purposes only.
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We remark that the the metric matrix, given in [6] and defined as A* = A® A2 @ ..., of BS"P is
useful in calculating all the entries of +; ; simultaneously.

NOTATION 4.2 (q). We will denote by q the number of critical nodes, i.e., ¢ = |Ne|.

The following results generalize [13, Lemmas 3.1-3.2] for initial and final walks to the case of
a general critical subgraph. Observe that, under Assumptions 5 and D2, we have A\, < 0, so that
the bounds in the following lemmas make sense. Recall the sets of walks Wy init(i — N¢||) and
W7 final (Ve — j) introduced in Notation 2.15.

LEMMA 4.3. Let W; n, be an optimal walk in Wr it (i — N¢||), so that p(W; nr.) = wy .. Then
we have the following bound on the length of W; ar, :

n—gq, Zf)\* =5
15 l VVi,/\/'C < S wl iy —a
(15) (Wi {1MMHW+@VWL if A > e

Proof. If A, = ¢, then any walk in Wy it (i — N¢||) has to be a path, and its length is bounded
by n —q. Now let A, > ¢e. As A\, < 0, the weight of the walk W; »r, connecting i to a node in N, is
less than or equal to that of a path P; nr, on D(A"'P) connecting ¢ to a node in N, plus the remaining
length multiplied by A.. The remaining length is bounded from above by n — g, since all intermediate
nodes in W; xr, are non-critical. Hence

PT(Win.) < Psup(Pin) + (L(Win.) = (n = q))As.

We can bound psup(Pin,) < @i, SO

(16) pr(Win.) < ain, + ((Win) = (n = ) As.

N
Wi Ne ~Yi,Ne

Now assuming for contradiction that I[(W; n.) > —“*<—== 4 (n —¢) . This is equivalent to
(17) ain, + ((Win,) = (n = q)) A <win,

In combining (16) and (17) we get pr(Win,) < w;,. meaning that W; n, is not optimal, a
contradiction. So we know that for for any I € N,

* .
Wy N, — QN

(Wi n) <
(Win.) < "

+ (n—q).

The proof is complete. 0

LEMMA 4.4. Let Wy, ; be an optimal walk in Wr gnal(|Ne — 37), so that p(Wy, ;) = vi. ;-
Then we have the following bound on the length of W, ;:

n—gq, Zf)\* =g,
18 {(Whr. s < N j
( ) ( Nc,]) {NcJﬁNcJ + (n— q)7 if)\* > €.

As the proof of this lemma is analogous to the proof of Lemma 4.3 it is omitted. Also, we can
observe that n — ¢ is the limit of the expressions on the right-hand side of (15) and (18) as A\, — ¢,
hence we will not consider this case separately in the rest of the paper.

The following result is a generalised form of [13, Lemma 3.4] which uses a nominal weight w.

This manuscript is for review purposes only.
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14 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

LEMMA 4.5. If v; ; = €, then any full walk connecting i to j on T (P) traverses a node in N..
If vij > ¢, let

(19) k>%+(n—q)
for some w € R. Then any full walk W connecting i to j on T (P) that does not go through any node

1 € N, has weight smaller than w.

Proof. In the case when v; ; = ¢, the claim follows by the definition of +; ; and by the geometric
equivalence between A®"P and the matrices from ). So we assume that v; ; > €. Any walk W that
does not traverse any node in N, can be decomposed into a path P connecting i to j avoiding N,
and a number of cycles. Hence we have the following bound:

pT(W) < paup(P) + (k= (n — q))A..
We can further bound pgyp(P) < 7, S0
(20) pr(W) <7ij+ (k= (n = q)A
Now (19) can be rewritten as
(21) Yij+ (k= (n—qg)A <w.
By combining (20) with (21) we have py(W) < w, which completes the proof. 0
F(k;)Using this bound we can obtain a condition under which the CSR term is (non-strictly) above

THEOREM 4.6. If v, j = ¢ then T'(k) < CSFmodM R[T(k)].
If’Yi,j > g, let

(22) k>  max (F(k);_“ +(n— q)) .

1,J 1 =77V, >€
Then T'(k) < CS*med") R (k).

Proof. 1f i /1 j, then (T'(k));; = —oc. In this case, obviously, I'(k); ; < (C' Sk RIT(k)]), ;.

If ¢ =7 7, then (I'(k));; # €. Let W* be the optimal walk of length k on 7 (P) connecting i to
J with weight I'(k), ;. If k is greater than the bound (22) then, by Lemma 4.5, for the walk to have
weight equal to T'(k); ;, it must traverse at least one node in N, and the same is true when v; ; = e.
Hence this walk belongs to the set WA (i HNe, j) and further I'(k),; ; = p(W*) <p (W%“—(z HNe, ]))

Let f € N. be the first critical node in the first critical s.c.c C,, with cyclicity ~,, that W*
traverses. We can split the walk into W* = W1 W3 where W7 is a walk connecting i to f of length r
and W3 is a walk connecting f to j of length k — r. We have p(W*) = p(W7) + p(W3).

Let 77 be the trellis extension for the matrix product C'S*™°d") R[['(k)] with length 2k 4 v
where v = (¢t 4 1)y — k(mod ) as described in Definition 3.6.

