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REVIEW

Emerging role of exosomes in cancer 
progression and tumor microenvironment 
remodeling
Mahshid Deldar Abad Paskeh1,2†, Maliheh Entezari1,2†, Sepideh Mirzaei3†, Amirhossein Zabolian4, 
Hossein Saleki4, Mohamad Javad Naghdi4, Sina Sabet4, Mohammad Amin Khoshbakht4, Mehrdad Hashemi1,2, 
Kiavash Hushmandi5, Gautam Sethi6,7, Ali Zarrabi8, Alan Prem Kumar6,7, Shing Cheng Tan9*, Marios Papadakis10*, 
Athanasios Alexiou11,16, Md Asiful Islam12,17, Ebrahim Mostafavi13,14 and Milad Ashrafizadeh15* 

Abstract 

Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be 
elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic 
acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are 
able to modulate components of the tumor microenvironment and influence proliferation and migration rates of 
cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell pro-
gression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe 
how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing 
on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such 
as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and 
genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. 
Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is 
important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of 
exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor 
microenvironment.
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Introduction
Cancer remains one of the diseases that threaten the lives 
of many people around the world. It is the second lead-
ing cause of death worldwide after cardiovascular dis-
eases. Cancer cells possess unique features such as high 
proliferation rate, self-renewal ability, cancer stem cell 
(CSC) characteristics, metastasis, and the ability to switch 
between different molecular pathways to develop drug 
resistance [1–4]. Based on these properties, novel thera-
peutics, including nucleic acid drugs and anti-cancer 
agents, have been developed to target cancer cells and 
suppress their progression [5–9]. In addition, novel meth-
ods such as the use of nanoparticles have been employed 
for targeted delivery of therapeutics to cancer cells [10].

Recently, attention has focused on the role of a new 
type of structure, called extracellular vesicles (EVs) in 
cancer [11, 12]. EVs originate from the cell membrane 
and are considered micro- or nanovesicles. These struc-
tures can be secreted by all prokaryotic and eukaryotic 
cells in an evolutionarily conserved manner [13, 14]. 
Initially, EVs were thought to be waste products of cells 
or entities formed by cellular damage [15]. However, 
further studies on EVs have shown that they have vital 
biological functions and are important cellular compo-
nents [16, 17]. There are several types of EVs that are 
categorized based on their size, origin, and localiza-
tion [18–20]. The best known EVs include exosomes, 
microparticles, shedding vesicles, apoptotic bodies, 

tolerosomes, proteasomes, and prominosomes [21, 22]. 
There are two different mechanisms for the formation 
of EVs. In the first mechanism, EVs arise directly from 
cell membrane budding [15]. In the second mechanism, 
EVs arise during exocytosis of multivesicular bodies as 
part of the endocytosis system [23]. EVs are involved in 
biological functions in cells and play an important role 
in pathological conditions. They can transfer various 
molecules between cells and are a means of communi-
cation [24]. Therefore, special attention should be paid 
to their role in diseases, especially cancer [25–30].

The present review focuses on the role of exosomes 
in cancer. This comprehensive review first provides 
an overview of the discovery of exosomes, their com-
position, and the pathway of their biogenesis, which 
are of important for understanding these structures. 
Then, we focus specifically on the role of exosomes in 
cancer by introducing a section on exosomes in tumor 
microenvironment (TME) remodeling and how they 
influence various cancer hallmarks, including prolifera-
tion, migration, and therapy response. Next, we discuss 
exosomal non-coding RNAs (ncRNAs) and how they 
can affect cancer cell progression. We then turn our 
attention to exosomes and the key molecular signaling 
pathways that regulate cancer progression. Finally, we 
provide insight into tumor-derived exosomes and the 
clinical applications of exosomes relevant to the treat-
ment of cancer patients.

Graphical Abstract
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Exosome structure, isolation and dosing
Exosomes are double-membraned vesicles (30–150  nm 
in size; average particle size: 100  nm) secreted by dif-
ferent types of cells. Their specific functions depend on 
their origin. For example, exosomes originating from 
tumor cells provide cell-to-cell communication and are 
mainly involved in migration and invasion [31]. In the 
phospholipid membrane of exosomes originating from 
the parent cell, there are a variety of proteins and lipids 
[32, 33]. Among the lipid molecules, phosphatidylcho-
line, phosphatidylethanolamines, phosphatidylinositol, 
phosphatidylserine, and sphingomyelin  are present in 
the exosome membrane. The composition and levels of 
these lipid molecules mainly influence the properties of 
exosomes. For example, the high stability of exosomes 
in body fluids and at different pH values is due to the 
high levels of sphingomyelin and phosphatidylinositol in 
their membrane. Therefore, these lipid molecules protect 
exosomes from degradation by proteolytic or lipolytic 
enzymes [34]. The phospholipid membrane of exosomes 
has lipid rafts containing proteins such as tyrosine kinase 
Src and glycosylphosphatidylinositol-containing proteins 
[35]. The presence of proteins in exosomes is a bit com-
plex. Exosomes are thought to contain both general and 
specific proteins. The general or nonspecific proteins are 
present in all cell types, including CD63, tetraspanins, 
CD81, and CD9, whereas specific proteins include MHC 
II found in exosomes from dendritic cells and B lympho-
cytes, HER2 in exosomes from breast cancer, and EGFR 
in exosomes from gliomas [36]. It is worth noting that 
nonspecific proteins are critical for exosome function. 
Tetraspanins, for example, are nonspecific proteins that 
can interact with integrin or MHC molecules and form 
complexes. In addition to proteins, exosomes may also 
contain ncRNAs including microRNAs (miRNAs), long 
noncoding RNAs (lncRNAs) and circular RNAs (circR-
NAs) [37–39].

Since exosomes are present in various body fluids, 
they can be considered as novel biomarkers for the 
detection and diagnosis of various diseases. Therefore, 
it is important to develop methods for their isolation. 
A total of six strategies have been developed for the 
isolation of exosomes, including ultracentrifugation, 
ultrafiltration, size exclusion chromatography, precipi-
tation, immunoaffinity-based capture, and microfluid-
ics. Each method has its own advantages and problems 
that should be addressed [40–45]. Ultracentrifugation 
is capable of detecting exosomes based on their density, 
size, and shape, and its advantages include affordability, 
large sample capacity, and ability to isolate high con-
centrations of exosomes. The disadvantages of ultra-
centrifugation are the time-consuming process, the 
risk of exosome damage to exosomes from high-speed 

centrifugation, and the need for complex equipment 
[46–48]. Ultrafiltration isolates exosomes based on 
size differences from other particles. This strategy is 
fast and portable but has drawbacks such as low purity, 
shear stress, exosome loss, and clogging [49–51]. Size 
exclusion chromatography also uses size differences 
and has the advantage that it can accurately separate 
exosomes and isolate the intact exosomes without dam-
aging them. Its disadvantage is the time-consuming 
process, which needs further advancement and devel-
opment [52–54]. The precipitation method is based 
on changing the solubility of exosomes, and its advan-
tages include the ease of performance, applicability to 
large sample volumes, and little damage to exosomes. 
Its disadvantages include the time-consuming process 
and the possibility of precipitating other particles such 
as polymeric materials and proteins [55, 56]. Immu-
noaffinity-based capture is based on the interaction 
between antibodies and antigens. Advantages of this 
method include high purity and the possibility of sub-
typing, whereas problems include high cost, low yield, 
risk of antigen blockade, and loss of exosome function-
ality [57]. The final technique for exosome isolation is 
the microfluidic strategy, which has the advantage of 
being inexpensive, time-saving, and requiring only a 
small amount of sample, but it has low sensitivity [58–
62]. Further information on exosome isolation tech-
niques has been reviewed elsewhere [63, 64].

The dosing of exosome has been the subject of debate 
and investigation in recent years. Three different meth-
ods have been used to determine exosome dosage, 
including cell equivalents, protein concentration, and/or 
specific quantitative analytical measurements using tools, 
with each with its own advantages and disadvantages. 
However, there is still a need to develop a standard-
ized method for exosome dosing and currently available 
technologies suffer from accurate and precise assess-
ment of exosomes at the level of individual vesicles. To 
improve the accuracy in exosome dosing, it is proposed 
to use multiple methods. For example, although the pro-
tein method that assesses total protein levels is fast and 
inexpensive, it may also assess proteins that are not exo-
some-related and may not indicate bioactive ingredients. 
TRPS, NTA, ELISA, cell equivalents, and flow cytometry 
are other methods for exosome dosing. A review by Wil-
lis and colleagues provides more details on techniques 
related to exosome dosing [65]. With regard to the use of 
exosomes in clinical trials, good manufacturing practices 
(GMPs) are important. Indeed, exosomes used in clini-
cal trials should comply with GMPs. GMPs for exosomes 
consider three major factors, including upstream cell cul-
tivation, downstream purification process, and exosome 
quality control [66].
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Biogenesis route of exosomes
Exosomes are formed by the endocytic pathway after 
passing through several steps [67]. In the first step, invag-
inations of the cytoplasmic membrane generate an early 
secretory endosome. Then, biogenesis of multivesicular 
bodies (MVBs) occurs by inward sprouting, generating 
intraluminal vesicles (ILVs) surrounded by endosomes. 
Acidification is then required for maturation of the late 
endosomes. In the final step, the ILVs fuse with the cell 
membrane and the exosomes are released [68]. MVBs 
have a size of 250–100  nm and therefore multiple ILVs 
with a particle size of 30–150 nm can be formed within 
the MVBs [69]. A number of proteins are involved in 
the formation of ILVs and MVBs, and in cargo selection 
[70]. The best known proteins for exosome biogenesis 
are the endosomal sorting complexes required for trans-
port (ESCRT), which consist of four members, includ-
ing ESCRT-0, -I, -II, and -III, that play a special role in 
membrane formation and cargo sorting [71]. Association 
of ubiquitylated cargoes with lipid microdomains is per-
formed by ESCRT-0 and ESCRT-I. Then, ESCRT-II and 
-III are involved in invagination and formation of MVBs 
and ILVs. ALIX (Apoptosis-linked gene 2-interacting 
protein X, encoded by PDCD6IP), VTA1 (Vesicle Traf-
ficking 1), VPS4 (Vacuolar protein sorting-associated 
protein 4), and TSG101 (Tumor susceptibility gene 101 
protein) are other proteins that help the ESCRT machin-
ery in exosome biogenesis.

Of note, there is another pathway for exosome biogen-
esis that is independent of ESCRT. In this ESCRT-inde-
pendent pathway, heat shock protein-60 (HSP60), HSP70, 
and HSP90 act as chaperones, and CD63, CD81, CD82, 
CD37, and CD9 act as tetraspanins, which play impor-
tant roles in membrane formation and cargo binding to 
lipid microdomains. Therefore, the mechanisms of exo-
some biogenesis are divided into two categories: ESCRT-
dependent and -independent mechanisms [13, 72–75]. 
Among the tetraspanins, CD63 and CD81 are the most 
abundant proteins in the membranes of ILVs and are con-
sidered to be markers for exosomes [75, 76].

The preferred mechanism of exosome biogenesis 
(either ESCRT-dependent or -independent pathway) is 
determined by cargo and the specific cell type [74]. Two 
major proteins play notable roles in the transfer and 
fusion of MVBs: the Ras-associated binding (Rab) fam-
ily of GTPases  and the soluble NSF attachment protein 
receptor (SNARE) [72, 77, 78]. It is worth noting that 
some of the MVBs are not fused to cell membranes and 
are transferred to lysosomes for degradation [72, 77]. The 
ILVs secreted from MVBs are known as exosomes. There 
are some limitations to exosome biogenesis and related 
mechanisms that may be considered in future studies. 
The underlying mechanism of differentiation of MVBs 

destined for degradation or fusion with the cell mem-
brane is not known and needs to be studied in detail. 
Another limitation is the mechanism by which the endo-
cytic system regulates the percentage of MVBs destined 
for fusion with the cell membrane. In addition, how the 
sorting of materials from ILVs to MVBs is regulated is 
still unknown [79]. Figure 1 shows a schematic represen-
tation of the biogenesis of exosomes.

