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Abstract 

 

A common assumption regarding human error-based motor learning (motor adaptation) is that its underlying 

mechanism is automatic and insensitive to reward or punishment. Contrary to this hypothesis, we show in a 

double-dissociation that the two have independent effects on the learning and retention components of motor 

adaptation. Negative feedback, whether graded or binary, accelerated learning. While it was not necessary 

for the negative feedback to be coupled to monetary loss, it had to be clearly related to the actual 

performance on the preceding movement. Positive feedback did not speed up learning, but increased 

retention of the motor memory when performance feedback was withdrawn. These findings reinforce the 

view that independent mechanisms underpin learning and retention in motor adaptation, reject the 

assumption that motor adaptation is independent of motivational feedback, and open new research questions 

regarding the neural basis of negative and positive motivational feedback in motor learning.  

 

  Introduction 

 

Seeking reward and avoiding punishment are powerful motivational factors that shape human behaviour
1, 2

. 

Although previous research has focused on the response to reward and punishment during cognitive 

(decision making) tasks
3-5

, recent work has suggested positive and negative feedback to have dissociable 

effects on procedural
6
 or skill

7
 motor learning. Despite this, surprisingly little is currently known regarding 

the influence of reward- and punishment-based feedback on error-based motor learning (motor adaptation)
8
. 

Traditionally, motor adaptation has been thought as an implicit process which is unaffected by motivational 

feedback
9-11

. This view has had significant implications for how adaptation has been utilised during 

rehabilitation as a tool to improve motor deficits following an illness or injury
12, 13

.  

 

Contrary to the assumption that motor adaptation is insensitive to motivational feedback, we hypothesized 

that punishment and reward would have dissociable effects on the learning and retention components of 

motor adaptation. Error-based motor learning depends on the cerebellum
14, 15

, which encodes aversive 

stimuli
16

 and negative behavioural outcomes
17

, and is essential for aversive conditioning
18

. Therefore, we 

predicted that error-based motor learning would be enhanced by the punishment of movement errors
19

. In 

contrast, the retention of a motor memory depends on the primary motor cortex (M1)
14, 20, 21

. Interestingly the 

neuromodulator dopamine, which is considered essential for reward-based learning
22, 23

, is known to project 

to the M1
24

 and is vital for long-term M1-dependent motor skill retention
25, 26

.  Consequently, we predicted 

that memory retention would be enhanced following  reward
27

 possibly through reward-related dopaminergic 

signalling to M1
28

.  
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To test for this double-dissociation, we used a well-established motor adaptation task that required 

participants to update their reaching direction to compensate for a novel visuomotor rotation
29

. By providing 

participants with reward- or punishment-based monetary feedback that was based on their ability to maintain 

movement accuracy, we were able to examine the influence of positive and negative feedback on the 

learning and retention components of motor adaptation. In support of our hypothesis, we found a striking 

double-dissociation whereby punishment led to faster learning but reward caused greater memory retention. 

These results have significant implications for the understanding and optimisation of motor adaptation. 

Results 

 

Punishment enhanced learning during randomly alternating visuomotor rotations  

We first sought to investigate whether reward- or punishment-based monetary feedback influenced a motor 

adaptation paradigm that is thought to be entirely automatic and non-strategic
30

. In experiment 1, we 

therefore exposed participants to randomly alternating visuomotor rotations during a reaching task in which 

the main aim was to strike through a visual target as accurately as possible (Fig. 1a,b). Although the 

perturbation on one trial was non-predictive of the next, participants systematically adapted their next 

movement to the experienced error. To quantify trial-by-trial adaptation, we used a single-rate state-space 

model (SSM) that estimated how much behaviour was adjusted based on each performance error (learning 

rate) and the degree of memory decay on each trial (decay rate)
30, 31

 (online methods). Within each block, 

trial-by-trial endpoint angular error was associated with graded monetary reward, punishment or null 

feedback (Fig. 1c). Participants’ earnt money during reward blocks based on the accumulated positive points, 

and lost money during punishment blocks based on the accumulated negative points. In contrast during the 

null blocks, these points were replaced by two uninformative horizontal lines
7
 (online methods). We 

observed a significant greater learning rate during punishment blocks (F(2,22)=4.30,p=0.027) relative to 

reward (t(11)=2.27,p=0.045) or null (t(11)=3.67,p=0.004; Fig. 1d). In contrast, reward showed an equivalent 

learning rate to null (t(11)=0.34,p=0.74). There were no significant differences in reaction time (RT) 

(F(2,22)=0.26,p=0.77; punishment=521±105ms, reward=479±91, null=485±84), movement time (MT) 

(F(2,22)=0.84,p=0.44; punishment=223±12ms, reward=216±11, null=221±9), decay parameter 

(F(2,22)=0.21,p=0.81; punishment=0.833±0.034, reward=0.793±0.072, null=0.825±0.035), or goodness of fit 

(R
2
, supplementary table 1). A partial correlation (controlling for block type) indicated that reaction times 

were not correlated with the rate of learning (z=0.19,p=0.31; 2-tailed). This suggests that the increased 

learning rate was unlikely to be a result of participants using a conscious strategy to avoid punishment
10, 32

. 