We now introduce the new walk W’/ = W WyWs3 on T’. Here W, and W3 are the subwalks
from W* introduced before, where W, is viewed as an initial walk on 7’ and W3 as a final walk
on 7', and Wy is a closed walk of length k& + v that starts and ends at f. Since k + v = 0(mod ~,)
and k +v > T(S) > T(S,), this closed walk exists and can be entirely made up of edges from
C,. This means the walk W’ is of length 2k + v and it traverses the set of nodes N therefore

N
W' e WET (i == 7).

This manuscript is for review purposes only.
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EXTENDING CSR DECOMPOSITION TO TROPICAL INHOMOGENEOUS MATRIX PRODUCTS 15
As W5 is made entirely from critical edges, we have p(W3) = 0 and p(W*) = p(W’') <
. NY . .
D (W%“’(z — j)), and using (31) gives us

L(k)ij = p(W*) < (C,SL R [D(K)])iy < (CSMNVRID(K)])i g

’

where the last inequality is due to Proposition 3.5. The claim follows.

This condition looks like a bound for I'(k) to become equal to the corresponding CSR, product,
but it is implicit since it requires I'(k) to be calculated in order to generate the bound. However, we
can develop a condition that does not depend on I'(k). This following result requires Assumption C.

COROLLARY 4.7. Let

i
(23) k> max (M—&-(n—q)).

1,J 1 177, i, 5 >€

Then T'(k) < CS*mod " R (k).

Proof. By Lemma 2.18, ¢ —7 j is equivalent to ufJ > g, so maximum in (23) is taken over i, j
for which uf ; and ~; ; are finite. We also have uf; < (I'(k)); ; by the definition of A™".

0.
Further, as A\, < 0, then any k that satisfies (23) will also satisfy (22). The claim now follows
from Theorem 4.6. |

5. The case where CSR works. In the case when C(X) is just one loop, Kennedy-Cochran-
Patrick et al. [13] established a bound on the lengths of inhomogeneous products, after which these
products are of tropical factor rank 1. In this section we extend this result to the case when D(X)
and C(X) satisfy the following assumption, in addition to Assumptions A, B and D2.

AssSUMPTION P0. C(X) is strongly connected and its cyclicity v is equal to the cyclicity of
D(X).

The equality between cyclicities means that the associated digraph D(X) has the same number
of cyclic classes v as C(X).

NoTATION 5.1. The cyclic classes of D(X) are denoted by Cy, ...,C,_;.
For a node i € N, the cyclic class of this node with respect to D(X) will be denoted by [i]’.

For a node ¢ € N, we will use both [i] (the cyclic class with respect to C(X)) and [¢]" (the cyclic
class with respect to D(X)), and an obvious inclusion relation between them: [i] C [q]’.

One of the ideas is to combine Lemmas 4.3 and 4.4 together with Schwarz’s bound. To define
this bound, following [17], we first introduce Wielandt’s number

(n—1)2%+1 ifn>1,

Wi(n) =
i(n) {0 ifn =0,

and then Schwarz’s number

Sch(y,n) = 7 Wi (M) + n(mod 7).

Let us now prove the following lemma.
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16 A. KENNEDY-COCHRAN-PATRICK AND S. SERGEEV

LEMMA 5.2. Let

* .
Wi N, — QN
Ags

VN~ BN

(24) k> + (n—¢q) + Sch(nv,q) +

Then
(i) If [i] /~r[j] then there are no full walks connecting i to j on T(P) (i.e., i /71 7).
(i) If [i]' =k [j]', then there is a full walk W connecting i to j on T(P) and going through a
critical node, and we have pr(W) = wj 5, + vy, ; U W is optimal.

Proof. The property [i]’ # [j]’ implies that there is no full walk W connecting i to j on T (P).

In the case [i)' — [j]', we construct a walk W’/ = W; o, W.Wy, ; of length k, where W; x;, be an
optimal walk in Wy ini¢ (i — N||) (see Lemma 4.3) , Wi, ; be an optimal walk in Wy inai(|JNe = )
(see Lemma 4.4), and W, is a walk that connects the end of W; s, to the beginning of Wy, ; and
such that all edges of W, are critical (the existence of such W, is yet to be proved). Without loss of
generality set [i]’ = Cy and [j]' = C,,: the cyclic classes of D(X) to which i and j belong. Let 2 be
the final node of W; y;, and let y be the first node of Wy, ;. Set [z]' = C,, and [y]' =C,,.

By [5, Lemma 3.4.1.iv] [(W; n,) = p1(mod~), (W, ;) = (p3—p2)(mod ). Hence the congruence
of the walk W, to be inserted is (ps — p1 — (p3 — p2))(mod y) = (p2 — p1)(mod ). As the cyclicity of
the critical subgraph is the same as that of the digraph, the cyclic classes of the critical subgraph are
Co,...,Cy—1 and we can assume that the numbering is such that Cy C Cf,..., C,—1 C C,’y_l. Then
xz € Cp, and y € Cp, and by [5, Lemma 3.4.1.iv] there exists a walk on the critical subgraph of
length congruent to (p2 — p1)(mod~). Moreover, all walks connecting x to y have such length and
by Schwarz’s bound if k — (W, n,) — (W, ;) > Sch(v,q) then there is a walk of length equal to

(W' —=1(Win,) — (W, ;). According to Lemmas 4.3 and 4.4 {(W; n,) < chki:a’N‘ +(n—q),

