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University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 

* Corresponding Author: a 

Graphical abstract 

Highlights 

 

 Vibrational spectrum of PCL is complicated by changes on crystallization.   

 TA-FTIR spectroscopy enables the absorption bands to be unambiguously assigned.  

 Crystallinity can be determined from the ratio of crystalline and amorphous bands.  

Abstract.   

Vibrational spectra of poly (ε-caprolactone) have been measured as a function of temperature 

and time to assign the molecular origins of the absorption bands, to distinguish crystalline 

and amorphous bands and measure fractional crystallinity. While many changes occur within 

the spectrum on crystallization and melting those which occur to the carbonyl absorption 

band proved to be the most useful in determining the fractional crystallinity and following the 

development of crystallinity with time. 

Two-dimensional IR correlation mapping applied to the carbonyl band clearly showed that 

the broad band at 1735 cm-1 was due to the stretching of the ester carbonyl group in the 

amorphous regions which decreased in intensity on isothermal crystallization.  At the same 

time a narrower more intense band developed at 1725 cm-1 attributed to the absorption of the 

ester carbonyl group in the crystalline regions.  Deconvoluting the band into these 
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components enabled the intensities of the two to be determined and the fractional crystallinity 

measured. 

Keywords:  

Poly (є-caprolactone);  

Two-dimensional Correlation Spectroscopy;  

Synchronous and Asynchronous Mapping;  

Phase transitions, 

1. Introduction 

Thermal analysis-FTIR spectroscopy has been widely used to follow the mechanism of 

polymer degradation [1-4] since it enables the intensities of functional groups to be followed 

as a function of temperature and time as well as recognizing the relative importance of 

competing side reactions by the build-up and disappearance of transient species.  It has been 

used [5-8] to follow first and second order phase transitions in polymers from the change in 

intensity of absorption bands associated with changes in chain configuration or morphology.  

Recently the kinetics of crystallization of polyesters [9-11] have been measured by separating 

crystalline and amorphous components of the carbonyl absorption band which enabled the 

fractional crystallinity to be determined as a function of temperature and time.    

This paper considers the value of TA-FTIR in measuring phase changes and fractional 

crystallinity of an important biodegradable polyester, poly (є-caprolactone), PCL, which is 

widely used in biomedical applications as implants and drug delivery material, scaffolds for 

tissue repair, sutures and vehicle membranes.  It is a partially crystalline polymer but because 

of its low melting point, 60 oC, and glass transition temperature, - 60 oC, it is prone to ageing 

at ambient temperatures.  As a result of storing above the glass transition temperature the 

fractional crystallinity, mechanical and physical properties change with time [12].   In order 

to quantify these changes measurement of the fractional crystallinity becomes essential.  
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This paper considers the value of TA-FTIR to measure phase and molecular transitions in 

partially crystalline PCL and directly determine its crystallinity. 

2.1   Experimental 

Poly (є-caprolactone), PCL, (CAPA 6800) was supplied in pellet form by Perstorp 

(Warrington, UK).  The number and weight average molecular weights were 80 and 120 kg 

mol-1 respectively, and the polydispersity 1.5. Films up to 500 µm thick were cast from 

solution, concentration 3.3-6.6 gdm-3, by evaporation of the solvent, dichloromethane, at 

room temperature.  Traces of solvent were removed by placing the films in a heated vacuum 

oven. 

Potassium bromide powder, of IR grade, was supplied by Sigma Aldrich (Dorset, UK) 

and pre-dried in an air-oven at 120 °C before being pressed into discs for IR spectroscopic 

measurements.  Dichloromethane, research grade, was used as a solvent for PCL. It was 

supplied by Sigma Aldrich (UK) and used as received.  

Transmission FTIR spectra were measured on Nicolet spectrophotometers, models 

1869 and 8700, with DTGS-KBR detector on thin films samples mounted between KBr discs 

and contained within the furnace of a Linkam hot stage.  KBr powder was pressed at a 

pressure of 15 tons into 16 mm diameter discs, using a Specac, UK die-press. A disc of 

300 mg. was used to measure the background spectrum. Two sample discs of 150 mg each 

were used to sandwich the polymer. Drops of polymer solution in dichloromethane were 

placed on the surface of one of the thin KBr discs and allowed to evaporate.  They were 

subsequently heating in a vacuum oven. The thickness of the sample was adjusted to maintain 

absorbance values about 1.0.  