Exosomes and the tumor microenvironment
Most of the tumor mass is occupied by the TME, which 
comprises the stroma of the tumor [80]. Low oxygen lev-
els, high lactate levels, extracellular acidosis, and poor 
nutrient content are prominent features of the TME [81, 
82]. A variety of cells, including mesenchymal stem cells, 
fibroblasts, endothelial cells, and immune cells, are pre-
sent in the TME and can secrete cytokines and growth 
factors [83]. Cancer-associated fibroblasts are one of the 
most abundant cells in the TME, creating conditions for 
tumor growth and progression [84, 85]. The interactions 
that occur in the TME and the activation/inhibition of 
signaling networks may determine tumor progression. 
Therefore, much attention has been devoted to under-
standing the interactions and developing targeted thera-
pies for the TME [86–88]. This section summarizes the 
role of exosomes in influencing TME components.

Macrophages are abundant in the TME and have two 
distinct phenotypes, including M1- and M2-polarized 
macrophages [89]. Changing the polarization of mac-
rophages toward the M2 phenotype leads to tumor pro-
gression and an event that mediates therapy resistance 
[90, 91]. One of the molecular signaling pathways shown 
to play an oncogenic role is the signal transducer and 
activator of transcription 3 (STAT3) pathway [92–96]. A 
recent experiment attempted to establish a link between 
STAT3, exosomes, and macrophage polarization in glio-
mas. The hypoxic state leads to the secretion of exosomes 
from glioma cells, which subsequently promote cancer 
progression by inducing M2 polarization of macrophages 
by triggering autophagy. Exosomes contain high levels 
of interleukin-6 (IL-6) and miRNA-155-3p. Activation 
of STAT3 occurs through IL-6, which in turn enhances 
the expression of miRNA-155-3p to induce autophagy. 
Due to a positive feedback loop, induced autophagy 
enhances STAT3 phosphorylation and thus tumorigen-
esis. Exosome-induced autophagy leads to M2 polari-
zation of macrophages and paves the way for enhanced 
glioma progression [97]. Similar to glioma, the presence 
of hypoxia leads to the secretion of exosomes in the TME 
of colorectal carcinoma. These exosomes contain high 
levels of miRNA-210-3p, which inhibit apoptosis and 
promote the transition from G1 to S cycle by downregu-
lating the expression of CELF2. Clinical investigation has 
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also revealed that exosomes containing miRNA-210-3p 
have high levels in colorectal cancer patients and are cor-
related with an unfavorable prognosis [98]. Therefore, the 
signaling networks affected by exosomes may determine 
tumor progression by influencing TME [99, 100].

Now, the question arises: how can macrophages pro-
mote cancer cell migration and invasion? Polarized M2 
macrophages are capable of secreting exosomes that 
promote hepatocellular carcinoma cell metastasis. M2 
macrophages-derived exosomes transfer CD11b/CD18 
to hepatocellular carcinoma cells. Subsequently, matrix 
metalloproteinase-9 (MMP-9) is activated, which signifi-
cantly promotes cancer migration and metastasis [101]. 
Considering this important role of macrophages in can-
cer progression, exosomes targeting the TME have been 
developed. Galectin-9 siRNA was loaded into exosomes 
and then oxaliplatin was embedded as an antitumor 
agent and trigger of immunogenic cell death. Exosome-
delivered galectin-9 siRNA suppressed M2 polarization 
of macrophages and oxaliplatin inhibited pancreatic 
cancer progression [102]. This study demonstrates how 
exosomes can reprogram the TME in favor of anticancer 
activity.

Because of the potential of exosomes to affect the 
TME, efforts have been made to develop exosomes 
that target the TME and regulate cancer progression. 

In a recent experiment, exosomes were loaded with 
manganese carbonyl to mediate their delivery to the 
TME. This resulted in increased formation of reactive 
oxygen species (ROS) and was able to reduce tumor 
proliferation by up to 90% during low-dose radiother-
apy [103]. In addition, exosomes that are responsive 
to inflammatory TME were developed and, because 
of their ability to cross the blood–brain barrier (BBB), 
effectively transport doxorubicin into the TME 
and suppress glioma progression [104]. Therefore, 
exosomes may be considered promising candidates for 
targeting the TME and influencing cancer progression. 
When exosomes are present in the TME, a number of 
agents such as cytokines can alter their surface. For 
example, a recent experiment has shown that the sur-
face of exosomes is modified by the CCL2 cytokine via 
binding to glycosaminoglycan side chains of proteogly-
cans, altering their cellular uptake and tropism toward 
certain cells and tissues [105]. Thus, if exosomes are to 
be manipulated, their interaction with components of 
the TME and the modification of their cellular uptake 
should be emphasized. Overall, exosomes exhibit 
interactions with the TME [106] and further experi-
mentation is needed in basic research, in the develop-
ment of exosomes for targeting the TME, and also in 
the introduction of these concepts into clinical courses 
(Fig. 2).

Fig. 1 The biogenesis of exosomes. Exosomes contain various types of cargoes such as siRNA, circRNA, lncRNA, mRNA, miRNA, lipids, and proteins, 
and are therefore involved in various biological mechanisms in cells. They have a particle size of 30–150 nm and various types of proteins shown in 
the figure may be involved in the biogenesis of exosomes. Targeting these proteins may regulate exosome biogenesis and provide new insights for 
the development of therapeutics
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Exosomes and tumor angiogenesis
Angiogenesis and vasculogenesis are considered the two 
most important mechanisms for the formation of new 
vessels [107–110]. However, there are major differences 
between angiogenesis and vasculogenesis. Vasculogen-
esis is involved in the formation of a whole vessel dur-
ing embryonic development and is responsible for the 
development of the cardiovascular system. Thus, the 
endoderm releases vascular endothelial growth factor 
(VEGF), which induces VEGF receptor 2 (VEGFR2) on 
mesodermal cells in a paracrine manner [111]. Subse-
quently, mesodermal cells are converted into angioblasts 
or endothelial progenitor cells in the periphery of blood 
islands, whose fusion leads to the formation of primitive 
capillary networks [112]. Whereas vasculogenesis refers 
to the formation of new vessels, angiogenesis is the pro-
cess of vessel formation from preexisting vessels [113]. 
The process of angiogenesis is inactive in adults and can 
be observed in physiological processes such as placental 
angiogenesis and embryo implantation [114–116]. Both 
angiogenesis and vasculogenesis are critical to the pro-
cess of wound healing and facilitate this process [117]. 
Recently, attention has focused on the role of angiogen-
esis in cancer. Tumor cells should induce angiogenesis 
to ensure their survival, grow, and spread to different 
parts of the body. It has been reported that cancer cells 
cannot grow beyond a size of 1–2  mm if angiogenesis 
does not occur. Therefore, a promising strategy in can-
cer treatment could be the inhibition of angiogenesis. 
The best known factor responsible for the induction of 

angiogenesis is VEGF, a cytokine involved in cancer pro-
gression [118]. The activity of VEGF in neovasculariza-
tion is related to its binding to receptors such as VEGFR1 
and VEGFR2. In addition, VEGF has an affinity for bind-
ing to cofactors such as neuropilin-1 (NRP-1) and NRP-
2. VEGFR2 expression is mainly observed in endothelial 
cells, whereas VEGFR1 is found on macrophages, cancer 
cells, and fibroblasts. The use of monoclonal antibodies 
is of interest for inhibition of VEGF or VEGFR and sup-
pression of angiogenesis [119].

Since induction of angiogenesis promotes cancer pro-
gression, tumor cells secrete exosomes to trigger this 
mechanism. In this case, multiple molecular signaling 
pathways are involved that ultimately induce angiogen-
esis. Oral squamous cell carcinoma (OSCC) cells are able 
to secrete exosomes containing miRNA-210-3p. Upregu-
lation of miRNA-210-3p occurs in OSCC cells and acts 
as a tumor-promoting factor by increasing microvessel 
density (MD) and tumor grade. Mechanistically, exo-
somal miRNA-210-3p reduces ephrin A3 expression to 
stimulate the PI3K/Akt axis, trigger angiogenesis, and 
promote OSCC progression [120]. Indeed, exosomes 
function as tools of cell–cell communication and can 
influence the conditions that promote cancer progres-
sion. Nasopharyngeal carcinoma (NPC) cells have a high 
migratory capacity that has been linked to their ability 
to trigger angiogenesis. Exosomal miRNA-23a binds to 
the 3’-UTR of TSGA10 and reduces its expression, lead-
ing to angiogenesis and increased metastasis of NPC 
cells [121]. The question now arises: since exosomes are 

Fig. 2 Exosomes in the regulation of the TME. Proliferation and metastasis of tumor cells are strongly modulated by the TME. Exosomes can 
influence various cellular interactions in the TME and affect tumor progression. In addition, exosomes can transport both anti-tumor agents 
(oxaliplatin) and siRNA into the TME and modulate tumor growth
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able to regulate angiogenesis, can we isolate exosomes 
that suppress angiogenesis and thereby impair cancer 
progression? The answer is affirmative, and such a strat-
egy has already been used in the treatment of lung can-
cer. It has been reported that exosomes derived from 
Plasmodium-infected mice inhibit angiogenesis. To test 
this hypothesis, an animal model of Plasmodium infec-
tion was developed in an experiment and then exosomes 
were isolated for the treatment of lung cancer. These 
exosomes contained high levels of miRNA-16, -322, -497, 
and -17, and when injected into a mouse model of lung 
cancer, there was a significant reduction in the expres-
sion of VEGFR2, resulting in inhibition of angiogenesis 
and reduced tumor progression [122]. This experiment 
clearly indicates that more studies should be conducted 
on exosomes and their role in affecting angiogenesis. By 
developing isolation methods, such exosomes can be 
obtained and their potential for cancer treatment can be 
revealed.

In addition to miRNAs, exosomes may also contain 
lncRNAs involved in the regulation of angiogenesis. 
In this case, the induction or inhibition of angiogenesis 
depends on the role of lncRNA as a tumor-suppressor or 
tumor-promoter. The lncRNA GAS5 is thought to sup-
press lung cancer progression. Exosomes containing high 
levels of GAS5 stimulate apoptosis in lung cancer and 
impair its growth. To this end, exosomal lncRNA GAS5 
reduces miRNA-29-3p expression to increase PTEN 
expression. Subsequently, activated PTEN signaling 
suppresses PI3K/Akt phosphorylation to inhibit angio-
genesis [123]. The role of exosomal ncRNAs in cancer 
progression will be discussed mechanistically in the next 
sections. However, it is clear that one way to modulate 
cancer progression is to influence angiogenesis through 
exosomes.

Angiopoietin-2 (ANGPT2) is thought to mediate 
resistance to antiangiogenic therapy by destroying vascu-
lar stability and promoting angiogenesis [124]. Suppres-
sion of the ANGPT2/Tie2 axis is a promising target [125, 
126] because studies have shown the role of this factor 
in angiogenesis of cancer angiogenesis and in inflamma-
tion [127, 128]. Hepatocellular carcinoma (HCC) cells 
are capable of secreting ANGPT2-containing exosomes. 
These exosomes are introduced into HUVECs by endo-
cytosis, and increased expression of ANGPT2 induces 
angiogenesis that promotes cancer progression [129]. As 
more experiments are performed, the novel signaling net-
works involved in angiogenesis are revealed. Hypoxia is a 
common feature of the TME. Recent experiments have 
shown that hypoxia can induce the secretion of exosomes 
from tumor cells, which increases their stemness and 
proliferation rate [130, 131]. A similar phenomenon 
occurs in colorectal cancer, where hypoxia leads to the 

secretion of exosomes, which in turn promote both 
growth and migration of tumor cells. Inhibition of exo-
some secretion by silencing RAB27a impairs prolifera-
tion and growth of colorectal tumors. Under hypoxic 
conditions, hypoxia-inducible factor-1α (HIF-1α) induces 
the secretion of exosomes containing Wnt4a. Subse-
quently, the β-catenin signaling pathway is activated and 
the nucleus is translocated, leading to angiogenesis and 
colorectal cancer progression [132].