I(Wh, ;) < % +(n—gq), therefore k is a sufficient length for k —I{(W; x;,) —1(W, ;) to satisfy
Schwarz’s bound, so a walk of the form W' = W; x,, W.Wy, ; exists and p(W') = w} . + v}, ;-

Let now W be an optimal full walk connecting ¢ to j on 7 that passes through N, at least once.
As it passes through the critical nodes then the walk can be decomposed into W = Wi, N, WCWNM
where W; x. is a walk in Wy it (i — N,||), and WNC,]' is a walk in Wr gna (V. — j), and W,
connects the end of W; x-. to the beginning of Wy, ; on T(P). We then have pr(W; n~.) < pr(Win.)
and pT(WNCJ') < p7r(Wy, ;) and also pr(W.) < p(W,) = 0. Since W is optimal then all of these
inequalities hold with equality, and pr (W) = w] nr, + Ui, j» @8 claimed. 0

REMARK 5.3. It follows from the proof that, under the conditions of this lemma and in the case
[i] =& [j], there is an optimal full walk connecting i to j on Try and traversing a critical node that
can be decomposed as W = W; . W W ;, where W; nr. is an optimal walk in Wy inic (i — N||)
and Wy, ; is an optimal walk in Wi ginal(||[Ne = 7)., and W, consists of edges solely in the critical
subgraph. If the elements of Y are also strictly visualised in the sense of [23], then any such optimal
Sfull walk has to be of this form.

Lemma 5.2 gives us the first part of the final bound for the case. In order to be able to use this
lemma we must ensure that the walk must traverse N, hence we can use Lemma 4.5 in conjunction
with Lemma 5.2 to give us the following theorem.

THEOREM 5.4. Denote u;‘k,/\fc,j =wiy, + Uﬁfc,j' Let

*

Ui N, — i
Ax

Ui N~ QN — BN
(25) k 2 max ( LEEAREY) A’NL /BNL,J

+2(n — q) + Sch(v,q), + (n—q+1)>
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if vi,j > € or just

— i N, — BN

u*
26 k> e
(26) > N

if vi,; =€, for somei,j € N. Then
(i) If i k4] then T(k); 3 = —oo,
(i) If[i]" =& (5] then D(k)iy = ui n, 5 = win. + VR ;-
Proof. We only need to prove the second part. By Lemma 4.5 and taking w = wy 5, + v}, ;, if

* * o
wiv-/\/‘c + UNc;j — ’Y’L’j

k
> ™

+(n—q)

then any walk on 7(P) that does not traverse the nodes in N, will have weight smaller than
w] nr, + Vi, j» or such walk will not exist if ; ; = . Using Lemma 5.2, if

* .
Wiy, — QN VN, — PN

k> + (n —q) + Sch(v, q) + \
qx*

> o +(n—q)

and [i]" = [j]’ then the Weight of any optimal full walk on 7(P) connecting i to j and traversing a
critical node will be equal to w} . +vi, ;. If vi; = ¢, [i]" =4 [j]" and the above inequality holds, or
if v;,; > €, k satisfies both mequahtles and [i] = [j], then any optimal full walk traverses nodes in
N, and has weight

D(k)ij = w; n, + VN, 5 o

Our next aim is to rewrite Theorem 5.4 in a CSR form, and we first want to look at the optimal
walk representation of wy \, and vy, ;. This leads to the following lemma.

LEMMA 5.5. We have
(27) w;/\/c = p(W';ﬂ—,full(i — Ne)), U}k\/'c,j = p(W'];-,full (Ne = 7))

Proof. We will prove only the first of these two equalities, as the second one can be proved in a
similar way.

Let W n;, be an optimal walk in Wy init (i — Ne||), with weight w} . We are required to prove
that

(28) POV nie(i = Nell)) = p V7 pan (@ = NC))

where on the right we have the set of full walks connecting i to a critical node on 7 (P). We split (28)
into two inequalities,

(29)  » Wrmie(i = Nel)) <p WFpan(i = N)) o p Wrimie (0 = Nel) = p (W pan (i = NC))

For the first inequality in (29), observe that we can concatenate W; »r, with a walk V' on
the critical graph which has length [(V) = k — [(W; ».). The resulting walk W; »-.V belongs to
W%fun(i — N¢) and has weight w; 5, which proves the first inequality. For the second inequality,
take an optimal walk W* € W] (i — N), whose weight is pOVF 5 (1 — Ne)). By observing the
first occurrence of a critical node in this walk, we represent W* = WV, where W € Wy inic (i — N¢||).
We then have p(W*) = p(W) + p(V) < p(W) < wj », proving the second inequality. Combining
both inequalities gives the equality (28) and finishes the proof of w . = pW§ (i = Ne)). The
second part of the claim is proved similarly. |
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REMARK 5.6. In the previous lemma, the length of the walks on the right-hand side does not
have to be restricted to k. We can obtain the following results:

Wy — 0y
wi N, = p(W%—,init(i — MN¢)) for any > min (”\/‘)\m + (n—q), k:)
(30) -

, (v PN
s = POVt ) for any > min (225 4 ),
q*

We now establish the connection between the previous Lemma and CSR.

