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Integrative physiological and behavioral responses to sudden cold-water immersion are similar in 
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Abstract 

We examined the initial physiological responses and subsequent capacity to swim following 

cold-water immersion. An ecologically-valid model was used whereby immersion was 

sudden (<2 s) and participants had to actively remain afloat. Participants (15 skilled 

swimmers, 17 less-skilled) undertook four experimental test sessions: A physiological test 

and a swimming test in both cold (10 °C) and temperate (27 °C) water in a swimming flume 

(temperature order counter-balanced). For physiological testing, measures of brain perfusion 

[flow velocity (MCAv, Doppler) and oxygenation (NIRS)] and cardiorespiratory function 

[ventilation parameters and end-tidal PCO2 (PETCO2)] were recorded while treading water for 

150 s. The swimming test involved treading water (150 s) before swimming at 60% (up to 

120 s) and 90% (to intolerance) of pre-determined maximum velocity. Multifactorial analysis 

revealed swimming duration was influenced most heavily by water temperature, followed by 

respiratory variables and MCAv in the first 30 s of immersion. The time course and severity 

of cold shock was similar in both groups (p=0.99), in terms of initial physiological changes 

(MCAv down ~20 ± 11%, respiratory frequency increased to 58 ± 18 breaths.min-1, PETCO2 

dropped to 12 ± 9 mmHg). Treading water following cold-water immersion increased MCAv 

by 30% above resting values despite maintained cold-shock-induced hyperventilation. In 

comparison to temperate water, swimming capacity was also reduced similarly between 

groups in the cold (i.e., distance decreased by 34 ± 26% skilled; 41 ± 33% less-skilled, 

p=0.99). These integrative findings verify that sudden cold-water immersion followed by 

physical activity leads to similar physiological responses in humans when contrasting 

between skilled and less-skilled swimmers. 

Keywords: cold shock; drowning; hyperventilation; survival; treading water 
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1. Introduction 

Drowning is responsible for at least 388,000 accidental deaths worldwide per year 

[1], many of which are associated with sudden cold-water immersion (CWI). When humans 

are immersed suddenly in cold water up to their neck they typically exhibit a set of 

physiological responses commonly referred to as the cold-shock response [2], characterised 

by an inspiratory gasp and 1-3 min of hyperventilation and tachycardia. The usual 

experimental protocol for investigating cold shock involves lowering a seated participant into 

cold water with a mechanical winch [e.g., 3, 4, 5]. While this immersion technique affords 

experimental control in a laboratory setting it may not be representative of many aquatic 

emergency situations - where the immersion is sudden and actively treading water may be 

the only option to stay afloat (i.e., <2 s vs. controlled immersions in ~28 s [3]).Thus, despite 

there being a substantial amount of research on CWI, much has utilised a slow, staged 

immersion protocol, and few studies have included treading water and thereby considered its 

potential effect on the physiological responses and subsequent behavior. In one exception to 

this trend, Golden & Tipton [6] found that dynamic immersions over-rode or masked the 

adaptive benefits gained from repeated static immersions in cold water. Hence, there is 

some evidence that dynamic immersions have the capacity to alter how humans respond to 

sudden CWI.  

An important, yet less examined element of cold shock is the effect that 

hyperventilation-induced hypocapnia has on cerebral perfusion and how this may affect 

behavior. Mantoni et al. [5] reported that cerebral blood flow dropped by 43% following a 30-

s immersion in 0 °C ice water and resulted in symptoms of imminent syncope (i.e., 

drowsiness, blurred vision, loss of responsiveness) for those with the greatest drop (>60%), 

likely as a consequence of the severe cerebral hypoperfusion [7]. While Datta and Tipton [8] 

have also reported reduced cerebral blood flow (CBF) during 12 °C water immersion (CBF 

down 25%), no study to date has included physical activity (e.g., treading water) during the 

cold-water immersion or examined the initial response (i.e., <60 s) during realistic sudden 
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immersion conditions. Given that moderate intensity exercise increases CBF by 10-20% [9], 

it seems likely that the action of treading water while immersed will influence CBF, via 

exercise-induced increases in neural activity as well as the concomitant increases in cardiac 

output and arterial blood pressure. Therefore, the physiological response experienced while 

actively staying afloat may well differ to that reported to date from passive, slow-onset 

immersions [6].  