In the previous sections, we have shown that exosomes 
affect the TME. The interaction of exosomes with the 
components of the TME may influence angiogenesis 
and thus cancer progression. Several experiments have 
shown that macrophages can induce angiogenesis. 
Recruitment of macrophages can induce angiogenesis 
to enhance nerve regeneration [133]. In addition, reduc-
tion or depletion of macrophages suppresses angiogen-
esis [134]. Tumor-derived exosomes (TEX) are capable 
of carrying CD39/CD73 and adenosine, which are enzy-
matically active. The TEX leads to polarization of mac-
rophages into the M2 phenotype via  A2BR. Subsequently, 
M2 macrophages secrete angiogenic factors (ANGPT2, 
IL-8, MMP9, PF4, and TIMP-1) that induce angiogenesis 
and promote cancer progression [135]. Overall, the stud-
ies are consistent with the fact that angiogenic factors are 
strongly regulated by exosomes. Depending on the cargo 
of exosomes, they can act as tumor suppressive or tumor 
promoting factors to influence angiogenesis in cancer 
cells. Exosomes can affect various molecular signaling 
pathways such as MAPK, YAP, VEGF, and miRNAs in 
modulating angiogenesis in cancer cells (Table  1) [136–
141]. Figure 3 illustrates the role of exosomes in regulat-
ing angiogenesis in cancer cells.

Exosomes and tumor growth
Proliferation of cancer cells increases abnormally and is 
one of the factors by which cancer cells differ from nor-
mal cells. Increased cell cycle progression, inhibition of 
apoptosis, and glycolysis are considered to be major main 
factors in cancer growth [142–146]. The aim of this sec-
tion is to evaluate the role of exosomes in modulating 
proliferation of cancer cells. Rapidly dividing cancer cells 
require high levels of energy to sustain their proliferation. 
Oxidative phosphorylation is a slow process and can-
not provide tumor cells with energy to meet their needs. 
Therefore, a switch in metabolism from oxidative phos-
phorylation to glycolysis is initiated. Therefore, suppres-
sion of glycolysis can be considered a promising strategy 
in cancer therapy [147–150]. Exosomes have been shown 
to increase the growth rate of lung cancer cells via the 
induction of glycolysis. To this end, exosomes were iso-
lated from irradiated lung cancer cells. They exhibited 
high levels of ALDOA and ALDH3A1, which stimulate 
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glycolysis to increase lung cancer proliferation [151]. 
With regard to the close link between drug resistance 
and glycolysis, studies have attempted to elucidate a 
link between exosomes, glycolysis, and chemoresist-
ance. Macrophages are capable of secreting exosomes 
that play a tumor-promoting role. A recent experiment 
has shown that macrophage-derived exosomes enhance 
glycolysis, mediating lung cancer cell resistance to cispl-
atin chemotherapy. Molecular pathway study shows that 
these exosomes have high levels of miRNA-3679-5p and 
decrease the expression of NEDD4L to promote the sta-
bility of c-Myc, leading to lung cancer growth, induction 
of glycolysis, and mediation of cisplatin resistance [151]. 
Therefore, exosomes can induce glycolysis in favor of 
cancer growth and induce drug resistance [152].

STAT3 signaling is an oncogenic pathway that inhib-
its apoptosis and cell cycle arrest and promotes growth 
and metastasis [153]. STAT3 induces EMT and promotes 
cancer invasion. Overexpression of STAT3 is associated 
with poor prognosis and triggers chemoresistance [154–
158]. Exosomes alter the polarization of macrophages 
and transform them into cancer-associated macrophages. 
The exosomes are enriched in gp130 and induce STAT3 
signaling via IL-6 upregulation [159]. STAT3-containing 
exosomes are able to promote ovarian cancer progression 
by inducing an imbalance between T cells and tumor-
associated macrophages in favor of immunosuppression 
[160]. Cyclin D1, MMP-2, and MMP-9 are upregulated 

by STAT3-containing exosomes and promote prolif-
eration and invasion of breast cancer cells [161]. Simi-
larly, hypoxic conditions in the TME enhance the ability 
of colon cancer cells to self-proliferate by upregulat-
ing STAT3 expression [162]. Overall, several molecu-
lar signaling pathways are affected by exosomes, and 
understanding their interaction may pave the way for the 
development of novel therapeutics [163–165].

Apoptosis is an important signaling pathway regulated 
by exosomes in tumors. Inhibition of apoptosis may pave 
the way for tumor progression and resistance to therapy 
[166]. A recent experiment has shown that cancer-asso-
ciated fibroblasts secrete exosomes containing miRNA-
92a-3p, which act as a tumor-promoting factor and 
induce the Wnt/β-catenin axis, leading to inhibition of 
mitochondrial apoptosis and inducing resistance of colo-
rectal cancer cells to 5-fluorouracil [167]. The ROS can 
induce apoptosis in cancer cells. It has been reported that 
modulation of the levels of ROS may be important for the 
response of cancer cells to therapy [168–171]. In pancre-
atic cancer, exosomes containing miRNA-155 reduce the 
expression of DCK, an enzyme involved in the metabo-
lism of gemcitabine. This is followed by an increase in 
superoxide dismutase and catalase, leading to a reduc-
tion in ROS and subsequent growth of cancer cells and 
mediating their resistance to chemotherapy [172, 173]. 
Interestingly, not only can apoptosis in cancer cells 
reduce their proliferation, but apoptosis in immune cells 

Fig. 3 Exosomes in the modulation of angiogenesis in cancer cells. The molecular signaling pathways that regulate angiogenesis, including 
Akt, PTEN, β-catenin, TSGA10, and ANGPT2, are regulated by exosomes. Induction of angiogenesis promotes tumor progression and therapeutic 
targeting of exosomes may impair cancer growth
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can also affect cancer progression. A recent experiment 
has shown that pancreatic cancer-derived exosomes are 
taken up by lymphocytes to induce p38 MAPK signal-
ing and mediate apoptosis triggered by endoplasmic 
reticulum stress apoptosis to stimulate immunosuppres-
sion and pave the way for cancer progression [174]. On 
the other hand, exosomes derived from colorectal can-
cer cells stimulate extracellular signal-regulated kinase 
(ERK) to suppress apoptosis and promote growth [175]. 
Apoptosis as a mechanism of programmed cell death 
is closely related to autophagy. In general, autophagy is 
involved in cell homeostasis by degrading aged and toxic 
organelles and macromolecules. However, the activation 
of autophagy in cancer cells is controversial and requires 
further clarification because it plays both tumor-pro-
moting and tumor-suppressive roles [176–179]. A recent 
experiment has shown that sirtuin 2 (SIRT2) increases 
the mRNA stability of transcription factor EB (TFEB) 
and induces the release of exosomes to trigger autophagy 
and decrease apoptosis in non-small cell lung cancer 
cells [180]. Therefore, special attention should be paid to 
autophagy in cancer progression when studying apopto-
sis regulation by exosomes. Overall, studies support the 
fact that exosomes can either increase or decrease cancer 
cell proliferation [181–185].

Exosomes and tumor metastasis
Cancer cell invasion threatens the lives of many can-
cer patients around the world by enabling the spread 
of tumor cells to various organs and tissues of the body 
and mediating their malignancy [186–188]. Therefore, 
the factors involved in cancer metastasis should be high-
lighted to direct future experiments to target them [189–
192]. Exosomes have been shown to be critical regulators 
of cancer metastasis. RelA and RelB are able to decrease 
the levels of MCAM and CD146 adhesion molecules in 
the release of EVs, leading to breast cancer metastasis. 
Silencing of RelA and RelB decreases the organotropic 
ability of exosomes in vivo and significantly reduces their 
ability to promote breast cancer migration and invasion 
[193]. It appears that exosomes containing Eph receptor 
A2 (EphA2) are able to transfer metastatic potential to 
pancreatic cancer cells and promote their invasion [194]. 
In contrast, there are exosomes capable of suppressing 
the cancer cell metastasis. For example, migration and 
invasion of non-small cell lung cancer cells were signifi-
cantly decreased by miRNA-let7e-containing exosomes. 
LSD1 is upregulated in lung cancer and reduces E-cad-
herin levels to promote migration. Exosomes containing 
miRNA-let7e are able to increase CDH1 expression via 
LSD1 down-regulation to impair lung cancer metastasis 
[195]. Therefore, exosomes are important modulators of 
cancer migration and invasion.

The molecular mechanisms responsible for cancer 
migration and invasion are influenced by exosomes. The 
epithelial-to-mesenchymal transition (EMT) is among 
the best known mechanisms involved in cancer migra-
tion and invasion [196]. The decrease in E-cadherin, and 
the increase in N-cadherin and vimentin mediate EMT-
induced metastasis in cancer cells [197, 198]. There are 
a number of factors known as EMT-inducing transcrip-
tion factors (EMT-TFs), including ZEB1/2, TGF-β, Snail, 
Slug, and Twist, which can stimulate EMT in cancer cells 
and promote tumor invasion [199, 200]. A recent experi-
ment has shown that exosomes containing the integrin 
alpha 2 subunit (ITAG2) are able to induce EMT and 
enhance prostate cancer cell metastasis [201]. On the 
other hand, exosomes containing miRNA-204 exhibit 
anti-tumor activity and reduce lung tumor cell invasion 
and migration by inhibiting EMT. To this end, exosomal 
miRNA-204 reduces the expression of KLF7 to inhibit 
the Akt/HIF-1α axis, resulting in a reduction of lung 
cancer migration and invasion by inhibiting EMT [202]. 
The ascites of ovarian cancer secretes exosomes contain-
ing miRNA-6780b-5p, which increase cancer migration 
and invasion in patients. It appears that exosomes con-
taining miRNA-6780b-5p induce EMT to promote ovar-
ian cancer metastasis [203]. The ability of exosomes to 
inhibit or induce EMT depends on their cargo. For exam-
ple, miRNA-381-3p plays a tumor-suppressive role and 
exosomes containing this miRNA suppress EMT-medi-
ated metastasis of breast cancer cells [204]. Therefore, 
there is increasing evidence for the role of exosomes in 
regulating metastasis by targeting the EMT mechanism 
[205, 206].

In addition to EMT, matrix metalloproteinases (MMPs) 
are also involved in increasing cancer metastasis [207–
211], and recent experiments have confirmed this. 
MMP-2 induces EMT to increase squamous cell carci-
noma metastasis, and it may act as an independent factor 
in patient prognosis [212]. A clinical experiment dem-
onstrated overexpression of MMP-7 in bladder cancer, 
which is associated with unfavorable prognosis and short-
ened overall survival of patients [213]. Moreover, MMP-3 
is involved in the induction of angiogenesis, which pro-
motes cancer progression [214]. Therefore, suppression 
of MMP activity may be of interest to inhibit cancer 
metastasis. Overexpression of trefoil factor 3 (TFF3) 
leads to upregulation of MMP-2 and MMP-9, enhancing 
prostate cancer cell invasion. Mesenchymal stroma cell-
derived exosomes containing miRNA-143 exhibit anti-
tumor activity and inhibit TFF3 to downregulate MMP-2 
and MMP-9, leading to suppression of metastasis [215]. 
In contrast, exosomes derived from renal cancer cells are 
able to increase the expression of MMP-9 to promote 
invasion [216]. Although some studies have focused on 
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the interaction between exosomes and MMP, there is 
still a long way to go to uncover the signaling networks 
involved (Fig. 4).

Exosomes and cancer resistance
Drug resistance
In the field of cancer therapy, a variety of antitumor 
agents have been developed, including cisplatin, 5-fluoro-
uracil (5-FU), sorafenib, and oxaliplatin [233]. However, 
long-term use of these chemotherapeutic agents leads to 
drug resistance and an unfavorable prognosis for cancer 
patients. A specific mechanism is responsible for chem-
oresistance. Among others, drug efflux, upregulation of 
anti-apoptotic factors, DNA damage repair, epigenetic 
changes, and the TME may influence drug resistance 
[234–239]. The current section focuses on the potential 
role of exosomes in drug resistance of cancer cells.