As the motivational feedback provided no additional directional information, it could not serve as an 

additional signal for error-based learning (online methods). Rather it must have modulated learning by 

changing the participant’s sensitivity to the perceived directional reaching error. 
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[Figure 1] 

 

Punishment caused faster learning to a fixed visuomotor rotation 

These initial findings indicated that learning rate could be increased through punishment-based feedback. 

However, adaptation to random perturbations does not lead to a build-up of memory. To test how 

punishment or reward influences memory retention, experiment 2 used a block design that allowed learning 

to accumulate (Fig. 1e; online methods)
14

.  During adaptation to a fixed visuomotor rotation, participants 

were provided with graded monetary reward (positive points based on endpoint error), graded monetary 

punishment (negative points based on endpoint error) or random positive feedback (random positive points 

that had no monetary value and were not associated with performance). For adaptation, we observed a 

significant difference for learning rate (estimated via a SSM; F(2,41)=3.77,p=0.032; Fig. 2a,b and 

supplementary Fig. s1a,b). Specifically, punishment was associated with faster learning compared to reward 

(p=0.017) or random positive feedback (p=0.030). The reward and random positive groups showed 

equivalent learning (p=0.81). There were no significant differences for the decay parameter 

(F(2,41)=0.08,p=0.93; punishment=0.957±0.008, reward=0.956±0.007, random positive=0.951±0.013). As 

similar differences in learning rate were observed when a generalisation function was added to the SSM (Fig. 

s2), we believe that the effects of punishment on adaptation do not depend on specific assumptions about 

generalisation. However, to ensure differences between the groups were not dependent on the choice of 

model, we performed an additional model-free analysis in which reach direction was averaged across the 

adaptation phase
14

, excluding the first 8 trials (online methods). As participants attempted to adapt to a 30° 

visuomotor rotation, an increased reach angle represented greater learning
14

. The analysis confirmed our 

results. Specifically, punishment led to greater learning during adaptation (F(2,41)=5.73,p=0.007) relative to 

either reward (p=0.045) or random positive feedback (p=0.002; Fig. 2c). There were no significant 

differences between groups for either RT or MT during the main experimental blocks (Table 1). RTs during 

adaptation were uncorrelated with the rate of learning (z=0.07,p=0.61; 2-tailed), again suggesting that the 

increased learning speed of the punishment group was not caused by a more cautious, strategic approach. In 

addition, the average points received or lost on each trial during adaptation was comparable for reward 

(+2.00±0.12) and punishment (-2.05±0.09) (t(26)=0.33,p=0.74; 2-tailed; absolute value used for statistical 

comparison). Finally, the SPSRQ questionnaire
33

 was used to score each participant’s sensitivity to reward 

and punishment. Across participants, there was no overall bias towards either reward or punishment 

(punishment sensitive=20; reward sensitive=19; neutral=3). In addition, no significant correlations were 

observed between this score and participant’s SSM learning or decay rate (z<0.17, p>0.27; 2-tailed). 

 

[Table 1] 

 

Reward caused greater memory retention 
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Next, we characterised memory retention by measuring the gradual drift back to baseline performance when 

visual feedback of performance was removed
14

. For the no vision blocks, the SSM provided a poor fit to the 

data (supplementary Table s1) because the reach direction did not relax back to baseline, especially in the 

reward group (Fig. 2a). We therefore quantified retention by averaging reach direction across the 2
nd

 half of 

the no vision trials (model-free analysis). Retention was greater for the reward group (greater reach angle; 

F(2,41)=5.02,p=0.012) relative to either the punishment (p=0.021) or random positive (p=0.005) groups (Fig. 

2d). In contrast, there was no significant difference between groups (F(2,41)=2.94,p=0.065) for the first set of 

8 trials within the no vision block (epoch 61, Fig. 2a). For completeness, we applied the SSM to the no 

vision blocks with the learning rate fixed to 0. The reward group’s decay parameter was significantly larger 

(indicating increased retention; F(2,41)=3.77,p=0.032) than either the punishment (p=0.015) or random 

positive (p=0.037) group (Fig. 2e). These results confirm our prediction that reward would improve motor 

memory retention.  

 

Punishment was associated with faster readaptation  

When participants readapt after complete washout to a recently experienced visuomotor rotation, they 

usually exhibit faster learning rates, a phenomenon called savings
29

. Here, we used the dissociation between 

reward and punishment to determine whether faster relearning is associated with faster initial learning, as 

induced by negative feedback, or by greater retention, as induced by positive feedback. During washout the 

error returned quickly to baseline levels (Fig. 2a). In the last 8 trials of washout, the error was statistically 

indistinguishable from the last 8 trials of baseline, and there was no significant effect of group 

