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Abstract 
 

Amorphous hydrogen separation membranes are under development because of their 
resistance to hydrogen embrittlement, improved mechanical properties, resistance to 
corrosion and most importantly lower intrinsic cost. The Closed Field Unbalanced Magnetron 
Sputter Ion Plating (CFUBMSIP) is a versatile technique for deposition of high quality thin-
films of almost any composition, while enabling the control of film size, thickness and shape. 
In this work, it was demonstrated that thin-films (~ 3-6 microns) of amorphous Zr40.5Ni59.5, 
Zr54Cu46 and Zr30Cu57.5Y12.5 could be deposited onto glass substrates by the CFUBMSIP 
technique. XRD measurements only showed one broad peak for each alloy, with a peak 
centred between 36 and 42° 2θ, indicating that the films were amorphous. Surface analysis by 
SEM and confocal microscopy suggest deposition of continuous films. The thermal stability 
of the films appears to be mainly governed by the alloying elements and their compositions. 
However, the measured activation energies indicated that the nucleation and growth 
mechanism in the magnetron sputtered films may be different from that reported for melt-
spun amorphous alloys with similar compositions.  
 
Keywords: Hydrogen Purification, metallic membranes, amorphous alloys, thin films, Zr-
based alloys, magnetron sputtering  
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1- Introduction  

Palladium and Pd alloy membranes are currently used for hydrogen purification [1]. 

However, the cost of Pd membranes is considered to be prohibitively expensive for large–

scale hydrogen purification applications [2]. The cost of Pd membranes in combination with 

their susceptibility to hydrogen embrittlement [3] and susceptibility to surface poisoning by 

impurity gases such as CO2, CO and H2S [4,5] has motivated the investigation of alternative 

materials for hydrogen separation membranes. The use of amorphous materials for hydrogen 

separation membrane can address several problems associated with the use of crystalline 

materials such as hydrogen embrittlement and high cost [6]. Some of the amorphous 

zirconium-based membranes, and in particular Zr36Ni64, Zr54Cu46, and Zr30Cu60Y10 alloys, 

have been shown by computational [7,8] and experimental studies [9,10] to have hydrogen 

permeability values close to that of Pd.  

Amorphous metal membranes can be produced by melt spinning, whereby molten 

metal is rapidly quenched onto a spinning copper wheel resulting in a metal ribbon in which 

non-equilibrium microstructures can effectively be captured [11]. Numerous examples of 

amorphous ribbons, such as Zr54Cu46 (30–40 µm thickness) [12] and ternary Ni-Nb-Zr films 

[13,14] were fabricated by melt spinning for hydrogen separation membranes. However, this 

technique imposes certain restrictions on possible alloy compositions, as incorporation of 

higher melting point elements may exceed the upper temperature limit that can be 

experimentally achieved [8]. In addition, precise control of the shape and size of the melt 

spun ribbons is difficult. Maintaining a uniform ribbon thickness with desired materials 

properties depend on the strict control of the process parameters, such as flow of molten 

metal and solidification rate [15]. The morphology of the output ribbon also strongly depends 

on the ribbon solidification time [15]. 
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Alternatively, a physical vapour deposition (PVD) method can be used, as reported for 

the fabrication of amorphous Zr–Ni [16] and Zr–Cu [17,18] thin films. PVD techniques, such 

as magnetron sputtering, may allow the rapid and convenient production of an amorphous 

membrane over a wider compositional range (compared to melt spinning), while enabling 

good control of the film size, shape, and thickness. The Closed Field Unbalanced Magnetron 

Sputter Ion Plating (CFUBMSIP) uses a high density of low energy bombarding ions for 

production of very dense films with relatively low internal stresses [19]. In addition, the use 

of low bias voltage on the work piece allows the deposition of films at a low temperature, 

which could be beneficial when attempting to produce amorphous alloys. This work will 

investigate the possibility of using this particular type of magnetron sputtering, (CFUMSIP) 

[19], to fabricate thin amorphous films of Zr36Ni64, Zr54Cu46, and Zr30Cu60Y10 alloys, due to 

their comparable hydrogen permeability to Pd [7,8,9,10]. Structure, composition, surface 

morphology and thermal stability of the alloys will be assessed. 