A growing body of evidence suggests that exosomes 
are capable of influencing the response of cancer cells to 
chemotherapy [240]. The ability of exosomes to trans-
port cargoes has made them promising agents in cancer 
chemotherapy. As nanostructures, exosomes can medi-
ate the co-delivery of a miRNA-21 inhibitor and 5-FU 
in colon tumor chemotherapy. The 5-FU and miRNA-21 

inhibitor were loaded into exosomes via electropora-
tion. Systematic administration of exosomes containing 
the miRNA-21 inhibitor and 5-FU suppressed tumor 
growth in mice. Exosomes administration enhances cel-
lular uptake and reduces miRNA-21 expression in favor 
of colon cancer suppression. Moreover, miRNA-21 
inhibitor and exosomes loaded with 5-FU induce cell 
cycle arrest and apoptosis. These anti-tumor activities 
are mediated via the upregulation of PTEN and hMSH2 
as tumor suppressor factors in colon cancer [241]. The 
process of exosome secretion, cargo transport, and 
involvement in drug resistance are complex and should 
be elucidated. The epithelial ovarian cancer cells are 
able to recruit macrophages and stimulate their tumor-
associated phenotype. Hypoxia in the TME leads to the 
secretion of exosomes from macrophages containing 
high levels of miRNA-223 as a tumor-promoting factor. 
The process of mediating drug resistance is that miRNA-
223 delivered by exosomes reduces PTEN expression to 
induce PI3K/Akt signaling. To establish a link between 
hypoxia and exosome secretion, patients with ovar-
ian cancer were studied. It was found that overexpres-
sion of HIF-1α, a hypoxia marker, occurs in ovarian 
cancer patients and is associated with upregulation of 

Fig. 4 Exosomes in the regulation of cancer cell growth and invasion. Glycolysis responsible for tumor growth is regulated by exosomes. CAFs are 
able to secrete exosomes to modulate tumor progression. EMT, metastasis, ROS and apoptosis are other signaling pathways affected by exosomes 
in tumor cells
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miRNA-223. Therefore, complicated molecular path-
ways and mechanisms are involved in the secretion of 
exosomes and the triggering of chemoresistance [242]. 
Another experiment demonstrates the potential role 
of macrophage-derived exosomes in triggering drug 
resistance in pancreatic cancer. An interesting point 
is that exosomes may be involved in the inactivation of 
chemotherapeutic agents in triggering drug resistance. 
Macrophage-derived exosomes contain miRNA-365 as 
a tumor-promoting factor and are able to induce gem-
citabine resistance in pancreatic cancer. To this end, 
exosome-derived miRNA-365 stimulates the cytidine 
deaminase enzyme to inactivate gemcitabine, leading to 
chemoresistance in pancreatic cancer [243].

In addition to inactivating chemotherapeutic agents, 
exosomes can direct cancer cells toward cell death. It 
has been reported that exosomes can be obtained from 
CSCs in pancreatic cancer. These exosomes contain 
miRNA-210, which can induce gemcitabine resistance 
via inducing mTOR signaling. Moreover, these exosomes 
suppress gemcitabine-mediated apoptosis and cell cycle 
arrest [244]. Consequently, various signaling networks 
are affected by exosomes in triggering chemoresist-
ance. In addition, the accumulation of chemotherapeutic 
agents in tumor cells is impaired. Exosomes are able to 
induce efflux of cisplatin from ovarian cancer cells under 
hypoxic conditions, demonstrating that they can prevent 
internalization of chemotherapeutic agents. Further-
more, STAT3 plays an important role in this case. Over-
expression of STAT3 in hypoxic condition is crucial for 
exosome release and triggering cisplatin resistance in 
ovarian cancer. Suppression of STAT3 signaling alters the 
levels of Rab7 and Rab27a proteins, preventing the secre-
tion of exosomes [245].

Tumor cells exhibiting features of drug resistance are 
able to secrete exosomes that accelerates chemoresist-
ance. Such a strategy has been studied in lung cancer. 
Exosomes derived from cisplatin-resistant lung cancer 
cells have high levels of miRNA-100-5p, which decrease 
the expression of mTOR, leading to cisplatin resistance 
[246]. In addition, exosomes may act as a means of com-
munication between normal and cancer cells in induc-
ing drug resistance. Endothelial cells are able to secrete 
exosomes with a particle size of 40–100 nm, which trig-
ger EMT-mediated metastasis in nasopharyngeal car-
cinomas and mediate their resistance to chemotherapy 
[247]. Exosomes can be used to suppress chemoresist-
ance. In one experiment, exosomes were used to deliver 
anti-miRNA-214 to gastric cancer cells to induce apop-
tosis and decrease proliferation and invasion, leading to 
drug sensitivity [248]. Overall, the studies are consist-
ent with the fact that exosomes can affect the growth 
and invasion of cancer cells to influence their response 

to chemotherapy. They contain various cargoes and 
can modulate molecular signaling pathways in favor of 
chemoresistance or chemosensitivity. Such exosomes 
and associated signaling networks should be elucidated 
to prevent chemoresistance in cancer cells [249–259]. 
Table 2 provides an overview of exosomes and their asso-
ciation with drug resistance in cancer. Figure 5 shows a 
schematic representation of exosomes in regulating drug 
action.

Radio‑resistance
Radiotherapy is another cancer treatment option that 
uses radiation to inhibit cancer progression and induce 
cell death [274]. However, due to specific conditions 
in the TME such as hypoxia, cancer cells could develop 
resistance to radiotherapy, and the factors involved in 
this phenomenon should be elucidated [275, 276].

Most experiments have focused on the relationship 
between exosomes and drug resistance. However, there 
are also a few studies examining the role of exosomes 
in radioresistance. For example, a recent experiment 
has shown that cancer-associated fibroblasts are able 
to secrete exosomes to promote stemness of colorec-
tal tumors and trigger their clonogenicity and radi-
oresistance. Mechanistically, these exosomes induce 
transforming growth factor-beta (TGF-β) to mediate 
radioresistance. When this signaling pathway is sup-
pressed using antibodies, colorectal tumor progres-
sion is impaired and sensitivity to radiotherapy is 
increased [277]. In contrast, there are exosomes capable 
of suppressing radioresistance. Exosomes containing 
miRNA-34c suppress proliferation, invasion, and EMT 
in nasopharyngeal carcinomas. In addition, miRNA-
34c-loaded exosomes induce apoptosis and mediate 
radiosensitivity. Molecular pathway study shows that 
miRNA-34c-loaded exosomes suppress the β-catenin 
signaling pathway, thereby increasing the sensitivity of 
nasopharyngeal carcinoma cells to radiotherapy [278]. In 
the previous section, it was shown that chemotherapy of 
cancer cells induces the secretion of exosomes. Moreo-
ver, chemoresistant cancer cells are capable of secreting 
exosomes, which favors their progression and promotes 
drug resistance [279, 280]. A recent experiment has 
shown that exosomes can be obtained from irradiated 
gastric cancer cells [281]. However, further studies are 
needed to determine whether exosomes are involved in 
the development of radioresistance.

Immune evasion and inflammation
Although few experiments have investigated the role of 
exosomes in immune resistance and evasion, these stud-
ies show that exosomes are promising candidates in this 
case because of their modulatory effect on immune cells. 
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Table 2 Exosomes and their function in mediating drug resistance/sensitivity in cancer

Cancer type Chemotherapeutic agent Signaling network Remark Refs

Breast cancer Adriamycin – Drug resistance is induced by the transfer of 
P-gp and UCH-L1 proteins through exosomes 
into the extracellular microenvironment

[260]

Breast cancer Anthracycline and taxane agents – Chemoresistance is observed in breast cancer 
patients who had high levels of GSTP1-contain-
ing exosomes

[261]

Breast cancer Adriamycin MDR1
P-glycoprotein

Drug resistance is induced by exosomes 
by enhancing the expression of MDR1 and 
P-glycoprotein
Chemoresistance is inhibited by suppression of 
exosome formation and secretion by psoralen

[262]

Breast cancer Gemcitabine Autophagy
EMT/HIF-α

Autophagy is inhibited by exosomes containing 
siMTA1
EMT is suppressed
Tumor growth in vitro and in vivo is retarded

[263]

Liver cancer Sorafenib – Selectivity of exosomes against cancer cells 
is increased by modifying the surface of 
exosomes
Drug resistance is suppressed by synergistic 
cancer chemotherapy with sgIQ 1.1 plasmid-
loaded exosomes

[263]

Leukemia Etoposide Bax
Bcl-2
PARP
Caspase-3

Drug resistance is induced by exosomes derived 
from bone mesenchymal stem cells by increas-
ing the expression of Bcl-2 and decreasing the 
expression of Bax, caspase-3, and PARP

[264]

Leukemia Imatinib Bax
Bcl-2
Caspase-3
Caspase-9

Apoptosis is prevented by exosomes derived 
from mesenchymal stromal cells, and leukemia 
cell survival is increased
The expression of Bax, caspase-3 and caspase-9 
is downregulated, and the expression of Bcl-2 
is increased

[265]

Leukemia Imatinib miRNA-328/ABCG2 Drug sensitivity is increased by decreasing 
ABCG2 expression through miRNA-328 in 
exosomes

[266]

Glioblastoma Temozolomide PD-L1/AMPK/ULK1/autophagy Autophagy is induced by the exosomes con-
taining PD-L1 through stimulation of the AMPK/
ULK1 axis, which mediates drug resistance

[267]

Glioblastoma Temozolomide STAT3/miRNA-21/PDCD4 STAT3 is downregulated by a combination of 
temozolomide and pacritinib
miRNA-21 expression is reduced to upregulate 
the PDCD4 tumor suppressor
M2 polarization of macrophages is inhibited
Glioblastoma tumorigenesis is prevented

[268]

Non-small cell lung cancer Cisplatin miRNA-146a-5p Low levels of miRNA-146a-5p are observed in 
cisplatin-resistant A549 cells and can be used to 
predict cancer recurrence

[269]

Oral cancer Cisplatin miRNA-155/FOXO3a FOXO3a expression is enhanced by exosomes 
containing the miRNA-155-inhibitor
Mesenchymal-to-epithelial transition is trig-
gered to suppress cancer cell migration and 
invasion

[270]

Hepatocellular carcinoma Oxaliplatin miRNA-214/P-gp
miRNA-214/SF3B3

P-gp and SF3B3 expression is decreased by 
exosomal miRNA-214
Drug sensitivity is increased

[271]

Hepatocellular carcinoma Cisplatin miRNA-199a-3p Drug resistance is suppressed by apoptosis 
induction through the increased expression of 
miRNA-199a-3p delivered by exosomes

[272]

Prostate cancer Docetaxel CD44v8-10 mRNA Drug resistance is mediated by the presence of 
CD44v8-10-containing exosomes in the serum 
of prostate cancer patients

[273]
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The T-regulatory cells (Treg cells) are well known because 
of their immunosuppressive effects. In breast cancer, the 
CD73 + Treg cells are able to facilitate immune evasion 
by producing adenosine. The exosomes containing the 
lncRNA SNHG16 increase the expression level of CD73 
on Treg cells. To this end, exosomal SNHG16 decreases 
the expression of miRNA-16-5p via sponging to induce 
the TGF-β/SMAD5 axis, resulting in overexpression of 
CD73 on Treg cells. Therefore, the ability of exosomes to 
transmit SNHG16 may mediate overexpression of CD73 
on Treg cells and lead to immunosuppression in breast 
cancer [282]. Programmed death-1 (PD-1) is a molecu-
lar pathway that causes T cell exhaustion and prevents 
their proliferation. Moreover, PD-1 induces apoptosis in 
cytotoxic T cells and inhibits their anti-tumor activity to 
mediate immune evasion. Binding of PD-L1 to PD-1 trig-
gers this pathway [283]. A recent experiment has shown 
that exosomes derived from cancer-associated fibroblasts 
contain high levels of miRNA-92 as a tumor-promoting 
factor. Exosomal miRNA-92 mediates the interaction 
between LATS2 and YAP1 in breast cancer cells. Sub-
sequently, YAP1 translocates to the nucleus and binds 
to the PD-L1 promoter to enhance its expression, lead-
ing to the apoptosis of T cells and a decrease in prolif-
eration of these cytotoxic cells [284]. Exosomes can not 
only evade immune defences but also influence immune 
cells to promote cancer progression. Indeed, interactions 
between exosomes and immune cells can create optimal 

conditions for increased cancer growth and invasion. 
NF-κB signaling is related to the inflammatory process 
and may promote cancer progression. NF-κB expression 
in cancer is regulated by other molecular signaling path-
ways, of which miRNAs are the best known [285]. On 
the other hand, there is growing evidence that chronic 
inflammation and pro-inflammatory cytokines promote 
cancer progression [286–288]. A recent experiment 
has shown that exosomes derived from breast cancer 
cells have high levels of miRNA-183-5p and are able to 
decrease the expression of PPP2CA. Decreased expres-
sion of PPP2CA paves the way for triggering NF-κB sign-
aling and mediating chronic inflammation. In addition, 
this signaling network increases the levels of pro-inflam-
matory cytokines such as IL-1β, IL-6 and TNF-α. There-
fore, the transmission of miRNA-183-5p by exosomes 
and its effect on inflammation may promote the prolif-
eration and invasion of breast cancer cells [289].

