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Abstract 

We report, for the first time, the electrochemical behaviour of thallium irreversibly 

adsorbed on Pt (111) and platinum stepped surfaces composed of (111) terraces and 

monoatomic steps. Similar to the case of thallium UPD, the voltammograms obtained after 

thallium irreversible adsorption present three characteristic features. After a careful analysis 

of the effect of the thallium concentration, the concentration and nature of the anion of the 

supporting electrolyte and the pH of the solution on these voltammetric features, we have 

been able to ascribe these processes to Tl/Tl+ oxidation and anion adsorption on the Tl-

modified surface. In addition, the results obtained with stepped surfaces, indicate that some 

of the features are clearly associated to the presence of (111) surface domains, and thus 

they could be used for the quantification of these sites. 
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1. Introduction 

 In order to understand the nature of different heterogeneous processes taking place 

in the metal-electrolyte interface, it is essential to control the structure of the base metal. 

The use of single crystal electrodes (with well-defined surface structure) has made this 

study possible. In the field of the electrochemistry, the use of the cyclic voltammetry with 

well-defined single crystal electrodes can provide information about the effect of the 

surface structure on electrochemical reactions. In most cases different geometric sites 

involve different electrochemical responses for specific reactions. Of special interest is the 

study of the surface composition of electrodes with well-defined structure on 

electrochemical reactions. There are two methods that allowed the controlled deposition of 

adatoms on metal electrodes: underpotential deposition (UPD)1 and irreversible 

adsorption,2-5 also called spontaneous deposition.6-9 

 UPD is the electrochemical formation of non-bulk surface adlayers at potentials 

more positive than those of the Nerst potentials corresponding to the bulk deposition of the 

adsorbate. On the other hand, irreversible adsorption of a foreign adatom occurs when the 

adatom remains adsorbed on the surface in a wide potential range, despite the fact that the 

solution does not contain ions of the adatom that could be in equilibrium with the adsorbed 

species. It could be considered that irreversible adsorption is a particular case of UPD, one 

in which the adsorbed adatom has a lower oxidation state than the species in solution, 

within a certain potential window.1,3-5,10 As a result, the desorption rate would contain an 

exponential term of the difference of the equilibrium potential and the working potential. 
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Since this difference is negative (see above definition of UPD) and is usually very large, the 

desorption rate is reduced to a negligible value. The desorption of the adatom occurs during 

a surface redox reaction involving the oxidation state of the species in solution. In many 

cases, the adatoms also suffer surface redox reactions on the surface of the metal without 

desorption of the species.  

Most UPD and irreversible adsorption processes are surface sensitive reactions.1 Also, the 

effects of anions on the UPD of metals plays an important role.11-16 The applications of 

surfaces modified by metals are numerous: from the catalysis of the electro-oxidation of 

organic substances to the simulation of crystal nucleation and growth.17,18 The combination 

of electrochemical and spectroelectrochemical methods has produced interesting studies to 

of the structure of metallic and anion adsorbates.1,19-21 In the case of thallium UPD, we 

report in this paper that the irreversible adsorption of thallium is strongly influenced by the 

anion in solution. Co-adsorption of perchlorate and sulphate in the UPD of thallium has 

been reported previously.21-23 Strong changes in the CV of thallium UPD in a solution 

containing halogen anions indicate co-adsorption with those anions.24 As far as we know, 

the behaviour of thallium irreversibly adsorbed on Pt (111) surfaces has not been reported 

before. Only a few electrochemical studies have been published on the stability of thallium 

adsorbed on Pt step surfaces25 and on the change in the catalytic effect of polycrystalline 

platinum surfaces doped with amounts of thallium on the oxidation of formic acid.26  

 The aim of this paper is to study the irreversible adsorption of thallium on Pt(111) in 

0.5 M H2SO4 and 0.1 M HClO4 by means of voltammetric measurements, and to compare it 

with thallium UPD. The discussion will be based on the surface redox processes undergone 

by the adatom and the modification of hydrogen and the anion upon the thallium 

adsorption. 
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2. Experimental 

 Platinum single crystal electrodes were oriented, cut and polished from small single 

crystal platinum beads (2.5 mm diameter) following the procedure described by Clavilier 

and co-workers.27 The electrodes were cleaned by flame annealing, cooled down in H2/Ar 

(N50, Air Liquid in all gases used) and protected with water in equilibrium with this gas 

mixture to prevent contamination before immersion in the electrochemical cell, as 

described elsewhere.  