Polymer film, sandwiched between two thin KBr discs, was mounted across the 

window of a Linkam THM600 (Surrey, UK) thermometric stage and placed vertically in the 

IR beam.  The furnace temperature was controlled by a Unicam R600 thermal controller to an 
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accuracy of ± 0.1 oC.  A Bibby Scientific Techne TE-10D (Stone, UK) water bath circulated 

water through the outer skin of the furnace and enabled faster cooling.  Spectra were 

measured over the temperature range 30-70 oC, using variable heating and cooling rates up to 

80 °C min=1.  Amorphous samples were prepared by heating to 70 oC and holding in the melt 

for 2 min.  The sample was subsequently cooled and spectra recorded at a resolution of 4 cm-1 

in sets of 100 scans and spectra recorded after every 2 min..  A background was subtracted 

from all spectra. 

3.  2-D correlation spectroscopic analysis. 

Two-dimensional infrared spectroscopy is used to simplify the interpretation of 

complex spectra consisting of many overlapped peaks, and enhance spectral resolution by 

spreading peaks over a second dimension.  This helps to establish the assignment of peaks to 

certain groups within the molecule through correlation of the bands.  The mathematical 

procedure involved in obtaining 2D correlation spectra from time or temperature dependent 

complex spectra has been explained by Noda and Ozaki [13] in some detail.   

If ),( tvy  defines the perturbation-induced variations in intensities of spectra observed 

at fixed intervals of time or temperature (or an alternative external variable), t between tmin 

and tmax, then the dynamic spectrum of the system, ),(~ tvy  is defined as 

ỹ(ν, t) = y(ν, t) - ȳ(ν)  for tmin ≤ t ≤ tmax    (1) 
 

where ȳ(ν) is the initial or reference spectrum of the system. 

The intensity of the 2D correlation spectrum X(ν1, ν2) is then represented as 

X(ν1, ν2) = <ỹ(ν1, t) · ỹ(ν2, tʹ)>            (2) 
 

where X(ν1, ν2) is a quantitative measure of comparative similarities or differences in the 

intensities.  ),(~ tvy  is measured at two separate variables; ν is the wavenumber and t is either 

time or temperature at fixed intervals.  The symbol < > is the cross-correlation function and is 

designed to compare the two dependences of the spectra at t. 
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 When the model of Noda and Ozaki is simplified, X(ν1, ν2) becomes a complex 

number function, such that 

X(ν1, ν2) = Φ(ν1, ν2) + Ψ(ν1, ν2)        (3) 
 

This function includes both real and imaginary components, which are recognized as 

synchronous and asynchronous 2D correlation intensities.   

 The synchronous 2D correlation intensity, Φ(ν1, ν2), is a symmetrical spectrum with 

respect to a diagonal line of ν1 = ν2 and represents the overall similarity or coincidental trends 

between two separate intensity variations measured at different spectral variables as the value 

of t is scanned from tmin to tmax.  This is the in-phase character of the system.   

 .  The asynchronous 2D correlation intensity, Ψ(ν1, ν2), is anti-symmetric with respect 

to the diagonal and is considered to measure out-of-phase character of the spectral intensity 

variations.  The intensity of an asynchronous spectrum represents sequential or successive but 

not coincidental changes of spectral intensities measured separately at ν1 and ν2. 

 

4. Results and discussion 

ACCEPTED M
ANUSCRIP

T



4.1 Changes to the FTIR spectrum of PCL on crystallization 

. 

 

Fig. 2. Changes in IR Spectra on cooling from 70 to 30 oC. 

The FTIR spectrum of partially crystalline PCL at room temperature exhibits the 

absorption bands of a linear aliphatic polyester, see Fig 1, consistent with its structure, i.e. 

- (CH2 - CH2 - CH2 - CH2 - CH2  - CO - O-)n - 

There is a doublet between 2800 and 3000 cm-1 due to the stretching of the C-H bonds of the 

methylene groups and a singlet at 1720-30 cm -1 characteristic of the carbonyl group.   Further 

bands between700-1600 cm-1 are attributed to the skeletal structure of the polymer chain, 

bending, wagging and stretching of the methylene and gauche and trans isomerization of the 

ester groups, similar to those assigned for PET [6].   