TGF-β mediates immune evasion of breast cancer 
cells. To this end, TGF-β increases the levels of PD-L1 
in exosomes and stimulates the dysfunction of cyto-
toxic CD8 T cells [290]. Another experiment shows 
that exosomes derived from multiple myeloma sup-
press apoptosis and increase the growth rate of Treg 
cells, triggering immune dysfunction [291]. In addition, 
exosomes are able to promote the progression of gastric 
cancer by suppressing the maturation of dendritic cells 
[292]. Exosomes containing indoleamine 2,3-dioxygenase 

Fig. 5 The role of exosomes in modulating the response to drug therapy. Most experiments focused on exosomal miRNAs and their downstream 
targets such as PTEN and JAK2. PTEN suppresses cancer progression, while JAK2 promotes cancer malignancy. Depending on the function of each 
molecular mechanism, the role of exosomes in cancer progression or inhibition varies
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(IDO) may induce T-cell dysfunction via triggering the 
IL-6/TNF-α axis [293]. Future experiments may focus on 
targeting exosomes in preventing immune evasion and 
suppressing inflammation to impair cancer progression 
[294, 295].

Exosomal miRNAs
miRNAs are endogenous, short noncoding RNAs with 
a length of 19–24 nucleotides that can regulate gene 
expression at the posttranscriptional level by binding to 
the 3’-untranslated region (3’-UTR) of target mRNAs 
[296, 297]. Recent experiments have shed light on the 
role of miRNAs in cancer. For example, hypoxic condi-
tions enhance lung cancer progression by decreasing 
the expression of miRNA-495 and miRNA-5688 and 
subsequently increasing IL-11 levels [298]. Moreover, 
decreased expression of miRNA-100 and miRNA-125b 
paves the way for overexpression of IGF2 and subsequent 
cancer stem cell features in hepatocellular carcinoma 
[299]. Further studies have shown that miRNAs can be 
considered as reliable biomarkers for cancer diagnosis 
[300, 301]. Because exosomes are capable of transmitting 
miRNAs, we dedicated this section to the study of exoso-
mal miRNAs in the regulation of cancer progression.

In the previous sections, the role of exosomes in can-
cer progression has been clearly demonstrated as they 
affect the TME and the therapeutic response of cancer 
cells. It has been discussed that exosomes may contain 
various genes that influence cancer progression. The cur-
rent section focuses specifically on exosomal miRNAs 
and how they may modulate cancer progression. In a 
recent experiment, exosomes were isolated exosomes by 
centrifugation from colorectal cancer cells infected with 
Fusobacterium nucleatum and transferred to uninfected 
cancer cells. The exosomes were found to contain high 
levels of miRNA-1264, miRNA-92b-3p, and miRNA-
27a-3p, which are able to enhance metastasis and tumor 
stage of colorectal cancer [302]. There is increasing evi-
dence that hypoxic conditions in the TME significantly 
promote carcinogenesis in gastric cancer [303, 304]. It 
appears that hypoxia induces the secretion of exosomes 
from gastric cancer cells. These exosomes promote both 
growth and migration of gastric cancer. These exosomes 
contain miRNA-301a-3p, which acts as a tumor-promot-
ing factor and increases the stability of HIF-1α and inhib-
its its degradation by targeting PDH3 and hydroxylating 
HIF-1α subunits. Moreover, there is a positive feedback 
loop between HIF-1α and miRNA-301a-3p in enhanc-
ing the proliferation and invasion of gastric cancer cells. 
Clinical investigation shows that exosomal miRNA-
301a-3p is upregulated in gastric cancer patients and 
mediates peritoneal metastasis [305].

The PI3K/Akt axis is a trigger of cancer progression 
and its induction promotes cancer cell proliferation 
and invasion [306–308]. In addition, the PI3K/Akt axis 
enhances the aggressive behavior of cancer and is associ-
ated with drug resistance. PTEN is the negative regula-
tor of the PI3K/Akt axis and increasing its expression is a 
promising strategy to interrupt cancer progression [309–
311]. A recent experiment shows that exosomes contain-
ing miRNA-22-3p have a tumor suppressive effect and 
prevent colorectal cancer progression by downregulating 
PI3K/Akt [312]. In addition to increased proliferation, 
exosomes may facilitate the transfer of apolipoprotein E 
between cells to induce the PI3K/Akt axis, which medi-
ates cytoskeletal remodeling and promotes gastric cancer 
cell migration and invasion [313]. Therefore, the PI3K/
Akt axis is strongly regulated by exosomes [314]. The 
question now arises: is there a link between exosomes 
and PTEN as upstream mediators of the PI3K/Akt axis? 
The answer is positive, and this potential has been con-
firmed in several experiments. In non-small cell lung 
cancer, exosomes containing miRNA-126 are able to 
enhance PTEN expression in suppressing the PI3K/
Akt axis and impair metastasis. The in  vivo experiment 
showed that miRNA-126 reduced lung cancer metasta-
sis by modulating the PTEN/PI3K/Akt axis [315]. On the 
other hand, hypoxia leads to the secretion of exosomes 
from colorectal cancer cells. The exosomes contain high 
levels of miRNA-410-3p, which decrease PTEN expres-
sion to induce the PI3K/Akt axis and promote cancer cell 
invasion. Moreover, exosomal miRNA-410-3p is asso-
ciated with unfavorable prognosis of colorectal cancer 
patients [316]. The growth rate of esophageal cancer cells 
is significantly increased by the transfer of miRNA-93-5p 
through exosomes and the downregulation of PTEN 
[317].

Another molecular signaling pathway involved in 
cancer progression is the Wnt/β-catenin axis. Nuclear 
translocation of β-catenin promotes cancer growth and 
invasion [318–320]. Activation of Wnt signaling is associ-
ated with poor prognosis. In addition, the Wnt/β-catenin 
axis can mediate features of drug resistance in cancer 
cells [321–325]. Exosomes are able to induce Wnt5b sign-
aling, thereby increasing the progression of lung cancer 
cells [326]. The exosomes containing miRNA-320a act 
as tumor-promoting factors and reduce the expression 
of SOX4. As a result, Wnt/β-catenin activation occurs, 
which significantly promotes the growth and metastasis 
of lung cancer cells [327]. Another experiment shows that 
exosomes from breast cancer cells contain high levels of 
miRNA-146a, which reduces the expression of TXNIP to 
induce the Wnt/β-catenin axis, leading to activation of 
cancer-associated fibroblasts in the TME and promoting 
breast cancer progression [328]. Therefore, regulation of 
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Wnt signaling by exosomes modulates cancer progres-
sion [329].

One of the increasing challenges in breast cancer is 
bone metastasis, which is associated with pain, decreased 
overall patient survival, and an unfavorable prognosis. 
Therefore, efforts have been made to uncover the role 
of exosomal miRNAs in bone metastasis of breast can-
cer cells in order to target them in future experiments. A 
clinical study has shown that serum exosomes contain-
ing miRNA-21 promote bone metastasis in breast cancer 
patients [330]. Although these studies demonstrate the 
tumor-promoting role of exosomal miRNAs, there are 
also experiments showing that exosomal miRNAs can 
suppress cancer progression. In pancreatic cancer cells, 
exosomal miRNA-34a can effectively enter the cell mem-
brane and decrease the expression of Bcl-2 to induce 
apoptosis and reduce growth and viability. The in  vivo 
experiment on nude mouse xenografts also demonstrated 
the role of exosomal miRNA-34a in retarding tumor 
growth [331]. In addition to apoptotic factors, other sign-
aling networks responsible for cancer progression may 
also be influenced by exosomal miRNAs. It is suggested 
that exosomal miRNA-210 is a tumor-promoting factor 
in lung cancer. Secretion of exosomal miRNA-210 by 
cancer-associated fibroblasts significantly promotes lung 
cancer migration and invasion. Molecular pathway study 
reveals that exosomal miRNA-210 induces the PI3K/
Akt axis via PTEN down-regulation to induce EMT and 
enhance lung cancer cell metastasis [332]. UbiA prenyl-
transferase domain-containing protein 1 (UBIAD1) is 
downregulated by exosomal miRNA-4644 via binding to 
its 3’-UTR to enhance bladder cancer cell invasion [333]. 
Thus, exosomal miRNAs influence a variety of molecular 
pathways in regulating cancer progression [334–337].

Exosomal long noncoding RNAs
Recently, lncRNAs have attracted considerable attention 
because of their potential role in modulating of various 
molecular signaling pathways in cancer therapy [338–
341]. Briefly, lncRNAs are RNA molecules longer than 
200 nucleotides and their function differs depending on 
their localization in the nucleus or cytoplasm [342, 343]. 
There are five types of lncRNAs and they are able to affect 
proteins and genes under physiological and pathological 
conditions [93, 344–347]. The lncRNA DILA1 functions 
as a tumor-promoting factor and increases the stability 
of cyclin D1 to promote breast cancer progression and 
mediate resistance to tamoxifen [348]. Upregulation of 
lncRNA ENO1-IT1 by the gut microbiota mediates gly-
colysis and increases the proliferation rate of colorectal 
cancer cells [349]. Similar to miRNAs, lncRNAs may 
function as diagnostic and prognostic tools in cancer 
[350].

Similar to miRNAs, lncRNAs can also be transferred 
between cells via exosomes. Depending on the func-
tion of lncRNAs, they can reduce or promote cancer 
progression. The lncRNA H19 is considered a tumor-
promoting factor because its upregulation induces drug 
resistance and promote both proliferation and invasion 
of cancer cells [351]. Exosomes transfer lncRNA H19 to 
non-small cell lung cancer cells to inhibit apoptosis and 
induce resistance to gefitinib chemotherapy [352]. Can-
cer cell migration is also regulated by exosomal lncR-
NAs. The lncRNA linc-ROR can be transferred into the 
TME to promote distant metastasis through EMT induc-
tion [353]. The exosomal lncRNAs are able to modulate 
the expression level of miRNAs to target other molecu-
lar pathways. The exosomal lncRNA CASC15 is over-
expressed in osteosarcomas and increases growth and 
metastasis. Silencing of CASC15 impairs progression of 
osteosarcoma cells. Further studies show that exosomal 
CASC15 decreased the expression of miRNA-338-3p by 
sponging and increases the expression of RAB14 in oste-
osarcomas [354]. Delivery of lncRNAs through exosomes 
is a challenge for the treatment of some kinds of tumor 
types, particularly brain tumors. The blood–brain bar-
rier (BBB) is an obstacle that prevents antitumor drugs 
from entering the brain and limits our ability to target 
brain tumors [355]. However, exosomes are able to dis-
rupt BBB when transporting lncRNAs into the brain. A 
recent experiment has shown that exosomes are capa-
ble of crossing the BBB and transport the lncRNA GS1-
6000G8.5 into the brain and mediate metastasis of breast 
cancer cells to the brain [356].

Due to the interaction between lncRNAs and miR-
NAs, downregulation of tumor-promoting lncRNAs 
may pave the way for upregulation of miRNAs with anti-
tumor activity. It has been reported that downregula-
tion of the exosomal lncRNA SBF2-AS1 in polarized M2 
macrophages leads to the expression of miRNA-122-5p, 
a tumor suppressor factor. Subsequently, upregulated 
miRNA-122-5p suppresses pancreatic cancer progression 
via inhibition of XIAP [357]. As for the ability of exoso-
mal lncRNAs to regulate apoptosis pathways, they can 
modulate the therapeutic response of cancer cells. The 
exosomal lncRNA UCA1 shows overexpression in breast 
cancer cells (MCF-7) and suppresses apoptosis via down-
regulation of caspase-3 to mediate tamoxifen resistance 
[358]. In addition to chemotherapy, exosomal lncRNAs 
regulate the response of cancer cells to radiotherapy. 
Because of the tumor-promoting role of the lncRNA 
HOTAIR, its transfer to laryngeal cancer cells via 
exosomes induces the expression of E2F2 via downregu-
lation of miRNA-454-3p. This accelerates the progression 
of laryngeal cancer and reduces their sensitivity to radio-
therapy [359]. Therefore, the identification of exosomal 
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lncRNAs may increase our understanding of the factors 
involved in cancer progression and develop novel thera-
peutics in the near future [360–363].