 

2- Materials and method 

Zirconium, copper, nickel and yttrium sputtering targets (99.9 % purity) were obtained 

from Teer Coatings Ltd. Films with varying thicknesses were deposited onto 76 × 26 mm 

glass microscope slides (Thermo Scientific) by the Closed Field Unbalanced Magnetron 

Sputter Ion Plating (UPD 350-4), and were then peeled off, as shown in Figure 1.(These films 

would require support in order to be used as hydrogen separation membranes.) The optimum 

sputtering conditions to produce the desired Zr36Ni64, Zr54Cu46 and Zr30Cu60Y10 amorphous 

films, were obtained via a series of 10 minute test coatings in which the Zr target current was 

varied, and the other sputtering parameters were fixed. The final sputtering conditions for 

each film deposition is given in Table 1. Relatively low target currents were selected, which 

seemed to be necessary to avoid crystallisation. The sputtering chamber was evacuated to 
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approximately 10-6 mbar prior to the depositions and refilled to ~ 2.5×10-3 mbar with 

continuous flow (25 ml/min) of ultra–high purity argon during the deposition runs. A bias 

voltage of 50 volts was applied to each magnetron during deposition runs. Final samples were 

deposited using pulsed DC, with a constant target to substrate distance and a sample rotation 

speed of 5 rpm, for approximately 3 h (18 runs of 10 minutes each). The cooling period 

between each run was designed to avoid sample overheating and possible crystallisation 

during the deposition process.  

X-Ray Diffraction (XRD) measurements of the films were performed using a Bruker 

D8-Advanced diffractometer with monochromatic CuKα radiation (λ = 1.54056 Å). The 

surface morphology and atomic compositions were analysed by a Joel 6060 Scanning 

Electron Microscope (SEM) equipped with an INCA 300 Energy Dispersive Spectrometer 

(EDS). The surface roughness and films thicknesses were examined using an Olympus LEXT 

OLS 3100 mounted on a TableStable anti-vibration mounting. The system uses a 408 nm 

Class II ultraviolet laser source and has a planar resolution (X and Y) of 120 nm and a spatial 

pattern (Z resolution) of 10 nm. A part of the glass substrate was masked by Kapton tape, 

which was removed after the deposition, allowing step height film measurements.  

Differential Scanning Calorimetry (DSC) measurements were performed on films that 

had been peeled-off of their glass substrates, under 3 bar Ar (flowing at 100 ml min-1) using a 

Netzsch DSC204HP system at heating rates of 2, 5, 10, 15, and 20 °C min-1.  

 

3- Results and discussion 

3.1 Structural and compositional characterisation 

The X-ray diffraction patterns of Zr-based alloys after deposition are given in Figure 2. 

Zr–Ni, and Zr–Cu–Y alloys show common characteristic of amorphous materials with a 

broad XRD peak between 30–50º. A similar broad peak can be also observed for the Zr–Cu 
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alloy, with splits in the peak possibly suggesting some phase segregation or the formation of a 

small amount of nano-crystalline phase (Figure 1b). Similarly, broad XRD peaks at around 

2� = 40º were also observed for Zr36Ni64 and Zr54Cu46 alloys fabricated by melt spinning 

[12,9]. Hence, the XRD patterns in Figure 1 indicate that it is possible to fabricate amorphous 

and nano–crystalline thin–film membranes of Zr–Ni, Zr–Cu, and Zr–Cu–Y by magnetron 

sputtering once deposition conditions are accurately defined to avoid crystallisation.   

Atomic compositions of the samples were analysed by EDS, averaging various (at least 

three readings) area scans (>100 µm2) and the results are listed in Table 1. The compositions 

obtained by the EDS analyses are close to the intended compositions, although further 

optimisations in the deposition conditions may be required to achieve the target composition 

particularly for the Zr–Ni alloy. The fabrication of amorphous Zr–Ni alloys (with varying 

compositions) by magnetron sputtering was previously reported by Coulter and Driscoll [16]. 

EDS analysis of the deposited samples (Table 1) also suggests that good control of the thin–

film composition can be achieved by precise control of the alloying elements deposition rate.  

3.2 Surface morphology 

The surface topographies of the magnetron sputtered alloys are shown in Figure 3a–c. 

SEM images suggest deposition of continuous films for all the sputtered samples. A common 

feature, which can be observed from the SEM images, is the formation of bubble–like 

structures on the film surface, with diameters of 1–4 µm. This may have occurred as a result 

of local loss of film adhesion to the substrate and relaxation of film deposition stresses. 

Further analyses of the 3–D images obtained by confocal laser microscope and their 

respective line–profiles also confirmed the formation of the bubble–like structures. However, 

the line–profiles roughness increases from Zr40.5Ni59.5 to Zr30Cu57.5Y12.5 alloy, which 

corresponds to the density of the bubble–like structures on the surface. This was also in 

accordance to an increase in the ease of removing the films from the substrate. Also, a few 
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surface pores could be observed, particularly in the Zr54Cu64 and Zr30Cu57.5Y12.5 films. 

Nevertheless, their approximate pore depths, which are 0.7 and 0.8 micron for Zr54Cu64 and 

Zr30Cu57.5Y12.5 films respectively, are smaller than the overall thickness of the films (Table 1). 