Previous work has considered how cold shock can be reduced in humans via staged 

entry into the water [10], mental preparation [3], and habituation [4]. Whilst it is known that 

individual variation exists in the extent of cold-shock response [11], the factors influencing 

this variation are still unclear. For example, it is possible that the cold-shock reflex and 

swimming skill level are interrelated. Skilled swimmers may have already developed partial 

habituation to cold-water immersion, thereby resulting in a less severe response than less-

experienced swimmers [12, 13]. Relatedly, experience of cold shock amongst surf swimmers 

in comparison to swimmers without surf experience contributes to better swimming 

performance in surf conditions [14]. Furthermore, skilled swimmers should be able to support 

themselves in the water more effectively (and efficiently) than less-skilled swimmers [15], 

and hence exhibit a relatively lower ventilation rate during the first few minutes of immersion.  

Further verification of whether swimming skill can influence the severity and duration of cold 

shock upon CWI is required. 

The present study was developed to extend the ecological validity of previous work 

concerning cold shock. The testing protocol was devised to examine the initial physiological 

responses following immersion and subsequent swimming capacity whilst participants were 

required to actively float (i.e., tread water) and then swim rather than being supported 

passively in the water. It was of particular interest to determine if the cold-shock response 

was influenced by swimming skill. We predicted that the severity and duration of cold shock 

may be less in skilled swimmers compared to less-skilled swimmers, due to prior partial 

habituation over time. We also predicted that the typical decrease in CBF velocity associated 

with static cold-water immersion would be less pronounced whilst participants tread water. 
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This was an exploratory, multidisciplinary study and as such our testing procedure focussed 

initially upon the physiological responses to sudden cold-water immersion (1st day) followed 

by subsequent swimming capacity (2nd day). 

 

2. Material and methods 

2.1 Participants 

Thirty eight participants aged between 18 and 45 years were recruited through 

advertisements placed on notice boards around the participating institution, at local 

aquatics/leisure clubs and via a web-based job recruitment facility. Informed consent was 

obtained prior to any testing. Participants were excluded if they failed a health and fitness-

screening questionnaire (PAR-Q) to demonstrate their competency to carry out the physical 

tests. Individuals with prior experience of lifesaving or water survival techniques were also 

excluded. Part of the testing involved wearing a facemask which needed to remain dry, so if 

participants were unable to tread water or float sufficiently well to keep their head above 

water for at least 30 s, they were also excluded from the study. Based on these criteria, 6 

participants were excluded. The swimming skill of the remaining 32 participants was 

determined by measuring maximal swimming speed, and the duration of a 200-m swim 

performed at a self-selected speed (Table 1). If participants completed the 200-m swim in 

under 300 s they were assigned to the skilled group (N=17, 7 males and 10 females); if they 

were unable to swim 200 m or they required longer than 300 s to complete the distance they 

were assigned to the less-skilled group (N=15, 9 males and 6 females). The 300 s time-limit 

was determined based on pilot work identifying it as a reliable criterion that distinguished 

between recreational and competitive swimmers. The participants in the two groups were 

well matched in terms of physical and anthropometric characteristics (Table 1).  
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Table 1: Group means and standard deviations of participant characteristics and swimming 
skill measures for each group. Swim duration refers to the initial 200 m assessment which 
some of the less-skilled group did not complete (hence the duration is less in this group). 

 Less-skilled (n=15) Skilled (n=17) Total (n=32) 

Age (y) 22.8 ±5.5 22.7 ±6.9 22.8 ±6.2 

Height (m) 171.4 ±6.0 172.6 ±7.1 172.0 ±6.5 

Mass (kg) 72.9 ±11.2 70.2 ±9.3 71.5 ±10.2 

Skeletal Muscle Mass (kg) 33.6 ±6.8 32.0 ±5.5 32.8 ±6.1 

Fat Mass (kg) 14.0 ±7.4 13.0 ±5.8 13.5 ±6.6 

Swim duration (s) 227 ±163 255 ±32 242 ±113 

Max. swim speed (m.s-1) 1.0 ±0.3 1.4 ±0.4 1.2 ±0.4 

 

2.2 Equipment 

All testing sessions occurred in a swimming flume (StreamLiNZ, Invercargill, New Zealand). 

This flume is a 10-m long x 2.5-m wide channel through which the flow and temperature of 

water can be manipulated. Participants wore a full body harness (Delta™ Repel™ 

Technology Riggers Harness, Capital Safety, Red Wing, MN) so they could be lowered 

rapidly into the water using a compressed-air powered hydraulic winch. The lightweight 

harness (<1 kg) did not interfere with arm or leg movements in the water. The rate of 

descent was fixed for all participants and took 1-2 s from the start of immersion to full 

immersion up to neck level. Once in the water the winch rope was slack so that they were 

unsupported. Following each testing session, or in the potential case of an emergency, it 

was also possible to remove participants rapidly from the water using the winch.  
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A 2-MHz Doppler ultrasound system (DWL Doppler, Compumedics, Germany) was used to 

measure blood flow velocity through the middle cerebral artery (MCAv; which supplies ~80% 

of total brain blood flow). The flow signal was obtained and refined using search techniques 

described elsewhere [16, 17] before the Doppler probe was maintained in position, at a fixed 

angle, within a commercially-available fixation headframe (Marc 600; Spencer Technologies, 

USA). Prefrontal cortical oxygenation was measured noninvasively using near-infrared 

spectroscopy (NIRS; NIRO-200, Hamamatsu Photonics, Hamamatsu, Japan). A probe 

holder containing an emission and detection probe 5 cm apart was attached at the right side 

of the forehead using cloth tape (which also assisted with exclusion of light contamination). 