Exosomal circular RNAs
CircRNAs are another subset of noncoding RNAs that 
have a covalently closed loop structure and exhibit vital 
functions under physiological and pathological condi-
tions [364–367]. Aberrant expression of circRNAs is 
observed in various cancers. The hsa-circRNA-000166 
increases the progression of colorectal cancer by down-
regulating miRNA-326 and subsequently overexpress-
ing LASP1 [368]. Downregulation of miRNA-665 by 
circ-100876 occurs in gastric cancer, which triggers 
EMT via upregulation of YAP1 [369]. Experiments have 
shown that circRNAs affect cancer growth and metasta-
sis mainly by regulating the expression of miRNAs [369, 
370].

The circRNA IARS (circ-IARS) is thought to promote 
cancer metastasis. This circRNA is located in exosomes 
and enters HUVECs to increase cancer metastasis. Exo-
somal circ-IARS decreases overall survival and increases 
metastasis and TNM stage. Mechanistically, exosomal 
circ-IARS decreases the levels of miRNA-122 and ZO-1, 
whereas it increases the levels of RhoA and RhoA-GTP 
and increases the permeability of endothelial monolay-
ers. Moreover, exosomal circ-IARS enhances F-actin 
expression and focal adhesion to promote invasion and 
metastasis [371]. The Wnt signaling pathway is related 
to cancer proliferation and metastasis. In the context 
of Wnt pathway, β-catenin translocates to the nucleus 
to promote cancer progression [372]. The exosomal 
circ-ABCC1 is overexpressed in colorectal cancer and 
promotes stemness and invasion. Mechanistically, circ-
ABCC1 induces β-catenin to enhance colorectal cancer 
progression [373]. Similar to lncRNAs, exosomal circR-
NAs can regulate the response of cancer cells to chemo-
therapy. Exosomal circ-0002130 shows overexpression in 
lung cancer and mediates osimertinib resistance. To this 
end, exosomal circ-0002130 reduces miRNA-498 expres-
sion via sponging to enhance GLUT1, HK2, and LDHA 
expression, leading to lung cancer progression and drug 
resistance [374]. Another experiment shows how exo-
somal circRNAs can regulate drug sensitivity via affect-
ing HK2. A recent experiment has shown that exosomal 
circ-0008928 can increase lung cancer progression and 
glycolysis. Indeed, exosomal circ-0008928 increases the 
proliferation rate of lung cancer cells via inducing gly-
colysis and then, decreases their sensitivity to cisplatin. 
Molecular pathway study shows that exosomal circ-
0008928 enhances HK2 expression in triggering glycoly-
sis and mediating drug resistance in lung cancer [375].

Exosomal circRNAs can also be considered as diag-
nostic and prognostic tools. For example, the expression 
levels of circ_0047921, circ_0056285, and circ_0007761 
can be used to diagnose non-small cell lung cancer in 
Chinese. In addition, circ-0056285 is positively associ-
ated with the clinical stage and may increase lymph node 
metastasis [376]. The potential of exosomes as diagnos-
tic and prognostic tools will be specifically discussed in 
the next sections. However, exosomal circRNAs can be 
used independently in this case [377–380]. All in all, exo-
somal ncRNAs regulate proliferation, invasion, immune 
response and drug sensitivity of cancer cells and can be 
considered as diagnostic and prognostic factors in cancer 
(Fig. 6, Table 3) [381–389].

Exosomes as carrier systems
Anti‑tumor agents
The previous sections have obviously shown that 
exosomes can affect cancer progression in several ways 
and are able to modulate the TME. These effects are 
based on exosome cargo. In this section, we discuss how 
exosomes can be used to deliver anti-tumor agents in 
cancer therapy. Remarkably, exosomes can deliver both 
synthetic and natural agents. In a recent experiment, 
exosomes with triptolide were used in the treatment of 
ovarian cancer. The exosomes showed high encapsulation 
efficiency and were able to slow tumor growth in  vivo. 
Triptolide-loaded exosomes induce apoptosis in ovarian 
cancer cells and suppress their proliferation and viability 
[413]. Paclitaxel (PTX) is an anticancer agent that arrests 
the cell cycle by disrupting microtubule polymerization. 
Some cancer cells have developed resistance to PTX 
chemotherapy. Various techniques including nanoscale 
delivery systems have been developed to suppress chem-
oresistance. In one study, exosomes were used as deliv-
ery vehicles for PTX in lung cancer therapy. Exosomes 
were derived from macrophages and then modified with 
aminoethylanisamide-polyethylene glycol (AA-PEG) to 
selectively target sigma receptors that are upregulated on 
the surface of lung cancer cells. These exosomes are pref-
erentially internalized into lung cancer cells and release 
PTX to suppress lung cancer cell progression [414]. One 
of the advantages of exosomes is their biocompatibility. 
In addition, they can deliver drugs as well as act as and 
imaging agents, which is referred to as theranostics. In a 
recent experiment, exosomes were isolated from cancer 
cells (e.g., HeLa cells) and then loaded with doxorubicin. 
In addition, silver nanoclusters were loaded into doxoru-
bicin-coated exosomes. These exosomes enable imaging 
while delivering doxorubicin to suppress cancer progres-
sion, while exhibiting high biocompatibility and safety 
profile [415]. In the same study, exosomes were also 
used to deliver geldanamycin as an HSP90 inhibitor to 
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affect the growth rate of cancer cells [416]. Drug-loaded 
exosomes can also regulate the TME in favor of cancer 
therapy. It has been reported that exosomes derived from 
M1-polarized macrophages can be loaded with PTX. 
PTX-loaded exosomes induced a pro-inflammatory envi-
ronment and enhanced inflammation, which promoted 
the upregulation of caspase-3 expression, triggered apop-
tosis, and the subsequent enhancement of the anti-tumor 
activity of PTX [417]. Overall, these studies suggest that 
exosomes are promising candidates for drug delivery. 
Further experiments should be performed to elucidate 
their role in drug delivery, their encapsulation efficiency, 
and how their surface can be modified to increase their 
selectivity toward cancer cells [418–421].

Genetic tools
Small interfering RNAs (siRNAs) are double-stranded 
RNA molecules of up to 25 nucleotides in length. They 
are produced from mRNA and lncRNAs via the func-
tion of the RNase III enzyme Dicer [422]. The actual 
function of siRNA is achieved it is incorporated into the 
RNA-induced silencing complex (RISC) to direct the 
RNAi machinery to target mRNA for degradation after 
complementary sequences are found. Recently, siRNA 
has paved the way to treat various diseases in preclinical 

and clinical research, such as viral infections, neuro-
logical disorders, ocular diseases, autoimmune diseases, 
and cancer [421, 423]. Although siRNA has shown great 
capacity in suppressing gene expression and subse-
quently treating disease, naked siRNA appears to require 
modification in alleviating disease. Degradation of siRNA 
by RNase enzymes, tumor barriers, and off-targeting are 
drawbacks of siRNA that can be solved using delivery 
systems [424, 425]. Another genetic tool used in cancer 
therapy is the CRISPR/Cas system. The CRISPR/Cas9 
system is the best known type of CRISPR system that 
has recently been used in the treatment of diseases [426]. 
The CRISPR/Cas9 system was discovered in prokaryotes 
and its main function is adaptive immunity [427]. The 
CRISPR/Cas9 system consists of three main components, 
including Cas9, sgRNA, and tracrRNA. The specificity, 
efficiency, and accuracy of the CRISPR/Cas9 system are 
provided by sgRNA. Cas9 acts as a scissor and is respon-
sible for the destruction of double-stranded DNA [428]. 
Various experiments have been conducted on the use of 
CRISPR/Cas9 system in cancer therapy. CRISPR/Cas9 
is able to target fusion oncogenes or transcription fac-
tors to suppress cancer progression and reduce growth 
and mortality [429]. Downregulation of ZEB1 and ZEB2 
by the CRISPR/Cas9 system significantly reduces lung 

Fig. 6 The exosomal ncRNAs in modulating cancer progression. A variety of signaling networks are influenced by exosomal ncRNAs. Metastasis, 
growth, apoptosis and response to therapy are strongly modulated by exosomal ncRNAs. Further experiments are needed to identify other 
exosomal circRNAs, as studies have focused more on exosomal miRNAs and lncRNAs
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Table 3 The exosomal ncRNAs in cancer cells

Exosomal ncRNA Signaling network Cancer type Remarks Refs

miRNA-34a – Breast cancer Proliferation of cancer cells is suppressed [390]

miRNA-145 MMP-9
TP53

Breast cancer Apoptosis is induced
Metastasis is inhibited

[391]

miRNA-21-5p ZNF367 Breast cancer Cancer cell invasion is suppressed by downregulation of 
ZNF367

[392]

miRNA-5100 CXC12/CXCR4/EMT Breast cancer CXC12/CXCR4 axis is suppressed by miRNA-5100, which acts 
as a tumor suppressor
EMT is inhibited, and cancer cell invasion and migration are 
decreased

[393]

miRNA-3613-3p SOCS2 Breast cancer Cancer cell proliferation and metastasis are enhanced
SOCS2 is downregulated

[394]

miRNA-423-5p – Breast cancer The sensitivity of breast cancer cells to cisplatin is reduced [395]

miRNA-19b-3p PTEN/EMT Esophageal cancer miRNA-19b-3p is upregulated
EMT is induced by exosomal miRNA-19b-3p by downregulat-
ing PTEN
Apoptosis is inhibited
Growth and metastasis of cancer cells are enhanced

[396]

miRNA-124 EZH2 Pancreatic cancer Exosomal miRNA-124 is downregulated
Apoptosis is induced, EMT is inhibited and cancer cell migra-
tion is decreased by miRNA-124
EZH2 is downregulated by miRNA-124

[397]

miRNA-21-5p
miRNA-155-5p

BRG1 Colon cancer miRNA-21-5p and miRNA-155-5p are transferred from 
exosomes
BRG1 expression is reduced
M2 polarization of cancer cells is induced
Cancer metastasis is enhanced

[398]

miRNA-34c-3p Integrin α2β1 Non-small cell lung cancer Metastasis and invasion of A549 cells are promoted by 
increased expression of integrins

[399]

miRNA-7 YAP Lung cancer YAP expression is inhibited and cancer cell sensitivity to 
gefitinib is increased

[400]

miRNA-126a – Lung cancer Secretion of exosomes by lung cancer cells is induced by 
exposure to doxorubicin
Cancer cell migration and invasion are increased by exosomal 
miRNA-126a

[401]

miRNA-122 – Hepatocellular carcinoma Sensitivity of cancer cells to chemotherapy is increased by 
exosomal miRNA-122

[402]

miRNA-302b ERK1/2
MMP-9
TGFβRII

Lung cancer Cancer cell growth and invasion are inhibited
ERK1/2, MMP-9, and TGFβRII are downregulated

[403]

miRNA-21 PDCD4 Lung cancer Lung cancer proliferation is increased
Anti-tumor immunity is suppressed by the proliferation of 
myeloid-derived suppressor cells
PDCD4 is downregulated

[404]

miRNA-375 ENAH Esophageal cancer Cancer progression is suppressed by decreasing the expres-
sion of ENAH

[405]

miRNA-146b
miRNA-222

– Papillary thyroid cancer Proliferation of cancer cells is increased [406]

miRNA-200b KLF6 Ovarian cancer KLF6 is downregulated by miRNA-200b
M2 polarization of macrophages is induced

[407]

miRNA-92b-3p SOX4 Ovarian cancer Cancer progression is suppressed by inhibiting angiogenesis
SOX4 is downregulated

[408]

miRNA-224-5p – Renal cancer Invasion and growth of cancer cells are suppressed [407]

miRNA-1228 MMP-14 Gastric cancer Cancer progression is suppressed by downregulation of 
MMP-14

[408]

lncRNA ZFAS1 Gastric cancer – Association with lymph node metastasis and TNM stage is 
observed
EMT is induced
Apoptosis is inhibited

[409]
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cancer cell migration and invasion [430]. The present 
section addresses the role of exosomes in the delivery of 
siRNA and the CRISPR/Cas system in cancer therapy.

siRNA
In one experiment, exosomes were isolated from embry-
onic kidney cells (HEK-293 cells) by ultracentrifugation 
and loaded with siRNA. The resulting exosomes had a 
diameter of 107  nm and an encapsulation efficiency of 
10–20%. The exosomes efficiently transported siRNA to 
PANC-1 cells, demonstrating their potential as a trans-
port system [431]. Induction of apoptosis is an ideal 
strategy to suppress cancer proliferation. To this end, 
Bcl-2-siRNA was loaded into exosomes and its anti-
tumor activity against digestive system tumors was evalu-
ated. Bcl-2-siRNA-loaded exosomes penetrated the cell 
membrane and delivered siRNA, resulting in apoptosis 
induction and reduced tumor growth. The anti-tumor 
activity of these exosomes was confirmed in both in vitro 
and in vivo experiments [432].