Irreversible adsorption of thallium was performed introducing the electrode into a 

solution of Tl2CO3 with concentrations between 10-6 and 10-2 M in the presence of a 

supporting electrolyte (either 0.5 M H2SO4 or 0.1 M HClO4). The electrode with a droplet 

of solution attached was immersed in the cell at 0.1 V. Contamination of the cell by 

residual thallium ions is negligible for all the experiments shown here. Small amounts of 

thallium ions in solution are easily detected because they will lead to the blockage of the 

surface sites of a flame-annealed Pt(111) electrode that is initially free of thallium on the 

surface. The underpotential deposition experiments were performed as described 

previously.22,23  

 Experiments were carried out at room temperature, 25 ºC, using two classical two-

compartment electrochemical cells de-aerated with Ar and including a platinum counter 

electrode and a reversible hydrogen electrode (RHE) as references. All potentials in this 

paper are referred to the RHE scale, except where otherwise stated. Solutions were 

prepared from H2SO4 and HClO4 (doubly distilled, Aldrich), K2SO4 (99.998 %, Sigma-

Aldrich) and recrystallized KClO4 (> 99.999 %, Aldrich), Tl2CO3 (99.99 %, Sigma) and 

ultrapure water from Elga (18.2 Mcm-1).  
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3. Results and discussion 

3.1. Electrochemical behavior of UPD and irreversibly-adsorbed thallium on Pt(111) 

in sulfuric solutions 

Figure 1 shows the voltammetric behaviour of the thallium UPD on Pt(111) surfaces 

in 0.5 M H2SO4 + 10-2 M Tl and 0.1M HClO4 + 10-2 M Tl. The profiles in absence of 

thallium are included for comparison. In the UPD profile of Tl, three different regions can 

be distinguished: i) at high potentials, above 0.7 V, a pair of peaks appears at around 0.75 V 

in 0.5 M sulphuric acid and at 0.67 V in perchloric acid, respectively; these pairs of peaks 

are associated to the deposition/desorption process of Tl/Tl+;23 in sulphuric acid media, the 

charge measured under this peak is consistent with a thallium coverage 0.25;23 ii) the peaks 

appearing in the second region, between 0.3 and 0.6 V, are mainly associated to the 

adsorption/desorption process of the anions (either sulphate in sulphuric acid solution or 

OH or perchlorate in perchloric acid solutions, respectively);22,23 in the case of sulphuric 

acid, SXS measurements have revealed the presence of a (3×3) R30º sulphate adlayer on 

the thallium UPD layer at 0.7 V RHE;22 the adsorption/desorption of the sulphate adlayer 

on the thallium-modified surface between 0.6 and 0.3 V gives a voltammetric profile that is 

similar to that obtained for the adsorption/desorption the sulphate layer on the unmodified 

Pt(111) electrode, at potentials between 0.5 and 0.3V; iii) in the low potential region (below 

0.3 V), no significant currents are recorded aside from a small pair of peaks at 0.2 and 0.19 

V; this fact implies that the hydrogen adsorption process typical of Pt(111) electrodes has 

been suppressed by the adsorption of thallium. ACCEPTED M
ANUSCRIP

T
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 From the comparison of the thallium UPD in both electrolyte media, it can be seen 

that peak potentials of all the processes depend on the supporting electrolyte, indicating that 

in all cases anion adsorption is involved to some extent in the deposition/dissolution 

processes of thallium. As will be shown later, a similar situation is found in the case of the 

irreversibly adsorbed thallium.  

In order to obtain a deeper understanding of thallium deposition on Pt(111), the 

UPD of thallium was carried out in different concentrations of sulphate, different pH’s and 

also different concentrations of thallium. Figure 2 shows the voltammetric behaviour of the 

Pt(111) electrode in 0.1M H2SO4 (pH=1) with different concentrations of thallium in the 

solution. As can be observed, the peak at lower potentials (peak III) shifts from 0.19 V to 

0.27 V when the concentration of thallium increases from 10-4 M to 10-2 M. The 

displacement is ca. 60 mV per unit of thallium concentration, which is the expected value 

for the redox process Tl/Tl+. The same value is obtained in the positive shift of the peak at 

potentials above 0.6 V (peak I). In both cases the charge under the peak remains constant. 