Several changes in the spectrum of PCL occurred which were reproducible on melting 

and crystallizing as can be seen by comparing the amorphous and partially crystalline spectra 

in Fig. 2 measured in the melt at 70 oC and on cooling to room temperature.  Many of the 
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changes were minor due to differences in conformation of the chains in the amorphous and 

crystalline regions and also to the difference in the force fields in these two environments. In 

order to elucidate these changes the spectrum was divided into distinct regions and analyzed 

separately in greater detail. 

 

4.2 Methylene region – 2600-3000 cm -1 

 The change in the doublet on cooling from 70 to 30 oC can be seen in Fig. 3 and in 

particular on crystallizing in the region 40-45 oC.  The bands are due to the asymmetric and 

symmetric stretching of the methylene >CH2 bonds.   On crystallization the asymmetric band 

sharpens and a minor band at 2900 develops along with a shoulder at 2960 cm-1 which we 

attribute to the symmetric and asymmetric stretching of the crystalline band, since they 

appear and disappear reversibly on crystallization and melting. 
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70 oC 
 
30 oC 
Fig. 3. Changes in the FTIR Spectrum of PCL -2750-3000 cm-1. on cooling from 70 to 30 
oC. 
 

4.3.  Carbonyl region – 1700-1750 cm -1. 

 

 
  70 oC 

 
  30 oC 
 

Fig. 4. Change in carbonyl absorption band on cooling from 70 to 30 oC. 

Marked changes occurred to the amorphous carbonyl band centred at 1735 cm1 on 

cooling from 70 oC and in particular corresponded with the onset of crystallization between 

45 and 40 oC, see Fig. 4.   A narrower band with a maximum developed progressively with 

time at 1724 cm-1.  These bands were attributed to amorphous and crystalline regions of PCL 

since the changes were reversible on heating and their absorbances used to measure the 

crystallinity of PCL by resolving the overlapping carbonyl bands.  Baseline corrections were 
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applied at two fixed wavenumbers and the absorption band auto-smoothed repeatedly with 

Omnic software into two absorption bands until a best fit was achieved. The analysis was 

carried out on the basis of two Laurentzian shaped absorption bands with maximum 

 absorbances at 1735 and 1725 cm-1 as shown in Fig. 3 

Fig. 5.  Separation of the carbonyl absorption band into two components at 1725 and 

1735 cm-1. 

 

The resulting separation of the carbonyl enabled the intensities of the two bands to be 

determined separately and as the amorphous band decreased so the crystalline increased, see 

Fig.6 where the crystalline and amorphous intensities are compared with one another.  To 

confirm that the intensity of the carbonyl absorption bands can be used quantitatively to measure the 
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fractional crystallinity samples were crystallized isothermally to eliminate any differences due to the 

temperature dependence of the intensities.  Samples were heated at 70 oC for 3 min. in order to 

remove any trace of crystallinity and subsequently rapidly cooled to a constant temperature, in the 

region 40 to 47 oC.  The crystalline and amorphous absorbances were followed with time and an 

increase in the crystalline was followed by a decrease in the amorphous intensity.  

If both bands obey Beer-Lambert law then the intensity of the bands is proportional to the 

weight fractions present in the sample and defining the weight fraction amorphous content, Xa, 

from Beers-Lamberts Law then 

    Xa, = Aa/Aa, o        (4)   

where Aa and Aa,o are the absorbances of the amorphous band and initially before any 

crystallinity has developed.   

Similarly for the crystalline weight fraction,   

Xc= Ac/Ac, o.      (5).  

For a two phase model of a partially crystalline polymer, the amorphous weight fraction, Xa 

is related to the crystalline weight fraction, Xc, and 

Xa + Xc = 1.0      (6) 

Accordingly   Aa,/Aa, o + Ac/Ac, o = 1, 

and   Ac = Ac, o – Aa (Ac, o/Aa, o)                           (7). 

Plots of Ac against Aa were linear, see Fig. 6, with degree of fit greater than 0.99, see table 2.  