Hepatocyte growth factor (HGF) was first identified 
in mouse liver and is considered a cytokine with physi-
ological functions in cell proliferation, survival, and 
migration [433, 434]. Recent experiments have revealed 
the tumor-promoting role of HGF in cancer. Overexpres-
sion of HGF enhances the growth and invasion of cervi-
cal cancer cells via affecting c-Met [435]. By inducing the 
c-Met/PI3K/Akt axis, HGF induces EMT and mediates 

drug resistance in pancreatic cancer [436]. HGF-siRNA-
loaded exosomes may serve as nanostructures for cargo 
transport in gastric cancer treatment. These exosomes 
effectively transport siRNA to gastric cancer cells, lead-
ing to a significant reduction in their growth and migra-
tion and inhibition of angiogenesis [437]. Polo-like 
kinase 1 (PLK1) is another tumor-promoting factor in 
cancer. Overexpression of PLK1 inhibits autophagic cell 
death in prostate cancer [438]. In addition, Silencing of 
PLK1 suppresses breast cancer cell migration and inva-
sion and promotes their sensitivity to drugs [439]. PLK1-
siRNA was introduced into exosomes by electroporation, 
and exposure of bladder cancer cells to these exosomes 
resulted in a significant decrease in PLK1 mRNA levels 
and subsequent cancer eradication [440].

Efforts are underway to engineer exosomes to increase 
their selectivity toward cancer cells. One of the promis-
ing methods is to modify exosomes with ligands. The 
exosomes carrying DARPin G3  on their surface can 
bind to HER2/Neu on breast cancer cells. These tar-
geted exosomes deliver TPD52-siRNA and reduce the 
expression of HER2/Neu by up to 70% [441]. Future 
experiments may therefore focus on the development 
of engineered and surface-modified exosomes for can-
cer therapy. Another ligand that can be used for surface 
modification of exosomes is the tLyp-1 peptide with the 
amino acid sequence CGNKRTR. The tLyp-1 peptide is 
able to bind to receptors such as neuropilin-1 (NRP1) 

Table 3 (continued)

Exosomal ncRNA Signaling network Cancer type Remarks Refs

lncRNA KCNQ1OT1 Colorectal cancer miRNA-30a-5p/USP22/PD-L1 Immune evasion is induced
CD8 + T cell response is suppressed
Expression of miRNA-30a-5p is decreased by acting as ceRNA
USPP22 expression is upregulated to prevent PD-L1 ubiquit-
ination
PD-L1 expression is enhanced

[410]

lncRNA HOTAIR Breast cancer ErB2 A positive association is observed between HOTAIR and ErB2
HOTAIR expression is increased by ErB2 in a MAPK-dependent 
manner

[411]

LINC01133 Bladder cancer Wnt Low levels of LINC01133 in exosomes from bladder cancer 
cells are observed
Wnt signaling is suppressed to impair cancer cell growth and 
metastasis

[412]

Circ-ABCC1 Colorectal cancer Wnt/β-catenin Cancer cell progression is enhanced by circ-ABCC1 via induc-
tion of β-catenin signaling

[376]

Circ-0002130 Non-small cell lung cancer miRNA-498/HK2-GLUT1-LDHA Cancer cell proliferation and invasion are increased in vitro 
and in vivo
Osimertinib resistance is observed
miRNA-498 is downregulated via sponging
Expression of HK2, GLUT1, and LDHA is increased

[374]

Circ-0008928 Non-small cell lung cancer miRNA-488/HK2 Glycolysis, proliferation and cisplatin resistance of cancer cells 
are induced
Expression of miRNA-488 is decreased to induce HK2 expres-
sion

(375)
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and neuropilin-2 (NRP2), which are overexpressed on 
the surface of lung cancer cells [442–444]. Recently, 
tLyp-1 exosomes were used for siRNA delivery. These 
nanostructures were 100  nm in diameter and, thanks 
due to their selectivity toward lung cancer cells, they effi-
ciently delivered siRNA and significantly reduced cancer 
stemness [445].

The factors involved in cancer metabolism and 
growth can be targeted by siRNA to increase drug 
sensitivity. Recently, CPT1A-siRNA was loaded into 
exosomes and surface modification with iRGD was 
performed to promote their selectivity toward colon 
cancer cells. These exosomes increased the sensitiv-
ity of colon cancer cells to oxaliplatin by downregu-
lating CPT1A. Simultaneous administration of these 
exosomes and oxaliplatin induced apoptosis in colon 
cancer cells and suppressed their proliferation [446]. 
In another experiment, exosomes were modified with 
an epidermal growth factor receptor (EGFR) aptamer 
and then loaded with survivin-siRNA. Since survivin 
is involved in cancer progression and functions as an 
anti-apoptotic factor, its downregulation by exosomes 
sensitizes lung cancer cells to apoptosis. Exosomes pro-
vide endosomal escape of siRNA, which is important 
for increasing its efficiency in anticancer activity [447]. 
Overall, it is evident that siRNA is an efficient tool in 
cancer therapy and exosomes enhance its potential to 
suppress cancer and promote chemosensitivity [448]. 

Short hairpin RNA (shRNA) is another genetic tool 
that has a similar function to siRNA and can be used 
to regulate gene expression in cancer therapy. However, 
there is no study evaluating the potential of exosomes 
in shRNA, and further experiments could focus on this 
aspect.

CRISPR/Cas9 system
To date, only two studies have focused on CRISPR/Cas9 
transfer through exosomes. In one experiment, cancer-
derived exosomes were used to transfer the CRISPR/
Cas9 system in the treatment of ovarian cancer. It seems 
that cancer-derived exosomes have high selectivity 
toward ovarian cancer cells due to cell tropism. CRISPR/
Cas9-loaded exosomes significantly stimulated apoptosis 
by downregulating PARP-1. In addition, CRISPR/Cas9-
loaded exosomes are able to increase the cytotoxicity of 
cisplatin (CP) against ovarian cancer cells [449]. Limita-
tions of the CRISPR/Cas9 system include its difficulty in 
specifically targeting all cancer cells and its low efficacy 
in  vivo. Therefore, it seems crucial to use exosomes for 
the delivery of the CRISPR/Cas9 system in cancer ther-
apy. Exosomes can induce necroptosis in cancer cells 
through the CRISPR/Cas9 system (Fig. 7) [450]. However, 
few studies have investigated this potential of exosomes, 
and the development of engineered and surface-modified 
exosomes is encouraged.

Fig. 7 The use of exosomes in the administration of genetic tools. Downregulation of tumor-promoting molecular signaling pathways such as 
survivin, Bcl-2, PLK1, HGF, and TPD52 by exosomes loaded with genetic tools leads to induction of apoptosis, impairment of tumor progression, and 
suppression of cancer metastasis
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Tumor‑derived exosomes
Brain tumors
The exosomes can be derived from glioblastoma cells. 
These exosomes mediate immune evasion of cancer 
cells via induction of PD-L1 expression and transfer 
of STAT3. In addition, exosomes induce M2 polari-
zation of macrophages, which promotes glioblas-
toma progression [451]. When glioblastoma cells are 
exposed to hypoxia, the secretion of exosomes is trig-
gered. These exosomes contain miRNA-1246, which is 
a tumor-promoting factor to promote cancer progres-
sion by upregulating STAT3 expression, suppressing 
NF-κB signaling, and mediating M2 polarization of 
macrophages [452]. Glioblastoma-derived exosomes 
contain high levels of VEGF-C, which inhibits Hippo 
signaling and enhances tafazzin (TAZ) expression, 
leading to angiogenesis [453]. Proteomics can be used 
to identify proteins embedded in exosomes and use 
them as biomarkers [454]. It appears that glioblastoma-
derived exosomes have immunomodulatory effects. 
As mentioned previously, these exosomes are able to 
mediate M2 polarization of macrophages, which is 
attributed to the induction of NF-κB signaling. Then, 
macrophages secrete factors responsible for can-
cer progression. Moreover, these exosomes suppress 
the activity of cytotoxic CD4 + T cells to evade the 
immune response in glioblastomas [455]. Furthermore, 
exosomes from glioblastomas promote cancer stemness 
by transferring Notch1 protein [456].

A recent experiment has shown that exosomes 
derived from glioma stem cells contain high levels of 
Linc01060, which acts as a tumor-promoting factor and 
promotes cancer progression. The exosomal Linc01060 
increases the stability of myeloid zinc finger 1 (MZF1) 
as a transcription factor and induces its nuclear trans-
location. Then, MZF1 induces HIF-1α via upregulation 
of c-Myc to enhance glioma progression [457]. Glioma-
derived exosomes contain high levels of miRNA-10a 
and miRNA-21, which regulate PTEN and RORA, lead-
ing to activation of myeloid-derived suppressor cells 
and impairing immune function [458]. miRNA-1246 
and mIRNA-10b-5p are other miRNAs found in gli-
oma-derived exosomes that promote cancer cell metas-
tasis [459]. Furthermore, glioma cells secrete exosomes 
containing the lncRNA CCAT2 to stimulate angiogen-
esis and inhibit apoptosis, setting the stage for tumor 
progression [460]. To trigger angiogenesis, glioma-
derived exosomes may deliver miRNA-21, which upreg-
ulates VEGF expression [461]. Overall, these studies are 
consistent with the fact that glioma-derived exosomes 
modulate proliferation and migration by transporting 
various cargoes [462–464].

Thoracic and breast tumors
Breast cancer-derived exosomes are capable of suppress-
ing immune function to enhance tumor progression. 
Injection of exosomes into naïve mice leads to accumula-
tion of myeloid-derived suppressor cells in the lungs and 
the liver. Breast cancer-derived exosomes prevent T cell 
proliferation and suppress natural killer cell cytotoxicity 
to mediate immune evasion [465]. In enhancing cancer 
progression, breast cancer-derived exosomes transfer 
miRNA-155 to induce cachexia via downregulation of 
PARP-1 expression. Further studies revealed that these 
exosomes can also induce EMT-mediated metastasis 
in breast cancer by triggering catabolism and release of 
metabolites in adipocytes and muscle cells [466]. Meta-
static breast cancer cells secrete exosomes containing 
miRNA-21 and miRNA-200c, which can be detected in 
patients and are used as diagnostic and prognostic fac-
tors [467]. The protein content of exosomes can be ana-
lyzed to distinguish breast cancer subtypes [468]. The 
presence of CD44 in breast cancer-derived exosomes 
leads to doxorubicin resistance [469]. Moreover, activa-
tion of fibroblasts by exosomes containing survivin can 
promote both growth and metastasis of breast cancer 
cells [470]. By inducing M2 polarization of macrophages, 
breast cancer-derived exosomes enhance lymph node 
metastasis of breast cancer cells [471]. Therefore, breast 
cancer-derived exosomes may modulate the progression 
of these tumor cells [472].

Exosomes derived from lung cancer cells, on the other 
hand, may act as triggers of EMT via upregulation of 
vimentin [473]. Exosomes derived from gemcitabine-
resistant cancer cells may promote the progression of 
non-small cell lung cancer cells, mediate their drug resist-
ance, and enhance their malignant phenotype through 
the transmission of miRNA-222-3p [474]. Exosomes 
derived from lung cancer cells are able to induce the 
Wnt3a/β-catenin axis to promote growth and survival 
[475]. Irradiation stimulates the release of exosomes from 
non-small cell lung cancer and induces Akt, STAT3, and 
ERK signaling pathways that mediate resistance to kinase 
inhibitors [476]. In additions, some of the proteins, such 
as MUC1, are enriched in exosomes to determine their 
localization and biological function [477].