(F(2,39)=0.75,p=0.48), phase (F(1,39)=1.64,p=0.21) or interaction (F(2,39)=0.46, p=0.63). Importantly, additional 

positive or negative feedback was not provided during readaptation. Despite this, the SSM estimates showed 

that the punishment group adapted significantly faster (F(2,41)=4.05,p=0.025) than the reward (p=0.010) or 

random positive (p=0.042) group (Fig. 2b). In the presence of an directional error signal, the decay parameter 

was similar across groups (F(2,41)=1.25,p=0.30; punishment=0.794±0.042, reward=0.881±0.023, random 

positive=0.848±0.049). We then compared the learning rate parameter for the adaptation and readaptation 

blocks. Although there was a significant block (F(1,39)=55.91,p=0.0005) and group (F(2,39)=5.89,p=0.006) 

effect, the interaction was not significant (F(2,39)=1.45,p=0.25). Thus the increased learning rate observed 

after punishment was maintained during savings (Fig. 2b). We confirmed these results using a model-free 

analysis in which we averaged hand direction for the readaptation phase, except the first 8 trials. Punishment 

was associated with significantly greater learning (F(2,41)=3.42,p=0.043) relative to random positive 

(p=0.019), with the comparison with reward nearing significance (p=0.052; Fig. 2c). 

 

[Figure 2] 

 

Replication of the double dissociation using a 1-target design 
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In experiment 2, we used 8-targets to make the use of strategic components of adaptation less likely. 

However, we wanted to ensure that our results generalised to a single target paradigm as used in experiment 

1. Therefore, we decided to replicate experiment 2 using a 1-target design, also making the study more 

comparable to existing literature on motor memory retention
27, 34

 (online methods). Once again, punishment 

led to a faster learning rate during adaptation (independent t-test: t(20)=2.16,p=0.044; 2-tailed; Fig. 3a,b). 

However, no significant difference was observed during readaptation (t(20)=0.59,p=0.57). Because adaptation 

rates were much higher than in the 8-target version, the lack of difference may have resulted from a ceiling 

effect in the learning rate of the punishment group. The decay parameter was similar for reward and 

punishment during both adaptation (t(20)=0.31,p=0.76; reward: 0.969±0.008, punishment: 0.966±0.006) and 

readaptation (t(20)=0.33,p=0.74; reward: 0.937±0.014, punishment: 0.944±0.014). These results were 

confirmed using a model-free analysis: The average reach angle was larger in the punishment than the 

reward group (t(20)=2.22,p=0.038; 2-tailed), without a  significant difference during readaptation 

(t(20)=0.90,p=0.38; Fig. 3c). We also replicated the increased retention observed in the no vision blocks (Fig. 

3a): For the reward group, the behaviour did not decay back to baseline. The model-free analysis showed that 

the average reach angle during the second half of the no vision group was larger for the reward than for the 

punishment group (t(20)=2.35,p=0.029; Fig. 3c). Although the SSM failed to capture the changed asymptotic 

behaviour, the decay parameter was significantly larger (indicating increased retention) than the punishment 

group (t(20)=2.58,p=0.018; Fig. 3b). Finally, there were no significant differences between groups for either 

RT or MT during the main experimental blocks (Table 2). These results clearly replicate the double 

dissociation whereby punishment led to faster learning and reward caused greater retention. 

 

[Figure 3] 

[Table 2] 

 

The effect of punishment is consistent across binary and graded feedback 

There are several possibilities that could explain how punishment-based monetary feedback led to faster 

learning during adaptation. In order to understand this result in more detail, we performed 3 additional 

control groups using the 8-target design.  

First, it is possible that the graded feedback provided during punishment acted as an additional error signal 

which enhanced the rate of learning. Although this cannot explain the difference between punishment and 

reward, we decided to run a control group who were exposed to binary punishment-based feedback during 

adaptation (online methods). This group showed a significantly faster learning rate when compared to the 

random positive group (independent t-test: t(20)=2.63,p=0.016; 2-tailed; Fig. 4a,b) with model-free analysis 

revealing a similar difference between groups (t(20)=3.22,p=0.004; Fig. 4c). The decay parameter was 

comparable across groups (punish binary: 0.9600±0.008; t(20)=0.53,p=0.61). Therefore, the beneficial 

influence of negative feedback is consistent across binary and graded feedback.   
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Negative feedback does not have to be coupled with monetary loss 

We then asked whether the effect of punishment was a result of participants being sensitive to the loss of 

money or to negative performance feedback per se. A control group were exposed to punishment feedback 

while being explicitly informed that this had no bearing on the payment which was fixed (online methods). 

Once again, this group showed significantly faster learning during adaptation relative to the random positive 

group (independent t-test: t(20)=2.67,p=0.014; 2-tailed; Fig. 4a,b) with model-free analysis revealing a similar 

difference (t(20)=2.64,p=0.016; Fig. 4c). The decay parameter was similar across groups (t(20)=0.11,p=0.92; 

punish performance only: 0.953±0.011). This suggests that for young healthy participants, negative feedback 

associated with their performance is sufficient to induce a substantial increase in the rate of error-based 

learning.  