These values varied with temperature and sample thickness but were used to calculate the 

fractional crystallinity at each temperature from the ratio of Ac/Ac, o, see Table 1. The final 

crystallinity achieved was in the range 35-55% over 1000 min.  

At each temperature prior to the onset of crystallization Ac = 0 and increased linearly 

as Aa decreased, see Fig. 6 indicating that it was not due to changes in chain conformation but 

to crystallinity.  
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The crystalline absorbance at 100% crystallinity, Ac,o, varied according to the 

thickness of the sample but was greater than the corresponding value for the amorphous band, 

Aa,o, by about 20-50%.   
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Fig. 6.  Dependence of crystalline on amorphous absorption on crystallizing at various 

temperatures. 
 

 

ACCEPTED M
ANUSCRIP

T



 

 

4.4 The region – 1600-900 cm -1 

This region of the spectrum is sensitive to chain configuration and to the vibration of the 

methylene and ester groups.  The bands at 1458, 1390 and 1163 cm-1 are attributed to the 

methylene groups in the amorphous regions and are associated with the gauche isomer.  

These bands are reduced in intensity on crystallization while the bands at 1470, 1395 and 

1193 cm-1 increase.  We associated them with the trans isomer which is present in the crystal 

but also in an equilibrium amount in the melt. In a similar manner molecular assignments 

were made to the other absorption bands, as listed in Table 2, to the gauche or trans isomers 

according to whether they were both present in the melt and increased or decreased in 

intensity on crystallization or melting.. 

The bands at 1235 and 1275 cm-1 are attributed to the stretching of the ester group 

contained within the chain in the amorphous regions which shift to higher wavenumbers, 

1245 and 1295 cm-1 as well as  develop in intensity on crystallization.  

The ratio of intensities of the crystalline and amorphous bands changed on crystallization, but 

the intensities were too weak and the baseline too complex by the presence of adjacent 

absorption bands to be useful in measuring the degree of crystallinity.  

Similar changes occur to the >CH2 deformation band at 1163 cm -1 in that it decreases 

in intensity on crystallization while a narrower band develops at 1193 cm -1,  This is also 

present as a very weak shoulder in the amorphous sample and is attributed to the trans isomer 

and the original to the cis.  Assignment of the bands to the isomeric form of the configuration 

was made according to how the intensity of the bands changed on crystallization, see Table 2.  

A minor but broad band at 960 cm-1 in the amorphous sample sharpened and 

increased in intensity with the development of crystallinity and at the same time split into 
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two, at 960 and 940 cm-1.  This was attributed to the bending of ester –C-O-C band from the 

cis to trans configuration on crystallization.  Its intensity was too weak for accurate 

measurement of intensities and determination of the fractional crystallinity.  

 
70oC 

30o C 
 
                           t  g      t          t               t      g  t          t     g                         t               t      t 
 

.  

Wavenumber / cm-1 

 

Fig. 7.  Changes in FTIR spectrum on cooling from 70 to 30 oC – 900 to 1500 cm-1. 

Assignments to t trans and g gauche isomers. 
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s: strong, m: medium, w: weak and vw: very weak intensity  sh shoulder. 
4.5 2-D correlation infrared spectroscopy.  

In order to confirm that the changes to the carbonyl band were due to the development 

of crystallinity 2D- correlations mapping was applied to peak shifts and changes in intensity 

with time at constant temperature on crystallizing from the melt.  Generalized 2D-IR 

correlation spectra based on the partially crystallized, v2, and totally amorphous PCL 

samples, v1, in the range 1800-1650 cm-1 were the dominant changes observed are shown in 

Figs. 8 and 9 

The symmetric and asymmetric correlation maps of the carbonyl absorption band in 

2-dimensions are clearly coupled.  The 2-dimensional map in Fig. 8 has the characteristic 

angel pattern of a single absorption band which shifts from higher to lower wavenumber with 

the two having different intensities. The lower symmetry of the angel pattern arises from the 

difference in breadth of the two bands – the amorphous is broad and the crystalline 

comparatively sharp and the different relative intensities [13]. The maximum intensity of the 

two autopeaks can be used to define the wavenumber of the initial and final peak, at 1735 and 

1725 cm-1 respectively,  They comprise two positive autopeaks and two negative cross peaks 

with long tails spreading out to 1800 and 1600 cm-1 reflecting the breadth of the carbonyl 

absorbances. 