LEMMA 5.7. We have one of the following cases:
(i) (CS*modDRID(k)])i; = e if [ Fu [1]),
(ii) (CSHmINIRD(K)])i s = w]n, +vk,; if [ = 1]

Proof. By Lemma 3.7 we have p (W St (i — j)) = (CSFmedM) RIT(k)]); j, where v = (t +

1)y — k(mod ) and ty > T(S), and let W € W2’7J§u“n(z — j) be optimal. W can be decomposed as
W1 WoW3 where Wi is a full walk (of length k) connecting i to some [ € N, on T, W3 is a (full)
walk of length k connecting some m € N, to j and W5 is a walk on the critical graph of length v
connecting the end of Wj to the beginning of W3. In formula,

(31)
(CSMMADRIT(K)])i g = max{p(W1) + p(Wa) + p(Ws):
W]_ S W’éi,full(i — l), W2 S W%(l — m)7 W3 S W?—,fuu(m — ]), l,m S Nc}

If the weights of W7, Ws and W3 in (31) are finite then [i)! — [I]', [I]' =+ [m] and [m] —k [J],
hence [i]" = [j]’. Thus (CS*R[['(k)];;) > € implies [i] — [j]’ proving (i).

As the cyclicity of the associated graph is the same as the cyclicity of the critical graph, Lemma 5.5
implies that

(32) wi n, = pWi(i = Cin)) v ; = POV (Crj = 1)),

where C; , = Cz » NN is the cyclic class of C(X) that can be found by intersecting with critical nodes
N, the cyclic class C} . of D defined by [i]" — C[ . Similarly, C ; = Cj, 4N N, is the cyclic class of
C(X) that can be found by intersecting with crltlcal nodes N, the cyclic class Ck . of D defined by
Cllg,j —k []} .

Now note that in (31) we can similarly restrict { to C;  and m to Cy j, which transforms it to

(33) O
(CSHANRIT(K)]);,; = max{p(W1) + p(Wa) + p(Ws):
Wi e WE(i = 1), Wo € W&l — m), Wy € WE(m — j), 1 € Cix, m€Cr;}

Note that if a walk W, exists between any [ € C; ,, and m € C ; then using (32) we immediately
obtain (CSkmedMRIT(k))); ,; = w; nr, +V4. ;- Thus it remains to show existence of Wy € W& (I — m)
between any [ € C; ;, and m € Cy ;. For this note that since v = (t + 1)y — k(mod ) > T'(S), either
Cik —(y—k(mod~)) Cr,j and a walk on C(&X) of length v exists between each pair of nodes in C;
and Cpj, or Cik #*(y—k(mod~)) Ck,j and then no such walk exists. We thus have to check that
Cik —(y—k(mod~)) Cr,j on D. But this follows since we have [i]" — [j]’, and since in the sequence
[i] =k Ci =1 Cp; = [7]" we then must have | =, v — k(mod ).

Combining Theorem 5.4 and Lemma 5.7 we obtain the following result.
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THEOREM 5.8. Denote u; ;. ; = wiy, + Uy, ;. Let k be greater than or equal to

* . .
Ui Ne,j — i

max +2(n — q) + Sch(v,q), = max

*
US L~ QN — BN
max
i Ax 5t Vi, > As

+n—q+ 1)
Then T'(k) = C'S*mod " RID (k).

As with Theorem 4.6 this bound requires I'(k) in order to calculate the bound, which makes it
implicit, but as with Corollary 4.7 we can use w; n,, < w; y and vp,, j < v, ; to give us an explicit
bound. The following result requires Assumption C on A™f.

COROLLARY 5.9. Denote u; nr,; = win, + Un,,;. Let k be greater than or equal to

Wi N — o n — , Wi N e
e max YeNed ZONe =N | o, o) 4 Seh(y,q), max LeNed =i Ly g4y
i Ax 50 i > As

Then T'(k) = C'S*mod " RID (k).

We will now present an example of this bound in action.
Let D(G) be the eight node digraph with the following structure:

(1) (2)
(4) (3)

along with the associated weight matrix.

()

(6)

€ 0 € 0 € € € €
€ € 0 e € € As 7 €
€ 0 € 0 € € € €
0 ¢ € 5 € Asg € €
A= )

Asq € € € € € As 7 €
e € € ¢ Asp € € €
e € € € € € e Aqg
e € Agz € & Agg ¢ €

There are three critical cycles in this digraph, one cycle of length 4 traversing 1 — 2 — 3 — 4, and
two cycles of length 2 traversing 1 — 4 — 1 and 2 — 3 — 2 respectively. There are also cycles of
length 4, 6 and 8 which means that the cyclicity of the whole digraph is 2, which is the same cyclicity
of the critical subgraph. Therefore Assumption PO is satisfied and we can continue.

his manuscript is for review purposes only.
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The semigroup of matrices X used by this example will be generated by these five matrices:

684

0 o]
W 555_5 W 0 W —
|
Q_u ER_U€€€ =) ©
‘I_A E‘I_A W W
%) %8584
(o]
W nh_UE w
I~
W W w T w W
_ %) w W w W
[} W www W
W w W w W
=)
o 85681_A o © W 59_.
(%) W wwww W w W w W
>~ ©
[O) 01_AEEE [O) O‘I_A W W
I Il
N <t
< <
o ~ o
%) €5€9_~E W w W _I_.E W E€€_|_A€
© <t o —
1_A 81_AEEE A_x E‘I_A W W _I_A EowEEE
© ™ — ©
w | W wowoy W pﬂ& 81_A W 1_AE€87
5 o~
[} w W w W
_ w W w W w w W W™ W W
,
W W wwww W w W w W
%) W W W W W
— N
— — —
o 5858_ o w W E_ o WL W W
%) www WY %) w W w W %) W W W W W
— [ap] (=}
[} 01_A€€€ %) 01_A w W W 04656
Il I I
— 3] 10
< < <