On the other hand the spike potential associated to sulphate adsorption (at potentials close 

to 0.52 V, peak II) is little affected by the concentration of thallium. These results suggest 

that the processes related to the peaks at lower and higher potentials involve the adsorption 

of thallium. On the other hand, the fact that the spike potential remains largely unaffected 

suggests that sulphate adsorption does not involve a significant change in thallium 

coverage.  

Effects of the sulphate concentration in the process are examined in Figure 3, where 

the voltammetric profiles of the Pt (111) electrode at pH=1 and 10-3 M of thallium in 

solution are examined for two different concentrations of sulphate. As can be seen, peaks 

III and I are little affected by the concentration of sulphate, suggesting that these processes 
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do not involve a significant change in sulphate coverage. However the spike potential 

decreases with increasing sulphate concentration, as expected for a sulphate 

adsorption/desorption process, and it is observed for the bare Pt (111) surface.28-30  

Others species that could potentially contribute to the voltammogram of thallium 

modified Pt (111) are hydrogen and OH adsorption. These processes can be studied by 

analysing the effect of pH on the voltammograms. Previous works from Clavilier report the 

effect of the sulphuric acid concentration on the Tl UPD voltammogram.23 However, in 

these experiments, the pH and the sulphate concentrations are changed simultaneously, and 

therefore, it is difficult to separate both effects. Adzic et al. also studied the electrochemical 

behaviour of the thallium UPD on Pt (111) in NaOH media.22 In this study, the appearance 

of one unique peak at -0.1 V vs NHE associated to the redox process Tl/Tl+ was observed. 

In the current work, we have studied the effect of pH on the UPD of Tl with constant 

sulphate concentration. Figure 4 shows the voltammetric profiles of Pt(111) in 0.1 M of 

sulphate and 10-2 M of Tl+ as a function of the pH. In order to remove the effect of pH on 

the reference electrode, these voltammograms are plotted using the NHE potential scale. It 

is worth mentioning that, on the bare Pt(111) electrode, hydrogen and OH adsorption 

processes shift by ca -59 mV per pH unit in the NHE scale,31 and therefore a similar 

dependence could be expected for hydrogen and OH adsorption on the thallium modified 

Pt(111) electrode. In addition, sulphate adsorption on the bare Pt (111) shows a small shift 

with pH.32 The results in Figure 4 show that the voltammetric feature at 0.52 V shifts very 

little with pH, indicating that this process does not involve hydrogen or OH adsorption, and 

is likely to be due to sulphate adsorption. It can also be seen that peak I increases the 

potential from 0.83 to 0.88 V as the pH is increased. This behaviour is difficult to 
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understand, since both hydrogen and OH adsorption are expected to shift towards lower 

potentials as the pH increases.  

Once the voltammetric features appearing in the Tl UPD process have been 

understood, the experiments to evaluate the irreversible adsorption process were carried 

out. In the irreversible adsorption process, the clean electrode was dipped in a solution 

containing thallium for a few seconds and then immersed in the electrochemical cell at 0.1 

V. Figure 1A also shows the stable voltammetric profile of the Pt(111) electrode in 0.5 M 

H2SO4 after the irreversible adsorption of thallium at saturation. As can be seen, the 

voltammogram of Pt(111) after thallium irreversible adsorption is quite similar to the 

voltammogram recorded for thallium  underpotential deposition. It is also worth 

mentioning that the voltammogram obtained after thallium irreversible adsorption is stable 

during cycling, i.e., no significant changes are observed when the electrode is cycled many 

times within the potential limits shown in the figure, limits which include the peak for the 

Tl/Tl+ oxidation process. For typical UPD processes, such as copper on platinum or gold 

electrodes, after the Cu/Cu2+ oxidation process, only a small fraction of copper atoms 

(those atoms that had no time to diffuse away from the interface region) are re-deposited in 

the subsequent negative scan. Thus, after two or three cycles, the profile for the clean 

electrode is recovered. In the case of the adatoms that adsorb irreversibly on the surface, the 

stability of the adatom on the surface after the oxidation process can be explained by 

different processes. In many cases, the oxidation leads to the formation of an oxide or a 

hydroxide compound with low solubility.2,5,33 For the case of thallium, the formation of 

such compounds is unlikely at this pH. Alternatively, the stability of the oxidized thallium 

adsorbed on the surface could be tentatively ascribed to the formation of ion pairs with 
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anions. Since anions are adsorbed at these potentials, thallium ions do not diffuse to the 

bulk solution and therefore, they can be reduced in the subsequent negative scan direction. 