All the films were also light-tight when visually inspected against a light source. However, 

the absence of pin-holes and the hydrogen selectivity of these films, should also be verified 

by applying a pressure differential across the films; this will be the subject of future work. 

3.3 Thermal stability 

The crystallisation behaviour of amorphous Zr40.5Ni59.5, Zr54Cu64 and Zr30Cu57.5Y12.5 

alloys are shown by the DSC traces in Figure 4a–c. Crystallisation involves nucleation and 

growth processes which can be related to the onset and peak temperatures of crystallisation, 

respectively [14].  The DSC data for Zr40.5Ni59.5 (Figure 3a) shows a peak temperature at 467 

°C, lower than the reported crystallisation temperatures for Zr36Ni64 (around 550 ºC) [9,14]. 

The lower crystallisation temperature observed in the present work may be due to the internal 

stress in the thin film structure and an increased Zr content of this alloy, both of which have a 

known effect in lowering the thermal stability [14,16,20]. In addition, whilst DSC traces of 

melt–spun Zr36Ni64 showed a primary and secondary exothermic peak [14], the DSC for 

Zr40.5Ni59.5 (Figure 3a) of the present work shows a single exothermic peak which may 

correspond to a different crystallisation mechanism/path in the deposited and melt spun 

alloys. Crystallisation of Zr54Cu46 (Fig. 3b) shows a peak temperature at 462 ºC, which is 

comparable to the previously reported crystallisation temperatures [12,21,22]. A 

crystallisation peak temperature of 474 ºC was observed for Zr30Cu57.5Y12.5 (Fig. 3c), 

somewhat higher than the 462 ºC for Zr54Cu46. In addition, all the samples show a single–step 

crystallisation within the studied temperature range. Density Functional Theory (DFT) 

calculations suggested [7] comparable hydrogen permeability values for amorphous 
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Zr30Cu60Y10 and pure Pd at temperatures above 300 ºC. Therefore, the flexibility of the 

CFUMSIP technique in producing Zr–Cu–Y alloys with a wide range of compositions may 

make these alloys of interest for further experimental investigation as hydrogen separation 

membranes.  

Activation energies, Ea, for amorphous–crystalline transitions can be obtained by 

assuming that the rate factor of transformation obeys an Arrhenius equation [21]. The 

Kissinger method [24] allows the activation energy to be calculated by carrying out DSC 

measurements at different heating rates, β and use of Eqn.1,  

\begin{equation} 

\frac{dln\left(\frac{\beta}{T_{max}^2}\right)}{d\left(\frac{1}{T_{max}}\right)}=-\frac{E_a}{R} 

\end{equation} 

where Tmax is the DSC peak temperature for growth and DSC onset temperature for 

nucleation (Supporting Information, Tables S1 and S2 ). Figure 4a–c shows activation 

energies for crystallisation (nucleation and growth) of the alloys studied here (also listed in 

Table 1). The nucleation activation energies of the Zr40.5Ni59.5 and Zr54Cu64 alloys are higher 

than their growth activation energies implying that the nucleation process is more difficult 

than the growth process. However, the reverse seems to apply in the case of Zr30Cu57.5Y12.5 

due to its higher growth activation energy when compared to its nucleation activation energy. 

In addition, activation energies for nucleation and growth of Zr54Cu46 and Zr30Cu57.5Y12.5 

alloys are higher than the activation energies obtained for Zr40.5Ni59.5 in Figure 4a-c.  

The activation energies for nucleation and growth of Zr40.5Ni59.5 alloy in Fig. 4c are lower 

than the reported activation energies of nucleation (374.1 kJ/mol) and growth (373.5 kJ/mol) 

of the melt-spun Zr36Ni64 alloy obtained by isothermal and non-isothermal methods [14]. On 

the other hand, the growth activation energy of 395.5 kJ/mol for the Zr54Cu46 (Fig. 4b) is 

higher than the reported growth activation energy of ~ 360 kJ/mol for a melt-spun sample 
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calculated by the Kissinger method [21]. The difference in activation energy between the 

alloys fabricated by melt spinning and magnetron sputtering may originate from the different 

degrees of amorphicity and crystallisation mechanism in these alloys.  