685

686

g

687

688

Using these matrices we can calculate A%"P and A™f,

689

P ——

o

W W ww o wN Y

W

o

(=}
—
I

o

)

W

o

—16

W

W

Nej
—
|

3

)

W

W

W

W

W

—-11

£

3

W

—
W wwo L W W

N——

Asup

690

691

as well as a; 7., BN,y Vijs Wi N, and vpr, j:

692

—10
—10

—18

—18

9
9
9
3
9

9
9
9
3
9

-8

-3

€

€

~10 -2 —13 —18
(0000 —34 —16 —19 —39).

3

3

Vi,j

i

0
0
0
0
—14

T _
Bi..i =

)

0
0
0
0
-9
—17

6

-1
(0 0 0 0 —19 —37 -39 —19),0r.

AN, =

693
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With all the pieces ready we can now form the bound of Corollary 5.9,

12 12 12 12 16.4 142 15.6 18.9 e € € € € € € €

12 12 12 12 16.4 142 156 189 E € € € € 3 £ €

12 12 12 12 16.4 142 156 189 E € € € € € € €

k> max 12 12 12 12 16.4 14.2 15.6 18.9 E € € € € 3 £ €
= 14.2 14.2 142 14.2 187 164 178 21.1|’'|le e e e 128 10.6 12.8 16.1
16.4 164 164 16.4 20.9 18.7 20 23.3 e € € € 19 12.8 15 18.3
19.3 193 193 193 238 21.6 229 26.2 e € € € 179 157 139 21.2
16 16 16 16 20.4 1822 19.6 22.9 e € € € 146 123 106 13.9

=k > 23.8.

Therefore by Corollary 5.9 if the length of a product using the matrices from X is greater than or
equal to 24 then the resulting product will be CSR. We will show such a product. Let I'(24) be the
inhomogeneous matrix product made using the word P = 551541235515535135454155 which gives us:

0 € 0 € € —-16 -11 €
€ 0 € 0 —28 € € —21
0 € 0 € e —-16 -11 €
€ 0 € 0 —28 € € —21
P24 = € —19 € —-19 —47 € € —40
31 e =31 € € —47 —42 €
—11 € —11 € e =27 =22 €
€ -1 € -1 =29 € € —22

This matrix product is indeed CSR and by Definition 3.2 we have,

0 € 0 €
e 0 € 0
o e 0 e 0 € ¢ ¢ 0 ¢ 0 ¢ € —16 —-11 ¢
e 0 e 0 e 0 ¢ ¢ e 0 ¢ 0 —-28 ¢ e =21
PeOY=1 0 19 o —19|®|c 20 2|®0c0c & -16 -11 =
—31 € —-31 € e € ¢ 0 e 0 ¢ 0 -—-28 € € —21
—11 € —11 €
e -1 € -1
0 €
€ 0
0 €
€ 0 0 ¢ 0 € 0 ¢ e —-16 -11 €
FeH=1 . _p9 ®<s 0>®<5 0 ¢ 0 -28 ¢ ¢ —21)‘
—31 €
—11 €
€ -1

We can see that, for the C' matrix, columns 3 and 4 are copies of columns 1 and 2 respectively. The
same is also true for the rows of the R matrix so they can be deleted. As 24(mod2) = 0 we replace
the S matrix with the tropical identity matrix which shows us that the matrix product I'(24) using
the word P is indeed CSR and it has factor rank-2.

6. Counterexamples. Here we present a number of counterexamples for the different cases of
digraph structure. These counterexamples present families of products which are not CSR, and we
construct them in such a way that they have no upper bound on their length.

6.1. The ambient graph is primitive but the critical graph is not. We will now look at
two cases where we are unable to create a bound for matrix products to become CSR. For the first

This manuscript is for review purposes only.



-
-3

o

g
N =

NN
W N =

~N 1 1

[N
=

~N =~
g [\]

~3
[\]
o
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case we will be looking at digraphs that are primitive but have a critical subgraph with a non-trivial

cylicity. Therefore we have the following assumption:

ASSUMPTION P1. D(X) is primitive (i.e., v(D(X)) = 1) and the critical subgraph C(X), which

is a single strongly connected component, has cyclicity v(C(X)) =~ > 1.

We now present a counterexample which shows that under this assumption, in general, no bound
for k in terms of A" and A™ can exist that ensures that I'(k) is equal to the corresponding CSR

product.

Let D(G) be the five node digraph with the following structure:

(5)

This digraph will have the following associated weight matrix.

€ 0 Ais € € €
0 € € e Asps €
A= € € e Asua e Asgs
A € 5 e € €
€ € € € e Asp
3 A672 Aa,g 9 3 £

e B s B B

There is a critical subgraph consisting of the cycle between nodes 1 and 2. There also exist two
cycles, 1 -3 —4—1and 2 —5— 6 — 2, both of length 3 which makes D(A) primitive. We aim
to present a family of words with infinite length such that the products made up using these words
are not CSR. Since the cyclicity of the critical subgraph is 2 then we will have to create two classes
of words, one of even length and one of odd length to define the family.