Another important characteristic of the voltammogram obtained after the 

irreversible adsorption of thallium is its similarity with the voltammogram obtained from 

the UPD process; however, the peak potentials are displaced with respect to those in the 

UPD process. We will first discuss the pair of peaks observed at potentials higher than 0.6 

V. For the UPD at [Tl+]=10-2 M, the pair of peaks is centred at around 0.75V and the charge 

under the peaks is 53±3 Ccm-2. For Tl irreversible adsorption the peaks are shifted by ca. 

0.1 V towards more negative potentials but the charge remains very similar (56 ±2Ccm-2). 

Therefore, the position of the peaks is closer to the Tl UPD at [Tl+]=10-4 M (see figure 2).  

The second potential region, between, 0.3 and 0.6 V, is associated to sulphate 

adsorption. The completion of the sulphate adlayer is characterized by a sharp spike related 

to an order/disorder phase transition.23 The potential position of the spike is different in the 

three cases (0.45 V for the bare Pt (111) surface, 0.47 V in the irreversible adsorption and 

0.49 V in the UPD with [Tl+]=10-2 M). Another remarkable difference is the magnitude of 

the current density of the spikes. In the case of the irreversible adsorption, the maximum of 

the current density of the peak (192 Acm-2) is more than two times the peak in the UPD 

process (82 Acm-2) and three times the current density of the spike of the Pt(111) in the 

absence of thallium (64 Acm-2). In order to explain these differences, the charges 

associated to these processes have been calculated by integrating the positive scan and 

using a zero baseline (see inset in Figure 1A). As can be seen, the charge associated to 

sulphate adsorption is the same in the bare platinum, the irreversible adsorption and the 

UPD process (79±4 Ccm-2). However, the charge associated to the spike is higher in the 
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case of the irreversible adsorption process. This fact may be tentatively ascribed to a 

different degree of surface ordering in the presence of thallium irreversibly adsorbed. It 

could be argued that in the presence of thallium irreversibly adsorbed, the adsorption of 

sulphate is more disordered during the first stage of sulphate adsorption (i.e., at potentials 

before the spike), and, as a result, a lower sulphate coverage is achieved at these potentials. 

Since the spike corresponds to a transition to an ordered 3x7 structure with a higher 

sulphate coverage, therefore, a higher amount of sulphate would be need to be adsorbed 

during the spike in order to reach this structure in the presence of thallium irreversibly 

adsorbed. This would also explain the displacement to lower potentials. 

The last potential region, between 0.05 and 0.3 V, is characterized by a diminution 

of the current density due to suppression of the hydrogen adsorption in the presence of 

thallium. Also, a small and well-defined pair of peaks appears around 0.13 V in the case of 

Tl irreversibly adsorbed. These peaks can be compared with the peaks observed in the 

underpotential deposition at 0.2 V. It should be noted that these small peaks are very 

sensitive to the presence of defects on the Pt (111) surface, which suggest that they are 

related to a phase transition in the thallium adlayer. 

When the upper potential limit is set above 0.8 V, the desorption of the irreversibly 

adsorbed Tl takes place (Figure 5). In successive cycles, the current density of the peak due 

to the redox process Tl/Tl+ diminishes and the potential position moves toward negative 

potentials. The charge during the first 25 cycles is almost constant, and after that, the 

charge diminishes significantly. This indicates that thallium desorption is not diffusion 

controlled but kinetically controlled, with lower desorption rates near point of saturated 

coverage. After 23 cycles, a new sharp peak appears in the negative scan at 0.6 V and 

ACCEPTED M
ANUSCRIP

T



11 
 

increases in the next successive cycles. For cycles up to 25, the peak diminished and 

becomes wider. This coincides with the diminution of the charge in the positive sweep. 