    

Negative feedback does have to be directly related to actual performance  

A final possibility is that act of losing points could enhance learning, even if they are not related to the actual 

performance. Therefore, a final control group was exposed to random but negative points (random negative) 

during adaptation (online methods). If the sign (+ or -) of the points was important, then the random negative 

group should show significantly faster learning than the random positive group. Crucially, there was no 

significant difference between the random negative and random positive groups for learning rate 

(independent t-test: t(20)=0.47,p=0.64; 2-tailed; Fig. 4a,b) or when using model-free analysis 

(t(20)=0.60,p=0.56; Fig. 4c). The decay parameter was also similar across groups (t(20)=0.90,p=0.38; random 

negative: 0.913±0.05). This demonstrates that negative points unassociated with performance or monetary 

incentive failed to enhance the rate of learning.  

 

Finally, we compared the 3 punishment group’s (punishment/punish performance only/punish binary) 

learning rate. We found no significant differences (F(1,29)=1.04,p=0.37), suggesting that direct negative 

feedback related to poor performance is the critical factor that increases learning rate.  

Discussion 

 

Punishment led to faster learning 

Punishment-based feedback (binary or graded) directly related to performance was associated with faster 

error-based motor learning. There are several possibilities as to how punishment could accelerate motor 

adaptation. First, negative feedback signals may have increased cerebellar sensitivity to sensory prediction 

errors (SPE), i.e. the directional mismatch between the expected and the perceived location of the cursor
11, 35

. 

Alternatively a punishment prediction error (PPE), which signals the unexpected loss of points or money
1, 19

, 

could have led to greater behavioural exploration
36, 37

 and thereby increased the speed with which the correct 
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solution was found
38, 39

. Experiment 1 allowed us to distinguish between these two mechanisms: Unlike the 

SPE, the PPE is by definition unsigned and does not provide any information regarding the direction of 

error
8
. Increased variability in the output therefore cannot lead to increases in the learning rate during 

random visual perturbations. Hence the differences in experiment 1 must have arisen from participants 

becoming more sensitive to the directional information provided by a SPE. This conclusion is supported by 

the control experiments of experiment 2 in which it was found that binary punishment lead to a similar, if not 

greater, effect on the rate of learning. Finally, we did not observe any sign of increased output variability (i.e. 

decreased goodness of fit) or increased reaction time for any of the punishment groups. As cerebellar 

function is sensitive to negative behavioural outcomes
17

 and aversive stimuli
16

, we believe that the 

punishment-induced improvements in error-based learning were a direct outcome of the cerebellum being 

more sensitive to a SPE associated with negative stimuli. In other words, a negative motivational signal may 

directly enhance cerebellar-dependent SPE learning
19

, possibly through increased levels of serotonin within 

the cerebellum
40

. 

 

Loss aversion 

Loss aversion describes the behavioural avoidance of choices that can lead to losses, even when 

accompanied by equal or larger gains
41, 42

. Across many studies, losses typically loom about 1.5-2 times as 

large as gains, with loss aversion being well documented in the laboratory
42

 and in many field settings
43, 44

. 

Therefore, loss aversion may have contributed to the punishment results. Importantly, a merely quantitative 

difference between reward and punishment conditions cannot explain the dissociable influence on learning 

and retention components of motor adaptation – which clearly shows that the two modes of feedback act on 

different systems. We decided to fix the amount of reward and punishment for this study rather that 

attempting to provide participants with calibrated amounts of financial rewards. Indeed, the result of our 

punish performance only control group indicates that such a calibration would not have been straightforward, 

as the points themselves appear to carry motivational value. It would be insightful, however, to further 

examine the modulation of learning with the amount of reward and punishment provided
45

.   

 

Reward caused greater memory retention  

Reward-based feedback during adaptation led subsequently to greater retention when the directional 

feedback was fully withdrawn. Previous work has shown that positive reinforcement can influence both 

online (retention across trials) and offline (retention across time) motor retention
7, 27,47

.  Although there was 

an observable difference between groups at the beginning of the no vision block, this did not reach statistical 

significance. Nonetheless, it is possible that reward had a beneficial effect on both the retention of the 

memory trace during the preceding rest period (offline)
7
 and on the rate of memory decay across errorless 

performance (online)
27

. We believe the positive influence of reward on retention was most likely a 

consequence of a stronger memory trace for the new visuomotor transformation in the cerebral cortex. There 
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is now substantial evidence that the M1 is essential for the retention of motor adaptation
20, 46

. The 

neuromodulator dopamine, critical for reward-based learning
22, 23

, is known to project to the M1
24

 and is also 

vital for long-term M1-dependent motor skill retention
25, 26

. Therefore, the improvement in motor memory 

retention could be a result of reward-related signals to M1 during adaptation
28

.  

 

Previous work on reward and punishment in motor learning 

Two previous studies have investigated the influence of reward and punishment on motor learning. Wachter 

et al., (2009) found that during implicit sequence learning, punishment led to significantly better online 

motor performance, whereas reward was associated with greater learning and retention
6
. Abe et al. (2011) 

studied motor skill learning and found that while reward enhanced memory retention, punishment was not 

associated with any significant changes in behaviour
7
. Therefore, it seems reward enhances memory 

retention across multiple motor learning paradigms. In contrast, the influence of punishment appears more 

specific to error-based learning.  