The semigroup of matrices we will use is generated by the two matrices:

€ 0 —100 € € € € 0 —100 € e e

0 € € € —100 € 0 € € € -1 5

€ € € —100 € € € € € —100 ¢ €
A= —100 € € € € A2 = -1 € € € € €

€ € € € —100 € € € e —100

€ —100 € € € e —100 € € €

Let us first consider the class of words (1)*2 where ¢ > 2, and let U = (A;)?* A5 for arbitrary
such ¢. We will first examine entries Us 1, Uz 5, Us2 and U; 5.
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The entry Us,; can be obtained as the weight of the walk 6 (21)(21) ... (21) 341, which is —301.
—_—
t—1

For this observe that the walk 621 has an even length and therefore we need to use one of the
three-cycles to make it odd, and using the southern three-cycle in the end of the walk is the most
profitable way to do so. The entry Uss is equal to —1, as there is a walk that mostly rests on the
critical cycle and only in the end jumps to node 5. We also have Us 2 = —100 (go to node 2 and
remain on the critical cycle) and Uy 5 = —301 (use the southern triangle once, then dwell on the
critical cycle and in the end jump to node 5). Note that in the case of Uy 5 we again need to use one
of the triangles to create a walk of an odd length.

We then compute

(CSR)[Ulss = (US?U) 5 = max(Us 1 + Uss, Ussa + Uy 5) = —301 — 1 = —302.

However, Us s results from the walk 6 (21)(21)...(21) 2562, with weight —401, needing to use
—_—
t—1
the northern triangle to make a walk of odd length.
The following an example of U and CS**+1R[U] for t = 10:

—201 0 —-100 -500 —-301 —200

0 —-300 —400 —-200 -1 =500
—401 —-200 —-300 —-700 —501 —400
—100 —400 —-500 —-300 -101 —600
—-200 -500 —-600 —400 -201 -—-700
-301 -100 —-200 -600 -—401 -—300

—201 0 —100 —401 —-202 —-200

0 -300 —400 -200 -1 —500
—-401 -200 -300 -601 —402 —400
—100 —400 -500 —-300 -101 —600
—200 -500 —-600 —400 -201 —-700
-301 —-100 —-200 -501 —=302 —300

CSZl(mod 2)R[U} —

We now consider the class of words (1)?**12 where ¢t > 1, and let V = (A4;)**1 A, for arbitrary
such ¢. We will first examine entries V51, V15, Va2 and Vo 5.

The entry V21 = —201 is obtained as the weight of the walk 2 (12)(12) ... (12) 341: it is necessary

—_———
t—1

to use one of the triangles to create a walk of even length, and using the southern triangle once in
the end of the walk is the most profitable way to do so. The walk 125 already has an even length,
and we only have to augment it with enough copies of the critical cycle and use the arc 2 — 5 in the
end of the walk, thus getting V; 5 = —1. Obviously, V22 = 0 : we just stay on the critical cycle. The
entry V5 5 = —301 is obtained as the weight of the walk (21)(21)...(21) 5625, where we have to use
| S —
t—1
the northern triangle in the end of the walk to create a walk of even walk and minimise the loss.
We then find

(CS?R[V])25 = (VS?V)a5 = max(Vaq + Vis, Voo + Vo) = Va1 + Vi5 = —202,

which is bigger than V5 5 = —301.
The case for V5 5 is one for connecting a critical node to a non critical node. For completeness we
should also look at a walk connecting two non critical nodes, namely the walk representing V4 5. To
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do this we will need to also look at the entries V; ; and V2. For V41 = —301 the entry is obtained
as the weight of the walk 4 (12)(12)...(12) 341. As the walk 41 has odd length, one of the triangles
| S —
t—1
is required to make the walk even so choosing the southern triangle is the most profitable way to
achieve an even length walk. The walk 412 already has an even length so we can augment it with
enough copies of the critical cycle to give us the desired length for the walk representing the entry
Va2 = —100. Using Vi 5 and V5 5 discussed earlier we calculate

(CS?R[V))as = (VS?*V)ys = max(Vyy + Vi, Vio + Vas) = Va1 + Vis = —302,

763 which is bigger than V5 = —401.

764 We now show an example of V' for ¢ = 10:
0 —-300 —400 —-200 -1 —500
—201 0 —100 —500 —301 —200
_ v — —200 —-500 —600 —400 —201 -—700
Y ~ | —-301 —100 —200 —600 —401 —300
—401 —-200 —-300 —-700 —-501 —400
—100 —400 —-500 —300 —101 —600
0 —-300 —400 —-200 -1 —500
—201 0 —100 —401 —-202 —200
o 22(mod 2) | —200 —-500 —-600 —400 -—-201 —700
o0 oS RIVI=| 300 100 —200 —s501 —302 —300
—401 —-200 —-300 —601 —402 —400
767 —100 —400 —-500 —300 —-101 —600
768 Combining both classes we have a family of words covering all lengths greater than 29 such that

769 any product made using these words will not be equal to the corresponding CSR product. Therefore
770 there cannot be a transient for this case as there is no upper limit to the lengths of these words.
771 We now also construct a counterexample where all nodes of D(G) are critical. Let D(G) be the
772 three node digraph with the following structure:

(1)
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774 The digraph has the following associated weight matrix.