Simultaneously, a little sharp peak appears in the positive sweep and remains for a few 

cycles. After that, both peaks disappear. It is important to note that the voltammetric profile 

of the bare Pt (111) electrode is not recovered. This fact indicates that some thallium 

remains on the surface after more than 50 cycles. The complex evolution of the 

voltammogram upon desorption of thallium clearly suggests that the interactions between 

Pt(111), thallium and sulphate depend on the thallium coverage and that some synergistic 

effects can be observed at intermediate coverage. Similar results were reported by Abd El 

Meguid et al.,25 by studying the controlled desorption of thallium from Pt(332) and Pt(775). 

In addition, a similar behaviour has been observed for adsorbed copper with low coverage 

on platinum single crystals, where adsorption of anions on platinum sites is favoured by the 

presence of a neighbouring copper atom.34,35  

The effect on the irreversible adsorption of thallium on Pt(111) stepped surface was 

also studied. Two types of stepped surfaces were studied, with (110) and (100) step 

symmetry, respectively. The stepped surfaces belonging to the series of Pt(S)[(n-

1((111)×(100)] have Miller indices Pt(n,n,n-2) and the stepped surfaces belonging to the 

series Pt(S)[n(111)×(100)] have Miller indices Pt(n+1,n-1,n-1). Figure 6 show the 

voltammetric profiles obtained after thallium irreversible adsorption at saturation. In both 

series it can be seen that the electrochemical behaviour of the stepped surfaces is similar to 

that obtained for Pt(111). The same redox processes are observed, but the charge under the 

peaks decreases with increasing the step density. Moreover, the height of the spike related 

to the sulphate order/disorder transition diminishes significantly, as observed on the 

unmodified surfaces, which clearly indicates that this process is related to an order/disorder 
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transition in the sulphate adlayer. In addition, the charge under the Tl/Tl+ process at ca 0.7V 

decreases as the step density is increased. This suggest that the value of charge on the 

Tl/Tl+ process could be used to quantify the amount of (111) surface domains in a 

polycrystalline electrode or a nanoparticle sample36 as has been previously done with other 

probes, such as Bi4 and Te2. 

 

3.2. Electrochemical behavior of UPD and irreversibly adsorbed thallium on Pt (111) 

in perchlorate solutions 

Figure 1B shows the voltammetric profiles of the Pt(111) electrode totally covered 

by thallium adatoms irreversibly adsorbed in 0.1 M HClO4 and the UPD of thallium in 0.1 

M HClO4 + 10-2 M of Tl. In the first potential region between 0.8 and 1 V, there are two 

pair of peaks attributed to the redox process of Tl/Tl+. The pair of peaks appears in both the 

UPD and the irreversible adsorption, however in the irreversible adsorption of thallium, 

these peaks appear at ca. 0.1 V more negative potentials. The charge associated to the 

process is the same (within experimental error): 62±3 Ccm-2, and it is also very similar to 

the charge in sulphuric acid: 60±3 Ccm-2. The differences can probably be ascribed to 

double layer correction. Therefore one can assume that the coverage in both cases is the 

same and hence, the comparison of both profiles is meaningful. 

The second potential region, between 0.6 and 0.8 V, is characterized by the presence 

of a pair of sharp peaks at 0.67 V in the irreversible adsorbed layer and 0.65 V in UPD 

process. The displacement of this pair of peaks in the irreversible adsorption system 

towards a more positive potential with respect to the UPD system is opposite to the 

direction of the shift of the other peaks in the voltammograms. Similar to the region at 
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higher potentials, the maximum current density is lower in the irreversible adsorption, but 

the charge associated to the process is the same in both cases (78±3Ccm-2). By using 

SNIFTIRS, Markinovic et al. attributed this peak to the adsorption of ionic pairs of thallium 

with perchlorate anions on the surface.21 However, it is unlikely that the species responsible 

for the charge transfer are perchlorate ions; therefore, OH adsorption can be tentatively 

proposed (as is usually done for the bare Pt (111) surface) 

The last potential region is also characterized by a pair of small peaks which appear 

at 0.18 V in the case of the UPD, and 0.25 V in the case of the irreversible adsorption.  