 

Conclusions 

These findings reinforce the view that multiple independent mechanisms underpin motor learning
27, 34, 48

. 

Here we show that the learning and retention components of motor adaptation are differentially affected by 

reward and punishment. Previous work has concentrated on the potential translational impact of reward-

based feedback
27, 48

.  For instance, the use of reward has been suggested to have significant implications for 

stroke rehabilitation where motor learning interventions suffer from an inability to cause long-term changes 

in behaviour
49

. However, the present results indicate that focal and well-measured negative feedback may 

have utility during rehabilitation where an acceleration of learning is desired. Once the desired behaviour has 

been reached, reward signals could be introduced to facilitate the retention of the newly acquired behaviour.  
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Figure captions 

 

Figure 1: Experimental design. (a) Experimental apparatus. Participants made reaching movements towards 

visual targets presented on a screen (b) Experimental task. Shooting reaching movements were performed 

with online (green) and endpoint (yellow) feedback. Reward and punishment feedback were represented by 

positive and negative points and based on endpoint error. (c) Experiment 1: 1-target adaptation to randomly 

alternating visuomotor rotations; positive=12º clockwise (CW), negative=12º counter clockwise (CCW). 

Within each block (vertical black line: 100 trials) participants received reward (red), punishment (green) or 

null (black) motivational feedback. (d) Experiment 1 (n=12): punishment was associated with greater trial-

by-trial learning relative to either reward or null (SSM learning rate parameter). * = p<0.05. Error bars = 

SEM. (e) Experiment 2: 8-target adaptation to a fixed 30º CCW (negative) visuomotor rotation. Participants 

experienced 13 blocks (horizontal lines: 96 trials) which were separated by short rest periods (< 1minute). 

Shaded grey = participants received reward, punishment or random positive feedback during adaptation 

(adapt): reward (R)/punishment (P)/random positive (RP). Blocks 2,6-8: online and end-point visual 

feedback were removed (no vision; purple). Readaptation (readapt) involved a 30º CCW visuomotor rotation 

however reward/punishment was no longer provided.  

 

Figure 2: Punishment led to faster learning, while reward caused greater retention during motor adaptation. 

(a) Experiment 2 (n=42). Epoch (average across 8 trials) angular reach direction data (º) for the random 

positive (blue), reward (red) and punishment (black) groups. Dashed/solid vertical lines = short rest periods 

(<1minute). For each section (vertical solid lines), a separate SSM was estimated.  (b) Punishment led to 

faster learning compared to the random positive and reward groups during both adaptation and readaptation. 

(c) Model-free behavioural analysis revealed similar differences between groups. Specifically, punishment 

led to greater learning (increased reach angle) during adaptation and readaptation. (d) With no vision, reward 

was associated with enhanced retention (model-free analysis: increased reach angle) and (e) a larger decay 

rate (signifying increased retention) compared to punishment and random positive. * = p<0.05.  ** = p<0.06. 

Solid lines = mean, error bars/shaded areas = SEM.  

 

Figure 3: Replication of the double dissociation between reward and punishment using a 1-target design. (a) 

Experiment 2 using a 1-target design (n=22). Trial-by-trial angular reach direction data (º) for reward (red) 

and punishment (black). Dashed/solid vertical lines = short rest periods (<1minute). For each section 

(vertical solid lines), a separate SSM was estimated. (b) Punishment led to faster learning compared to the 

reward group during adaptation but not readaptation. During no vision, reward was associated with a larger 

decay rate (signifying increased retention) compared to punishment. (c) Model-free behavioural analysis 

revealed similar differences between groups. Specifically, punishment led to greater learning (increased 
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reach angle) during adaptation, whereas reward caused enhanced retention during no vision. * = p<0.05. 

Solid lines = mean, error bars/shaded areas = SEM.  

 

Figure 4: Direct negative feedback related to poor performance is the critical factor that increases learning 

rate. (a) Experiment 2: control conditions (n=24). Epoch (average across 8 trials) angular reach direction data 

(º) for the control conditions: random negative (orange), punishment performance only (black), punishment 

binary (red) and the original random positive group (blue). Dashed vertical lines indicate short rest periods 

(<1minute). (b) Punish performance only and punish binary were associated with an increase in the rate of 

learning when compared to random positive. There was no significant difference between random negative 

and random positive. (c) Model-free behavioural analysis revealed similar differences between groups. 

Specifically, punishment performance only and punish binary led to greater learning (increased reach angle) 

during adaptation. Solid lines = mean, error bars/shaded areas = SEM. * = p<0.05.    
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Tables 

 

Table 1: Reaction time and movement time across groups for experiment 2. Mean ± SEM 

  Punishment Reward Null ANOVA 

Adaptation     

 RT (ms) 561±60 589±105 487±46 F(2,41)=0.49, p=0.62 

 MT (ms) 266±17 259± 16 294±22 F(2,41)=1.06, p=0.36 

No vision      

 RT 555±61 589±11 487±46 F(2,41)=0.47, p=0.63 

 MT 280±21 269±16 294±22 F(2,41)=0.83, p=0.46 

Readaptation     

 RT 472±34 532±120 430±39 F(2,41)=0.46, p=0.63 

 MT 213±12 202± 13 230±14 F(2,41)=1.13, p=0.33 

 

Table 2: Reaction time and movement time across groups for 1-target control experiment. Mean ± SEM. 