€ 0 e
775 A= e Asp 0
0 Ass Ass

776 For this example there is a single critical cycle of length 3 traversing all of the nodes. There also
777 exists two loops 2 — 2 and 3 — 3 and a cycle 2 — 3 — 2 of length 2. Like the previous example this
778 digraph is primitive but the critical subgraph has cyclicity 3. As the cyclicity is greater than one we
779 need to present three different classes of words making up a family of words such that any product
780 I'(k) made using these words will not be CSR.

781 The semigroup of matrices that we will use is again generated only by two matrices:
€ 0 € € 0 €
782 A;=1e —100 0 Ay=1e -1 0
0 —100 -100 0 —100 -1
783 Let the first class of words be (1)322 for ¢t > 0, and let M = (A;)3'T2 A, for any arbitrary ¢.
784 We will now examine the entries M171, ]\41727 M272 M173 and M'g,,g.
785 Since all the walks are of length 0 modulo 3 then any walk connecting ¢ to ¢ will have weight

786 zero as we can simply use the critical cycle. This gives M1 = M3 2 = 0. The entry M 2 can be
787 obtained as the weight of the walk (123)!*12 which is —100. In this entry observe that the walk 12
788 is of length 1 modulo 3 therefore we need to use the two cycle 2 — 3 — 2 to give us a walk of the
780 desired length. The entry M; 3 is equal to the weight of the walk (123)'713 and the entry Mj o is
790 equal to the weight of the walk (312)*T12. For these entries observe that the walks 123 and 312 are
791 both of length 2 modulo 3 therefore we require a loop for both walks to give us the required length.
792 The most profitable time to use these loops are right at the end of the walk.
We then compute

(CSR)[M]LQ = (MS?)M)LQ = max(MM + M172,M172 + M2727M1,3 + Mg,g) = —]. — ]. = —2.

793 However, as seen earlier the entry Mjs has weight —100 which is less than the CSR suggestion.
794 The following is an example of M and CS**+3R[M] for t = 10:
0 —-100 -1 0 -2 -1

795 M=[-100 0 —100]| C§3m@d3IRM]=-100 0 —100

—-100 -1 0 —-100 -1 0
796 For efficiency we will simply present the final two classes and omit the in-depth analysis of them:
797 For walks of length 1 modulo 3 we have the class of words (1)3+32 for ¢ > 0.
798 For walks of length 2 modulo 3 we have the class of words (1)3t+42 for ¢ > 0.

799  We will also present examples of products and their CSR counterparts made using these words for
800 t =10 where N = (A1)3t+3A2 and P = (A1)3t+4A2.

~100 0 —100 —100 0 —100
801 N=|-100 -1 0 €534 med3)RINT = [ =100 -1 0
0 —100 -1 0o -2 -1
—-100 —1 0 ~100 -1 0
802 P=| 0 —100 -1 c§3meddpipl =1 0 -2 -1
~100 0 —100 —100 0 —100
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The combination of these three classes create a family of words such that any product I'(k) made
using these words is not equal to the corresponding CSR. product.

We now extend these counterexamples to a more general form where we consider digraphs with
non-trivial cyclicity r along with critical subgraphs with cyclicity « which is greater than r. This
leads to the following assumptions.

6.2. More general case.

ASSUMPTION P2. D(X) has cyclicity v and the critical subgraph C(X), which is strongly con-
nected, has cyclicity v > r.

In a similar method to the primitive example above, using the new assumptions, we can now
describe a counterexample that shows that no bound for k in terms of AS"? and A™ can exist that
ensures I'(k) is equal to the corresponding CSR product.

Let D(X) be a six node digraph with the following structure:

(1) (4) (6)
° ° °

° ® )
(2) (3) ()

along with the following associated weight matrix,

e 0 ¢ € € €
e € 0 € € €
A_lc € ¢ 0 Ass €
0 e ¢ € € €
€ € ¢ € € As 6
e € ¢ Apu 15 €

)

Here the critical cycle traverses nodes 1 —+ 2 — 3 — 4 — 1 however there also exists another

non-critical cycle of length six traversing 1 -2 -3 — 5 — 6 — 4 — 1. This means that while

the cyclicity of the critical subgraph is 4 the cyclicity of D(G) is 2. Therefore the digraph structure

satisfies the assumptions and we can develop a family of words with infinite length such that any

I'(k) made using these words will not be equal to the corresponding CSR product. As the cyclicity

of the critical subgraph is 4 then we will require four classes of words to fully define the family.
The semigroup of matrices that will be used is generated by two matrices:

e 0 ¢ € € € e 0 e ¢ € €

e ¢ 0 € € € e ¢ 0 ¢ € €

e € € 0 —100 e e € ¢ 0 -1 €
A= 0 ¢ ¢ € € € Az = 0 ¢ ¢ ¢ € €

e € € € € —100 € € € ¢ e —100

e € ¢ —100 € € e € € -1 ¢ €
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828  Let us begin with the first class of words (1)#2 where t > 2, and let L = (A;)* A, for arbitrary such
829 t. We will begin by examining the entries L; 2, L1 5, L14 and L3 5.