 The asynchronous spectra, Fig. 9, show a double positive (1725, 1735 cm-1) and a 

double negative cross peak (1735,1725 cm-1) and 4 to 5 smaller peaks as a two way pattern 

reflecting the decrease in intensity of the higher wavelength band as the lower wavelength 

band intensity increases. The smaller peaks reflect changes in the breadth of the peak with 

crystallinity.  The angel pattern and the two way pattern are all characteristic of a two 

component band, amorphous and crystalline, buth changing intensities in opposite directions. 
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This is in complete agreement with the changes observed In the TA-FTIR study of the 

changes to the carbonyl band on crystallization and melting of PCL. 

   

 
 
Fig. 8. Two- Dimensional Synchronous Correlation Intensity Contour Map of the 
Carbonyl Absorption Band in Region 1800-1650 cm-1  on crystallization at 47 oC 

 
 
ACCEPTED M

ANUSCRIP
T



 
 

Fig. 9. Two Dimensional Asynchronous Correlation Map of the Carbonyl Absorption 
Band in Region 1800-1650 cm-1 on crystallizing at 47 oC. 

 
 

 

5. Conclusions. 

 The carbonyl absorption band has a maximum absorption in the amorphous 

regions at 1735 cm-1 and at 1724 cm-1 in crystalline material, such that on crystallization the 

intensity  of the higher wavenumber band decreases and is progressively shifted to lower 

wavenumber.  These changes makes the ratio of the two carbonyl absorption bands a 
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convenient method of measuring the fractional crystallinity of PCL but is dependent on the 

temperature of measurement..  
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Fig. 4 Change in carbonyl absorption band on cooling from 70 to 30 °C.gr4 
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Fig. 7 Changes in FTIR spectrum on cooling from 70 to 30 °C–900 to 1500 cm−1.gr7 

Fig. 8 Two- Dimensional Synchronous Correlation Intensity Contour Map of the Carbonyl 
Absorption Band in Region 1800–1650 cm−1 on crystallization at 47 °C.gr8 

Fig. 9 Two Dimensional Asynchronous Correlation Map of the Carbonyl Absorption Band in 
Region 1800–1650 cm−1 on crystallizing at 47 °C.gr9 
 
 

Table 1.  Absorbance of Crystalline and Amorphous Band. 
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Crystallization 

Temperature       

o C 

Crystalline 

Absorbance    

Ac,o 

Amorphous 

Absorbance     

Aa,o 

Degree of Fit    

R2 

Fractional 

Crystallinity 

Range 

43.0 0.948 0.737 0.996 0 -  0.49 

44.0 1.057 0.765 0.998 0 -  0.43 

45.0 0.968 0.508 0.997 0 -  0.55 

46.0 1.472 0.784 0.996 0  - 0.40 

47.0 1.366 0.949 1.00 0  - 0.35 

 
Table 2. – Molecular assignment of the characteristic IR bands of PCL.[14] 

Wavenumber /cm-1 Vibrational Assignment  Intensity  Comments 

    2960     2945     
2900    2865 

Asymmetric Stretching 
of  >CH2 Symmetric 
Stretching of  >CH2 

    w sh        m     
w     m 

Crystalline 
Amorphous 
Crystalline 
Amorphous  

     1735      1725 >C=O Stretching      S      s Amorphous 
Crystalline 

     1470      1458  >CH2 Bending      Vw      vw Gauche Trans 

     1415,1395,1370      
1385      

>CH2 Wagging      W      w Trans Gauche 

     1295      1275      
1245      1235  

Asymmetric Stretching 
of OC-O-Symmetric 
Stretching of C-O-C 
Symmetric Stretching of 
C-O-C 

     w     m     w     
w 

Gauche Trans 
Gauche Trans 

     1193     1163      
1107      1066      
1047  

>CH2 Deformation 
>CH2 Deformation 

    w    w    w Crystalline, trans 
GaucheNo change 
No changeNo 
change 
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      960      940      
960        

C-O-C      w     w     w TransTransGauche 

 
Fig. 1 
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