  Punishment Reward t-test (2-tailed) 

Adaptation    

 RT (ms) 356±42 376±47 t(20)=0.30, p=0.77 

 MT (ms) 280±28 286±46 t(20)=0.10, p=0.92 

No vision    

 RT 357±20 360±27 t(20)=0.10, p=0.93 

 MT 269±22 282±41 t(20)=0.26, p=0.80 

Readaptation    

 RT 312±31 348±30 t(20)=0.83, p=0.42 

 MT 267±31 236±28 t(20)=0.73, p=0.48 
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Methods 

Experimental procedures  

Participants 

All of the 100 young individuals (22±6 years, 58 females) were right-handed (self-reported) and gave 

informed consent to participate. None of the participants had a history of neurological or psychiatric 

diseases, or took chronic medication. The study was approved by the local research ethics committee of the 

Institute of Neurology, UCL, UK and University of Birmingham, UK.  

Experimental Task  

In all experiments, participants controlled a cursor through either a robotic manipulandum or a motion 

tracking system with their right hand and made 8cm, fast shooting movements towards visual targets (Fig. 

1a). Their main aim was to strike through the target as accurately as possible (Fig. 1b). Following a baseline 

block, participants were exposed to a novel visuomotor transformation, in which the cursor movement was 

rotated around the starting position from the hand movement. This visuomotor transformation introduced a 

performance error. To compensate for this novel environment and return to accurate performance, 

participants were required to alter the trajectory of their reaching movements (hand direction). Experiment 1 

was performed at the Institute of Neurology, UCL, and experiment 2 was performed at the School of 

Psychology, University of Birmingham. Despite this, a similar setup was used. Participants were seated with 

their forehead supported on a headrest. Their semipronated right hand either gripped a manipulandum (UCL) 

or was attached to a Polhemus motion tracking system (Birmingham) underneath a horizontally suspended 

mirror. The mirror prevented direct vision of the hand and arm, but showed a reflection of a computer 

monitor mounted above that appeared to be in the same plane as the hand. The visual display was comprised 

of a 1cm diameter starting box, a green cursor (0.3cm diameter) representing the position of the 

manipulandum, and a circular white target (0.5cm diameter). During experiment 1, the target was located 

8cm vertically in front (on the screen) of the starting box. During experiment 2, a target was displayed in 1 of 

8 positions arrayed radially at 8cm from the central starting box. At the start of each trial, the participant 

moved the cursor into the start box, a target then appeared. Participants were required to make a fast shooting 

movement through the target, such that online corrections were effectively prevented. At the moment the 

cursor passed through the invisible boundary circle (invisible circle centred on the starting position with an 8 

cm radius), the cursor was hidden, and the intersection point was marked with a yellow square to denote the 

endpoint error. In addition, the start box changed colour based on movement speed. If the movement was 

completed within 100-400ms then it remained white. If the movement was slower than 400ms then the box 

turned red (too slow). Importantly, the participants were clearly instructed that the main goal of the task was 

to strike through the target as accurately as possible. After each trial, subjects moved back to the start. The 

cursor indicating their hand position only reappeared when they were within 2 cm. For experiment 2, the 

targets were presented pseudo-randomly so that every set of 8 consecutive trials included 1 of each of the 

target positions. Visual feedback could differ between blocks. First, a rotation of the cursor relative to the 
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hand around the starting location could be imposed. Second, online visual feedback and endpoint error 

feedback could be removed so that participants made reaching movements without vision; they simply saw a 

target but received no feedback as to their movement accuracy. Finally, a points system based on endpoint 

error could be visible:  

Reward:   

4 point: hit the target  

3 point: < 10° error 

2 point: < 20° error  

1 point: < 30° error  

0 point: >= 30° error 

Punishment:   

0 point: hit the target 

-1 point: < 10° error  

-2 point: < 20° error  

-3 point: < 30° error  

-4 point: >= 30° error  

Null 

Points are replaced by two uninformative horizontal lines. 

Random positive:  

A random number between 0 and 4 is presented which has no monetary value and is not associated with 

performance.  

 

Participants began each block with 0 points. These points accumulated across the block. However, the 

reward and random positive group accumulated positive points whereas the punishment group accumulated 

negative points. Participants could see the points they received on a trial-by-trial basis and the total points 

accumulated for the block. The reward group/block earnt money based on the accumulated points (win 1 

pence per positive point), whereas the punishment group/block lost money based on the accumulated 

negative points (lose 1 pence per negative point). During null blocks for experiment 1, the points were 

replaced with horizontal lines. For experiment 2, the random positive group were explicitly informed that the 

points had no monetary value and were not associated with performance. This feedback was used to control 

for the presence of numbers on the screen within the reward and punishment conditions (Figure 1B).  Thus 

differences between random positive and either reward or punishment feedback would suggest that the points 

had to be directly associated with performance/monetary incentive. Finally to ensure similar attention, 

participants were required to report the points total at the end of each block.  
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Experimental Protocol  

Experiment 1 

For experiment 1 (Fig. 1c), participants (within-subject design; n=12) were exposed to 1 block (1 block=100 

trials) of veridical visual feedback (baseline). In the next 6 blocks the visuomotor rotations alternated 

randomly (12° CW/12° CCW/0°) on a trial-by-trial basis
50

. For each block, the feedback was either reward 

(R), punishment (P) or null (N) (2 blocks of each). Each participant was given £10 prior to the start of the 

study. They were instructed that they could lose money during punishment blocks, gain money in reward 

blocks or that money did not change during null blocks. Due to the random nature of the perturbations, 

participants received approximately £10.  