830 The entry L o can be obtained as the weight of the walk (1234) 12, which is 0. As the walk 12

t

831 has length congruent to 1(mod4) then a walk exists on the critical cycle connecting these nodes. The
832 entry Lq 5 is obtained from the weight of the walk (1234) 1235641235, which is —301. As the walk
——
t—2
833 1235 has length congruent to 3(mod4) then we need to add on the six cycle with weight —300 to
834 give us a walk of length congruent to 1(mod4) and finally the last step of the walk is to go from 3 to
835 5 with weight —1. For the entry Ly 4 = —201 which is the weight of the walk (1234) 123564 and the

——
t—1
836 entry Lsgs = —1 comes from the weight of the walk (3412) 35. Note that in the case of Ly 4 we used
——
t
837 the six cycle to give us the desired length of walk.
838 We then compute
839 (CSR)[L]175 = (L ® 53 ® L)1,5 = Hla,X(LLQ + L1,5, L174 + L375) =-201—-1=-202.
840 However L5, as explained earlier, results from a walk with weight —301.
841 The following is an example of L and CS**1R[L] for t = 10
€ 0 € —201 —-301 €
—300 € 0 € € —401
o I — € —300 € 0 -1 €
o 1 0 e =300 e —101
—500 € —200 € € —601
€ —400 € —100 —101 €
€ 0 € —201 —-202 €
—300 € 0 € € —401
. 41(mod 4) _ e —300 S 0 -1 3
o oS R 0 e —300 e e 101
—500 € —200 € € —601
844 € —400 € —100 —-101 €
845 The other classes behave in a similar way so we omit the in depth explanation of them. We
846 present the words used for each class:
847 For walks of length congruent to 2(mod 4) we have the words (1)*+12 for ¢t > 2;
848 For walks of length congruent to 3(mod4) we have the words (1)*+22 for ¢t > 2;

849 For walks of length congruent to 0(mod4) we have the words (1)**32 for ¢ > 2.
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850 For example, if ¢ = 10 then for the first of these classes
—300 € 0 € € —401
€ —300 € 0 -1 €
. o 41 o 0 € —-300 € € —101
ol F=(A)7 @4, = 0 e —201 -301 e |’
€ —500 € —200 —201 €
—100 € —400 € € —201
—300 € 0 € € —401
5 —300 € 0 -1 €
- 42(mod 4) o 0 3 —300 e e —101
e cs RIFT=1 . 0 e —201 —202 ¢
€ —500 € —200 —201 €
853 —100 € —400 € € —201
8! Combining all classes gives us a family of words covering all lengths greater than 9 such that any

54
855 product made using these words will not be equal to the corresponding CSR product.

856 6.3. Critical graph is not connected. For this counterexample we now consider a digraph
857 with multiple critical components Cy, ..., C,, which are each strongly connected components with
858 respective cyclicities v, ..., Ym-

859 AsSUMPTION P3. C(X) is composed of multiple strongly connected components Cq,...,Cy,

860 where the component C; has cyclicity ;. The cyclicity of D(X) is lem;(7y;), which is the same as the
861 cyclicity of C(X).

862 Let us now show a counterexample, which demonstrates that, for the case of several critical
863 components, we cannot have any bounds after which the product becomes CSR in terms of AS"P and
864 A™ The reason is that the non-critical parts of optimal walks whose weights are the entries of C'
865 and R cannot be separated in time: in general, they will use the same letters, and such walks on the
866 symmetric extension of T (P) cannot be transformed back to the walks on 7 (P).

867 Let D(X) be the four node digraph with the following structure:

® (4)

868
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along with the following associated weight matrix

e 0 A23 3
9 0 A34
Ay € 15 €

For this digraph we have a the critical subgraph comprised of three separate loops at nodes 1,2
and 3. There is also a cycle of length 4 which means the cyclicity of the digraph is 1. We are going
to present a class of words of infinite length such that the matrix generated by this class of words is
not CSR.

We introduce a semigroup of tropical matrices with two generators X = {A;, A3} where A; to
Ay are

0 —100 € € 0 -1 ¢ e
€ 0 —100 € € 0 -1 €

Av=1 | 5 0 —1w0| 7| - e 0 —100
—100 € € € —100 € € €

and the class of the words that we will consider is (1)!2, where ¢ > 2. In other words we will consider
a set of matrices of the form U = (A;)" A (the actual value of ¢ > 2 will not matter to us).
We have: Uy o = —1 (as the weight of the walk 11...12), Uy 3 = —1 (as the weight of the walk
: — ,
22...23),and therefore (CS'™™ R[U])1,3 = Uiy = U1 2 ® Uy 3 = =2, but Uy 3 = —101 (as the weight

11
of the walk 122...23).
==

t
Similarly, we can also look at the entry U 3. Then we have Uso = —101 (as the weight of
the walk 411...12), Uy 3 = —1 and hence (CS™R) 3 = (USU)y3 = Uy @ U3 = —102, but

i
Uy s = —201 (as the weight of the walk 4122...23).
7 t—1
Here is an example of the word from the class for ¢t = 10 and the corresponding C'SR

0 -1 —101 —300 0 -1 -2 -201
=30 0o -1 —200 11 (mod 1) =200 0 -1 -101
W=1_200 20 0o —100|> ¢ RWI=1_900 201 0 —100

—-100 —-101 —201 —400 -100 -101 —-102 -301

Therefore any matrix product of length greater than 3 which has been made following this word
will not be CSR. Hence there can be no upper bound to guarantee the CSR decomposition in this
case.
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