In order to obtain information regarding the species that participate in each of the 

processes, the Tl UPD was studied in 0.1 M HClO4 as a function of the concentration of the 

species in solution (Figure 7a). It can be observed that when the concentration of thallium is 

increased the from 10-4 M to 10-3 M, peaks I and III move towards positive potentials; the 

shift is ca. 60 mV per unit in the concentration of thallium, as expected for a thallium 

deposition process.  

On the other hand, the potential of peak II, at around 0.6 V, only increases slightly 

with the thallium concentration. Similar behaviour was observed when the experiments 

were performed at pH=3. As was mentioned before, infrared experiments suggest that the 

peak II is associated to the ionic pairs Tl-ClO4, but if that were the case, a significant shift 

in the voltammetric peak, as a function of the concentration of thallium and perchlorate, 

should have been observed. In view of the present results, we can conclude that the peak at 

around 0.6 V does not involve a significant change in coverage of thallium. In order to 

elucidate if peak II involves the adsorption of perchlorate, we measured the voltammogram 

at two concentrations of perchloric anions (at constant pH and concentration of thallium). 
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The results, given in Figure 7B, show that the peak II is not much affected by the 

concentration of perchlorate, suggesting that the peak II is not associated to any process 

that involves perchlorate anion adsorption. In conclusion, we have shown that peak II does 

not involve the adsorption of thallium or perchlorate. Thus, o this process can be tentatively 

ascribed to the adsorption/desorption of OH. In order to validate the hypothesis, UPD 

experiments were performed at constant concentration of thallium and perchlorate while 

varying the pH of the solution (Figure 8). As before, in order to remove the effect of pH on 

the reference electrode, these voltammograms are plotted in the SHE potential scale. It can 

be seen that peaks I and III do not shift with the pH. On the other hand, peak II moves ca. 

60 mV per pH unit toward negative potentials, indicating that this process is due to OH 

adsorption.  

In order to better understand the process that occurs during the irreversible 

adsorption of thallium on the Pt(111) surface, the desorption of the thallium is induced 

when the electrodes cycled up to at 0.95 V. The resulting profiles are shown in Figure 9. As 

the desorption of Tl takes places within the cycling process, the sharp peak at 0.65 V 

becomes smaller and broader and shifts towards positive potentials. Interestingly, the shift 

of the peak is in opposite direction to the shift observed in Figure 2 for the same process in 

sulphuric acid. Meanwhile, the current density of peak III at 0.18 V is diminished and 

moves toward negative potentials, disappearing altogether after just 6 cycles. When the 

peak in the potential region III disappeared, the current density between 0.05 and 0.4 V 

increased. Such current increase is related to the adsorption/desorption of hydrogen on the 

free platinum sites. Also, peak I diminishes, becomes broader and moves toward negative 

potentials. After several sweeps, a pair of reversible peaks, associated to the 

adsorption/desorption of the OH species on the free sites of platinum, appear at 0.81 V and 
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increase in the next successive cycles. After several cycles, the shape of the voltammetric 

profile is very similar to the Pt (111) in perchloric acid in absence of thallium, but a small 

amount of thallium remains on the surface.  

Similar to the process described in previous section, the stepped surfaces belonging 

to the series of Pt(S)[n(111)×(111)] having Miller indices Pt(n,n,n-2) and 

Pt(S)[n(111)×(100)] having Miller indices Pt(n+1,n-1,n-1) were used in order to study the 

effect of the step density in the irreversibly adsorbed thallium-modified electrodes in 

perchloric acid solutions. Figure 10 shows the voltammetric profiles of thallium 

irreversibly adsorbed on the stepped electrodes vicinal to the Pt (111) pole in 0.1 M HClO4. 

In both series, it can be seen that the electrochemical behaviour of the stepped surfaces is 

similar to that obtained for the Pt (111). The peak positions and the charge strongly depend 

on the step density. Peak I becomes smaller (and comprises less charge) as the terrace 

length diminishes for the series of electrodes Pt (n,n,n-2). It is also important to note the 

significant change in the irreversibility of the peak as a function of the terrace width. Even 

though such a change might indicate the desorption of the species, the voltammograms of 

the Pt (n,n,n-2) series are stable on consecutive cycles. Peak III disappears in both series of 

step surfaces, which is an indication that this process strongly depends on the long-range 

order. On the other hand, the charge associated to the spike in region II decreases as the 

terrace length diminishes. In addition, the peak shifts toward positive potentials and 

disappears when the number of atoms in the terrace is less than 6. The stability of thallium 

irreversibly adsorbed on the series Pt (n+1,n-1,n-1) is compromised at the upper limit 

potential, therefore the more positive potential was limited to 0.9 V. As in the Pt (n,n n-2) 

case, the charge associated to the process in region II decreases as a function of the step 

density and, at the same time, the peak shifts towards more positive potentials. 
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Conclusions. 