Experiment 2 

For experiment 2 (Fig. 1e), participants were allocated to the reward, punishment or null group (between-

subject design; n=42). The following blocks were then performed: 

Baseline: 2 blocks (1 block = 96 trials): one with veridical visual feedback and the other without visual 

feedback. Null feedback.  

Adaptation: 3 blocks with 30° CCW visuomotor rotation. Dependent on the group, the points system was 

reward, punishment or random positive. Importantly, motivational feedback was only provided during 

adaptation.  

No-vision: 3 blocks without visual feedback. This restricted adaptation and therefore allowed errorless 

retention to be examined. The observed gradual drift back to baseline performance characterizes the degree 

of memory retention. Null feedback. 

Washout: 3 blocks with veridical visual feedback. Null feedback. 

Readaptation: 2 blocks with 30° CCW visuomotor transformation. Null feedback. 

Each block was separated by a short rest period (< 1minute) in which participants were instructed to maintain 

their arm underneath the mirror. Unlike previous work
7
, improvements in readaptation could only be 

attributed to faster relearning, as we ensured washout was complete. Initially, we estimated the state-space 

model independently for the baseline/adaptation, no-vision and washout (last block)/readaptation phase. 

The reward group began with £0 and won approximately £5-7. The punishment group were given £12 before 

the start of the task however ended with approximately £5-7. The random positive group randomly received 

either £12 before the task or £6 after. This was irrespective of performance but designed to control for the 

initial payments and time points of payment between the reward (begin with £0, end with £6) and 

punishment groups (begin with £12, end with £6). Each group were explicitly instructed of both the points-

error relationship and the maximum points/money they could win or lose (£11.52) across the 3 blocks of 

adaptation.  

1-Target 

In experiment 2, we used 8 targets to make the use of strategic components of adaptation less likely
10

. 

However, we wanted to ensure that our results generalised to a single target paradigm as used in experiment 
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1. Therefore, we decided to replicate experiment 2 using a single-target design making the study more 

comparable to existing literature on motor memory retention
34

. A reward and punishment group (n=22) were 

tested on a task that was identical to experiment 2 except only a single target position was used. In order for 

the groups to end the experiment with approximately the same monetary reward, and to account for the faster 

adaptation, the reward and punishment group started the experiment with different values as compared to 

experiment 2. Reward began with £2 and earnt approximately £4-6, whereas punishment began with £10 and 

lost approximately £2-4. The target was located 8cm in front of the starting box, similar to experiment 1. 

Although a similar protocol to experiment 2 was employed, the number of trials was slightly reduced: 

Baseline with vision: 50 trials 

Baseline without vision: 50 trials 

Adaptation: 200 trials 

No vision: 200 trials 

Washout: 100 trials  

Readaptation: 100 trials 

Punish Binary    

It is possible that the graded feedback provided during punishment acted as an additional error signal, which 

enhanced the rate of motor-based learning. Although this cannot explain the difference between punishment 

and reward, we decided to run a control group (n=8) in which participants received binary punishment 

feedback during adaptation. Participants were told that they would receive 0 points for hitting the target (±5
0
) 

and -1 for any error above this value. Each negative point was related to losing 1pence with participants 

beginning with £8. Note for all remaining control groups, only the 2 baseline blocks and adaptation were 

tested.  

Punish Performance Only   

We asked whether the effect of punishment was a result of participants being sensitive to negative feedback 

on their performance or whether they were sensitive to the loss of money. Therefore, a control group (n=8) 

was exposed to the punishment feedback, while being explicitly informed that this had no bearing on the 

payment which was fixed at £6.  

Random Negative  

The random positive group in experiment 2 involved random but positive points. It is possible that even 

though these positive points were unrelated to performance, they could still be implicitly rewarding to the 

participant. Therefore, a control group (n=8) were exposed to random but negative points (random negative) 

during adaptation. If the sign (+ or -) of the points was important, rather than them being related to 

performance or money, then random negative should show significantly faster learning during adaptation.  

Code and data availability 
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Custom computer code was used to control the experimental task, collect behavioural data and perform all 

data and statistical analysis.  All computer code and raw behavioural data is available on request to the 

corresponding author.  