Gastrointestinal tumors
Exosomes derived from gastric cancer enhance perito-
neal metastasis and disrupt the mesothelial barrier [478]. 
These exosomes induce NF-κB signaling in macrophages 
to mediate secretion of pro-inflammatory factors and 
promote gastric cancer progression [479]. Induction of 
NF-κB signaling by gastric cancer-derived exosomes 
maintains inflammatory conditions in the TME that 
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promote gastric cancer progression [480]. Gastric can-
cer-derived exosomes are able to stimulate PI3K/Akt and 
MERK/ERK signaling pathways. Moreover, inhibition of 
BMP prevents the potential of exosomes to transform 
pericytes into cancer-associated fibroblasts [481]. Expo-
sure of gastric cancer cells to various antitumor agents 
may affect their ability to secrete exosomes. Pyrotinib, 
for example, induces the release of exosomes from gastric 
cancer cells. The secreted exosomes enhance migration, 
and the use of apatinib as a VEGFR inhibitor, suppresses 
this condition [482].

Hepatocellular carcinoma is another gastrointesti-
nal tumor. Exosomes derived from hepatocellular car-
cinoma cells can induce ERK signaling to mediate EMT 
via upregulation of ZEB1/2, leading to cancer metas-
tasis [483]. In addition to metastasis, exosomes derived 
from hepatocellular carcinomas also mediate cancer 
recurrence and can be used for early diagnosis of this 
malignancy [484]. By triggering chaperone-mediated 
autophagy, hepatocellular carcinoma-derived exosomes 
induce drug resistance and inhibit apoptosis [485]. 
Exosomes are also known to transfer Linc-ROR to liver 
cancer cells to increase their growth rate and inhibit their 
apoptosis [485].

Pancreatic cancer cells may also secrete exosomes. A 
recent experiment has shown that Dickkopf1 (DKK1)-
dependent endocytosis is involved in the biogenesis 
of exosomes. Pancreatic cancer cell-derived exosomes 
have high levels of CKAP4 and are associated with poor 
prognosis in patients [486]. Moreover, pancreatic can-
cer-derived exosomes mediate M2 polarization of mac-
rophages to suppress immune function against cancer 
cells [487]. To demonstrate the potential of exosomes 
in cancer migration, an experiment isolated serum 
exosomes from pancreatic cancer patients and showed 
that they can induce EMT and promote metastasis [488]. 
To enhance invasion and migration ability, pancreatic 
cancer cell-derived exosomes recruit cancer-associated 
fibroblasts and transfer Lin28B to reduce let-7 expres-
sion, leading to upregulation of HMGA2 and subsequent 
overexpression of PDGFB [489]. All in all, exosomes 
derived from pancreatic cancer cells regulate cancer pro-
gression, and their isolation and targeting may be impor-
tant for cancer therapy [489–494].

Reproductive tumors
Most experiments on reproductive tumor-derived 
exosomes have focused on ovarian cancer. Proteomic and 
lipidomic analysis of exosomes can be used in the early 
diagnosis of ovarian cancer [495]. Ovarian cancer cell-
derived exosomes may be involved in the development of 
malignant TME by promoting fibroblast migration [496]. 
They can be considered as potential therapeutic targets, 

as their modulation can suppress growth and invasion of 
ovarian cancer cells [497]. Moreover, ovarian cancer cell-
derived exosomes can transport miRNAs into the TME 
and induce M2 polarization of macrophages that pro-
mote cancer progression [498]. Exosomal miRNA-940 
stimulates ovarian cancer progression by inducing polari-
zation of macrophages to the M2 phenotype [499]. Ovar-
ian cancer-cell derived exosomes can induce angiogenesis 
and migration via upregulation of VEGF [500]. The same 
phenomenon occurs in cervical cancer. It has been 
reported that cervical cancer cell-derived exosomes can 
promote angiogenesis via Hedgehog-GLI signaling and 
enhancement of VEGF-A, VEGFR2, and angiopoietin-2 
expression [501]. Loading dendritic cells with exosomes 
derived from HeLa cells stimulates anti-tumor immu-
nity by increasing T-cell cytotoxicity [502]. Overall, these 
experiments highlight the role of ovarian and cervical 
cancer cell-derived exosomes in modulating migration, 
growth, TME, anti-tumor immunity, and angiogenesis. 
An experiment was conducted to investigate the role of 
prostate cancer-derived exosomes in immunomodula-
tion. These exosomes impair dendritic cell function and 
suppress CD8 + T cell activity. The exosomes mediate 
the expression of CD73 on dendritic cells, which subse-
quently upregulate the expression of CD39, resulting in 
ATP-dependent inhibition of TNF-α and IL-12 produc-
tion. In addition, exosomes have been found to contain 
prostaglandin E2, which enhances CD73 expression 
(Fig. 8) [503].

Clinical application and role of exosomes 
as biomarkers
According to the role of exosomes in influencing can-
cer progression, a significant attempt has been made to 
reveal the role of exosomes in clinical background [504–
508]. The genes contained in exosomes can be considered 
as biomarkers for the diagnosis of lung cancer. A recent 
experiment has shown that exosomes derived from 
non-small cell lung cancer cells have Hippo, Rap1, and 
Wnt as important signaling networks and can be con-
sidered as prognostic tools [509]. Another study shows 
that exosomes derived from non-small cell lung cancer 
contain high levels of PRPS2 and can mediate cisplatin 
resistance. In addition, PRPS2-containing exosomes are 
capable of inducing M2 polarization of macrophages 
and are associated with an unfavorable prognosis [510]. 
Exosomes containing high levels of miRNA-3362, 
miRNA-146a, and miRNA-1290 are observed in breast 
cancer patients and mediate lymph node metastasis and 
clinical stage [511]. In colorectal cancer patients, the 
abundance of QSOX1 in plasma exosomes decreases 
and can be considered as a diagnostic factor [511]. These 
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studies demonstrate how exosomes can be analyzed to 
determine the prognosis of cancer patients (Table 4).

Conclusion and future perspectives
Thanks to the attempts made in recent years to uncover 
the factors involved in cancer progression, it is now clear 
that each factor has a unique fingerprint in cancer patho-
genesis. If we know exactly how these factors interact 
in cancer, we can develop novel and effective therapeu-
tics. Exosomes are minute structures that are involved 
in the regulation of biological processes through their 
cargo, which can be proteins, lipids, or nucleic acids. 
Genetic tools and anti-tumor agents can also be loaded 

into exosomes. Therefore, they provide intercellular com-
munication and their involvement in cancer progression 
or inhibition is inevitable. Depending on the cargo, the 
effect of exosomes on the target cell may be different. In 
addition, normal cells such as macrophages and mesen-
chymal stem cells are capable of secreting exosomes to 
affect cancer cell progression. Therefore, exosomes can 
mediate both normal cell-cancer cell and cancer cell-can-
cer cell interactions.

Growth and invasion are the two most important 
aspects of tumor cells. When exosomes contain tumor-
promoting substances, they can promote cell cycle pro-
gression and glycolysis and inhibit apoptosis. The role of 

Fig. 8 Tumor-derived exosomes and their role in cancer progression

Table 4 Clinical trials on the use of exosomes in cancer patients

Status Remarks Reference

Completed Use of exosomes as reliable biomarkers for the diagnosis of men with prostate cancer NCT02702856

Unknown Combination of computed tomography and exosomes for diagnosis of early stage lung cancer NCT03542253

Active, not recruiting Use of exosomes present in blood plasma to diagnose lung cancer in patients NCT04529915

Unknown Use of circulating exosomes for diagnosis of advanced gastric cancer NCT01779583

Recruiting New diagnostic method for colorectal cancer using exosomes NCT04394572

Recruiting Presence of exosomes in tumor-draining vein and their molecular profiling NCT04939324

Recruiting Use of plant exosome for delivery of curcumin in the treatment of colon cancer NCT01294072
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autophagy is a bit confusing. It has been mentioned that 
induction of autophagy by exosomes can prevent apopto-
sis in cancer cells. Therefore, further experiments should 
be performed to reveal the interaction between apoptosis 
and autophagy in cancer cells affected by exosomes. Sim-
ilar to proliferation, the cargo of exosomes determines 
the function of these structures in increasing or decreas-
ing cancer migration and invasion. EMT and MMPs are 
strongly influenced by exosomes in regulating cancer 
progression. However, most studies have focused on the 
EMT mechanism, and it is proposed to uncover the sign-
aling networks affected by exosomes in targeting MMPs 
and modulating cancer metastasis, because of the impor-
tant role of MMPs in this case. Cancer cell proliferation 
and invasion rates determine response to therapy. If can-
cer cells have a high capacity to migrate and grow, they 
may develop resistance to therapy. Therefore, by targeting 
exosomes, proliferation and invasion of cancer cells can 
be modulated and their response to therapy can be pre-
dicted. The aggressive behavior of cancer cells depends 
mainly on interactions in the TME. The best known 
interaction in the TME is macrophage polarization medi-
ated by exosomes. Exosomes can induce M2 polarization 
of macrophages, promoting cancer cell progression.

Since response to therapy is a major concern for physi-
cians treating cancer patients, we have provided a section 
specifically addressing the role of exosomes in this case. 
The sensitivity of cancer cells to chemotherapy-mediated 
apoptosis can be reduced by exosomes. Because of the 
potential of exosomes to transfer various genes, they can 
influence the progression of cancer cells and determine 
their response to therapy. In addition to drug resistance, 
exosomes may also be involved in triggering radiore-
sistance. In addition, exosomes can induce immune cell 
exhaustion, decrease T cell cytotoxicity, and mediate 
immune evasion. By triggering chronic inflammation, 
exosomes promote cancer progression. When new thera-
peutics are to be introduced into clinics for the treatment 
of cancer patients, they can focus on these aspects.

For internalization into cells, exosomes can follow dif-
ferent pathways. Exosomes are able to bind to receptors 
on the surface of cells, and can be internalized by bind-
ing to integrins, tetraspanins and intercellular adhesion 
molecules. Clathrin- and caveolin-mediated endocyto-
sis, lipid raft uptake, macropinocytosis, phagocytosis 
and fusion with the plasma membrane [512]. Therefore, 
if exosomes are to be used for cargo transport in cancer 
therapy, the method of their internalization should be 
elucidated and subsequent functionalization should be 
performed to improve their intracellular accumulation.

Exosomes may contain miRNAs, lncRNAs, circR-
NAs, and other genes such as PTEN, PI3K/Akt, and 
STAT3 that affect cancer progression. Indeed, cancer 

progression is strongly influenced by exosome cargo. 
Since exosomes are capable of delivering various drugs, 
they have the potential to be used as delivery sys-
tems for anti-tumor agents and genetic tools in can-
cer therapy. The various anti-cancer agents, including 
plant-derived natural compounds such as triptolides 
and synthetic agents such as cisplatin, doxorubicin 
and paclitaxel, can be transferred by exosomes in can-
cer therapy. The siRNA and CRISPR/Cas9 are genetic 
tools embedded in exosomes for cancer therapy. Deliv-
ery of therapeutics using exosomes can potentially lead 
to increased intracellular accumulation and improved 
therapeutic efficacy. In addition, the surface of 
exosomes can be modified with ligands to increase their 
selectivity toward cancer cells. Since exosomes affect 
various aspects of cancer cells, they can be isolated 
from the serum of patients and are considered reliable 
biomarkers for the diagnosis and prognosis of cancer 
patients. As shown in Table  4, exosomes have been 
used as biomarkers in various experiments in cancer 
patients. In addition to diagnosis, exosomes have also 
been used to increase the accuracy of other methods of 
detecting cancer patients, such as CT. Of note, a clini-
cal trial is currently underway to deliver curcumin as an 
anti-cancer agent to treat colon cancer. The results of 
this clinical trial are of great importance, as they may 
provide novel insights into the role of exosomes as drug 
delivery systems in the clinical course and their safety. 
Furthermore, a number of clinical trials on molecu-
lar profiling of exosomes are currently ongoing, which 
could be useful in the field of precision medicine in the 
near future.
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