Also, in section 3.2, a higher density of bubble–like structure as a result of poor film–

substrate adhesion and an increase in internal stress in the thin film structure for 

Zr30Cu57.5Y12.5 was observed when compared to Zr54Cu64. A non-uniform stress distribution in 

the Zr30Cu57.5Y12.5 alloy may provide high-energy sites that encourage nucleation. However, 

the comparable growth activation energies for both Zr30Cu57.5Y12.5 and Zr54Cu64 may suggest 

that the growth mechanism in Zr30Cu57.5Y12.5 is somehow influenced by Y addition. It has 

been suggested that thermal stability in amorphous alloys, is governed by geometrical and 

electronic effects [6]. For example, atomic size mismatch when Zr was partially substituted 

by Nb in Zr36Ni64 alloy, disrupted the alloy crystallisation path [6]. Here, incorporation of Y 

in the Zr30Cu57.5Y12.5 increases the atomic size mismatch (atomic radius (nm): Y=0.1802, 

Zr=0.1603 and, Cu=0.1278). This could inhibit the long-range atomic diffusion required for 

Zr30Cu57.5Y12.5 growth. 

Although the thermal stability of these alloys appears to be mainly governed by the alloying 

elements and their compositions, the nucleation and growth mechanism in the magnetron 

sputtered thin films may be different from similar alloys fabricated by melt spinning 

 

4- Conclusions 

The feasibility of fabricating Zr–based amorphous thin–films by the CFUMSIP 

technique, for possible application as hydrogen separation membranes, was investigated. 

Structural (XRD) and compositional analysis showed that amorphous Zr40.5Ni59.5, Zr54Cu46 

and Zr30Cu57.5Y12.5 alloys were formed. All the films were continuous and of low pinhole 

density; but surface roughness was shown to be lowest in Zr40.5Ni59.5 and highest in 
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Zr30Cu57.5Y12.5 as a result of the local loss of film– substrate adhesion and stresses. The 

thermal stability of Zr40.5Ni59.5 was shown to be lower than melt–spun Zr36Ni64 alloy probably 

because of its higher Zr content. Nevertheless, the thermal stability of Zr54Cu46 was 

comparable to the reported values for the melt-spun alloy with a similar composition. The 

difference in the reported activation energy for the alloys fabricated by melt spinning and the 

calculated activation energy for the alloys fabricated by (CFUMSIP) technique may be 

related to different degrees of amorphicity and crystallisation mechanisms. Although thermal 

stability appears to be relatively unaffected by the fabrication method, the nucleation and 

growth mechanism in the sputtered thin-films of the alloys studied here may differ from that 

in corresponding melt-spun alloys.   
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Figure1: Magnetron sputtered thin film peeled off the glass substrate.   
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Figure 2: XRD diffraction patterns of as fabricated (a) Zr–Ni, (b) Zr–Cu (c) Zr–Cu–Y alloys 
by magnetron sputtering.  
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Figure 3: SEM image of the surface topography of as deposited (a) Zr40.5Ni59.5, (b) Zr54Cu46 
and (c) Zr30Cu57.5Y12.5 alloys. The corresponding confocal laser microscope image and line-
profile for each sample is shown underneath.   
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Figure 4: DSC traces for crystallisation of (a) Zr40.5Ni59.5, (b) Zr54Cu46 and (c) Zr30Cu57.5Y12.5 
alloys under 3 bar Ar with a heating rate of 5 ºC min-1.  
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Figure 5: Activation energies for nucleation and growth of (a) Zr30Cu57.5Y12.5, (b) Zr54Cu46 
and (c) Zr40.5Ni59.5 alloys, using the Kissinger method with heating rates of 2, 5, 10, 15, and 
20 ºC min-1. 
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Tables 

 

Table 1: Sputtering conditions and compositional analyses of the alloys fabricated by 
magnetron sputtering. The film thicknesses and the activation energies for nucleation and 
growth (see Fig. 5) of each sample are also listed.   

 

 

alloy Target current (A) EDS (at.%) Film 
thickness 
(µm) 

Ea (kJ/mol) 

Zr Cu Y Ni Nucleation Growth 

Zr54Cu46 1.42 0.5 - - Zr54Cu46 5.7 418.7±5.3 395.9±4.3 

Zr30Cu60Y10 1.25 0.8 0.5 - Zr30Cu57.5Y12.5 5.9 347.2±5.8 415.5±4.5 

Zr36Ni64 0.76 - - 0.5 Zr40.5Ni59.5 3.5 287.1±3.3 234.5±0.5 
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Highlights 

• Thin-film (~ 3-6 microns) amorphous Zr–Ni, Zr–Cu and Zr–Cu–Y alloys for hydrogen 

separation membranes were successfully fabricated by the Closed Field Unbalanced 

Magnetron Sputter Ion Plating (CFUBMSIP) technique.  

• Surface analyses showed deposition of dense and continuous films.  

• Thermal stability of these alloys seems to be relatively unaffected by the fabrication 

method.  

• The measured activation energies suggest the possibility for different nucleation and 

growth mechanism in the magnetron sputtered thin films when compared to the 

corresponding melt-spinning samples.  

 

 