Data Analysis   

Reach position data (x,y) was collected at 100Hz. Data and statistical analysis was performed using Matlab 

(The Mathworks, Natwick, USA). For each trial, angular reach direction (º) was calculated as the difference 

between the angular hand position and angular target position at the point when the cursor intersected the 8-

cm invisible circle centred on the starting position. During veridical feedback, the goal is for reach direction 

to be 0°. However, with a visuomotor transformation, reach direction had to compensate; i.e. for a -30° 

(CCW) visuomotor rotation, a reach direction of +30° (CW) was required. In addition, reaction time (RT: ms 

difference between target appearing and movement reaching 10% of maximum velocity) and movement time 

(MT: ms difference between reaction time and movement end) were calculated for each trial. For both 

experiments, we removed any trial in which reach direction exceeded 60° 
51

 or that MT exceeded 600ms. 

This accounted for less than 4% of trials.  

Model-based  

We analysed the trial-by-trial angular reach direction in response to the visuomotor transformations using a 

single-rate state-space model
30, 31, 48, 52

. The application of such a model was necessary to allow for the 

quantification of the adaptation rate in experiment 1, which otherwise would not be accessible. For 

experiment 2, it would also be possible to simply analyse the behavioural data by averaging the reaching 

angle across certain phases of the task
53

. Although this analysis is provided to substantiate our model-based 

results, the advantage of the state-space model is that it estimates learning rates from all available data and 

does not require the experimenter too arbitrarily select time points/trials of interest.  

Adaptation may be captured better using a double-exponential learning curve; therefore it would have also 

been possible to model our results using a 2-rate state-space model
34

. However, as we wished to apply the 

model only to obtain a quantification of the overall learning rate, this would have provided little additional 

information regarding our main result. The single-state state-space model equations took the following form: 

�̂�𝑛 = −𝑧𝑛
𝑡   

 𝑧𝑛+1
𝑡 = 𝐴𝑧𝑛

𝑡 +  𝐵(𝑟𝑛 − 𝑧𝑛
𝑡 ) 

 �̂�n represents the angular hand direction (relative to the target) on trial n; 𝑧𝑛
𝑡  is the state of the learner that 

represents the current estimated visuomotor rotation associated with the target t; rn represents the visuomotor 

rotation that was imposed on trial n; 𝑟𝑛 − 𝑧𝑛
𝑡   is the direction of the cursor relative to the target and thus the 

cursor error
48

. Therefore, the learning rate (B) determines how much of the cursor error (𝑟𝑛 − 𝑧𝑛
𝑡 ) is adapted 

for. The decay parameter (A) determines the rate of forgetting of the state/estimated visuomotor mapping 

(𝑧𝑛
𝑡 ) and is only applied to the executed movement

54
.  
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During blocks without visual feedback, we assumed that B = 0. Therefore, under these conditions, the system 

forgets with constant A.  Previous studies have included a generalisation function which determines how 

much error in one target direction affects mapping estimates in neighbouring directions
30, 48

. Initially, we 

assumed no generalisation between target positions that are 45
0
 apart however return to this issue in the 

supplementary results. Using the matlab function fmincon, we estimated A and B to minimize the squared 

error between trial-by-trial predicted hand direction (�̂�t(n)) and actual trial-by-trial hand direction, subject to 

the constraints (0<A<1) and (-1<B<1). 

Model-free   

To ensure differences between the groups were not solely dependent on the model, we performed 

behavioural (model-free) analysis in which the angular reach direction (º) was averaged across trials. The 

specific trials were chosen in an attempt to reflect either the learning component during re/adaptation
53

 or the 

retention component during no vision
27

. For the adaptation and readaptation blocks in the 8-target task, the 

average reach direction was calculated across all trials, excluding trials 1-8. For no vision, the average reach 

direction was calculated across the 2
nd

 half of the no vision trials. Within the 1-target task, the average reach 

direction was calculated across the first 15 trials of adaptation and readaptation, excluding trial 1. Finally for 

no vision, we calculated the average reach direction across the second half of the no vision trials. 

Statistical analysis  

For experiment 1, independent state-space models were estimated for each participant and block. We 

assumed that at the beginning of each block: 𝑧0
𝑡 = 0. The parameter estimates for A and B were then 

averaged for each block type, providing 3 A and B parameter values for each participant (reward, 

punishment, null). To test for differences in these parameter values between block types, we conducted 

within-subject repeated measures ANOVAs followed by post-hoc paired t-tests.  

For experiment 2, independent state-space models were estimated for baseline/adaptation (5 blocks), no 

vision (3 blocks) and washout (last block)/readaptation (3 blocks). We assumed that for each section, 𝑧0
𝑡 was 

set by the participant’s initial hand movement direction at the beginning of that section .i.e. an average across 

trials 1-8.  Unless stated otherwise, differences between groups for the A and B parameter values and model-

free analysis were examined using a one-way between-subject ANOVAs followed by Tukey post-hoc tests.  

No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those 

reported in previous publications
38,48,53

. Epoch data shown in figures depicts the average angular reach 

direction across 8 movements (1 movement towards each target).  Significance level was set at p<0.05. All 

data are reported as mean ± standard error of the mean (across subjects) (SEM). A supplementary methods 

checklist is available. 
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Fig.3 
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