The underpotential deposition of thallium on Pt(111) and on vicinal step surfaces has been 

investigated, and a detailed analysis of the  dependence of three characteristic voltammetric 

features as a function of pH, the nature and concentration of the anion (HClO4 and H2SO4) 

and the concentration of thallium is presented. In addition, for the first time, the 

electrochemical behaviour of thallium irreversibly adsorbed on Pt(111) and on platinum 

stepped surfaces composed of (111) terraces and monoatomic steps has been described. As 

shown by the results obtained with the platinum step surfaces, this reaction is a promising 

probe for the quantitative characterization of (111) surface domains on the platinum 

surface.  
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Figure 1. Voltammetric profile of the Pt (111) electrode in (A) 0.5 M H2SO4 and (B) 0.1 M 

HClO4 in (•••) absence and (----) presence of Tl+ 10-2 M, and (−−) thallium irreversibly 

adsorbed =50 mVs-1. Inset in (A): Plot of the total charge as a function of the potential; 

.=50 mVs-1. 

 

Figure 2. Voltammetric profile of the Pt (111) electrode at 0.1 M H2SO4 and at different 

concentrations of Tl+. (______)Tl+ 10-4 M, (-----)Tl+ 10-3 M and (-..-..-..-..)Tl+ 10-2 M; .=50 

mVs-1. 

 

Figure 3. Voltammetric profile of the Pt(111) electrode at pH=1 and 10-3 M of Tl+; (----) 10-

3 M of sulphate and (______) 0.1 M of sulphate.=50 mVs-1. 

 

Figure 4. Voltammetric profile of Pt (111) electrode in presence of Tl+ 10-4 M and 0.1 M 

SO4
2- at different pH´s. (______)pH=1; (-----)pH=1.7; (……..) pH=2.3 and (-..-..-..-..) pH=3.=50 

mVs-1. 

 

Figure 5. Consecutive voltammetric profiles of the Tl-modified Pt (111) in 0.5 M H2SO4. 

Only the cycles 1, 13, 27 and 34 are shown for the sake of clarity. Inset: Zoom in the 

potential region between 0 V and 0.2 V vs RHE.=50 mVs-1. The arrows indicate the 

direction of increasing cycling number. 

 

Figure 6. Voltammetric profiles of Pt(n,n,n-2) electrodes (A) and Pt(n+1,n-1,n-1) electrodes 

(B) covered with irreversibly adsorbed thallium. Electrolyte: 0.5 M H2SO4. =50 mVs-1. 
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Figure 7. A) Voltammetric profile of the Pt(111) electrode at 0.1 M HClO4 at different 

concentrations of Tl+ as indicated in the figure. B) Voltammetric profile of the Pt(111) 

electrode in (______) 0.01 M HClO4 + 10-2 M KClO4 + 10-3 M of Tl+ and (______) 0.01 M 

HClO4 + 0.1 M KClO4+10-3 M of Tl+.=50 mVs-1. 

 

Figure 8. Voltammetric profile of the Pt(111) electrode in (-----) 0.1 M KClO4 +10-3 M 

HClO4 +10-3 M of Tl+ and (______) 0.1 M HClO4 + 10-3 M of Tl+.=50 mVs-1. 

 

Figure 9. Consecutive voltammetric profiles of the Tl-modified Pt(111) in 0.1 M HClO4; 

.=50 mVs-1. The arrows indicate the direction of increasing cycling number.  

 

Figure 10. Voltammetric profiles of Pt(n,n,n-2) electrodes (A) and Pt(n+1,n-1,n-

1)electrodes (B) covered with irreversibly adsorbed thallium in 0.1M HClO4. Scan rates: 50 

mV s-1. 
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