The methodology of this system has been described previously [18, 19]. All data from the 

ultrasound and spectrophotometer were recorded using LabChart®software (Version 7.0, 

ADInstruments, Dunedin, NZ). 

Respiratory flow profiles, breathing rate and minute ventilation, rates of oxygen 

usage and carbon dioxide (CO2) production, and end-tidal CO2 partial pressure (PETCO2) 

were measured using a MetaLyzer 3B gas analysis system (Cortex, Leipzig, Germany).  

 

2.3 Procedure 

The following procedures were approved by the participating institution’s human ethics 

committee. All participants completed five testing sessions: one familiarization session (27 

°C), two physiological tests and two swim capacity tests. One of the physiological tests and 

one of the swim tests was in cold water (10 °C) while the other two were in temperate water 

(27 °C). The presentation order was counter-balanced for temperature condition (cold and 

temperate) amongst participants. The physiology tests were carried out before the swim 

capacity tests to avoid potential adaptation of the initial cold-shock response in the 

physiological measures due to prior/recent immersion (and based on our assumption that 

cardiorespiratory responses to CWI were driving behavioral responses more than vice 

versa). 
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Participants’ initial visit required them to complete and pass all screening criteria, 

complete an assessment of their swimming ability, as well as familiarizing them with 

equipment and testing protocols. During this initial visit, height and body mass were 

measured and body composition was estimated using multi-frequency electrical 

bioimpedance (InBody 230, Biospace Ltd, CA). Participants were then required to 

demonstrate that they could tread water with their head above the surface for at least 30 s 

whilst watching a video (described below). After a brief rest they were then asked to 

complete a self-paced 200-m swim or to swim as far as possible for those not able to swim 

200 m. After a brief rest, each participant’s maximum swimming speed (Vmax) was estimated 

by timing a 5-m sprint swim against a 0.5 m·s-1 current. A 10-s maximal swim at the 

estimated speed was used to fine-tune Vmax. Participants then swam at 60% of this maximal 

speed for 120 s, as was required for the swimming capacity tests. During the course of 

familiarization testing they also practiced using Borg’s 14-point perceived exertion scale 

(RPE) [20]. 

 

2.3.1 Physiological test 

Participants sat in a chair wearing their swimming costume and a bathrobe while the 

ventilatory and brain blood flow equipment was attached and adjusted. They were instructed 

to remain still while 4 min of baseline measures were recorded. After baseline testing they 

took off the dressing gown, were fitted with the harness and suspended above the water (~5 

s), before being dropped rapidly into the water on the hydraulic winch. They then proceeded 

to tread water unsupported for 150 s or until they asked to be removed early due to 

intolerance. Once out of the water they were seated again for resting measurements for 1 

min.  
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2.3.2 Swimming capacity test 

On another day, at the same time of day as the physiological test, participants returned to 

the flume for the swimming capacity test. After the baseline measures were obtained, 

participants were lowered rapidly into the water 2 m in front of a large screen which hung just 

above the water surface. While treading water they watched a 150 s video of being swept 

down a river from a first-person perspective, ensuring they maintained their position in the 

water with their head above the water line. After the video, participants then swam unaided 

for 120 s or as long as they could against a current of 60% of their pre-determined Vmax 

towards an expanding object (i.e., boat) projected onto the large screen. Finally, they swam 

for as long as they could manage at 90% of Vmax. The flume was set at these relative speed 

values to control for likely differences in fitness between the groups [21], however we 

acknowledge that prescribing swimming speed in this manner (akin to running on a treadmill) 

is not representative of most survival situations. Overall, the duration of the swimming test 

lasted up to approximately 6 mins if participants did not ask to be removed from the water 

earlier due to intolerance. 

2.4 Data Analysis 

All data were checked manually by four investigators independently, for problems due to 

equipment malfunction or erroneous signals, and such sections were removed following 

discussion and comparison with related data. For example, due to likely leakages during gas 

expiration the VO2 data were not considered sufficiently valid for further analysis. A 5-s 

moving average was applied to the remaining data and various discrete values were 

identified (unless noted we were interested only in values during the immersion): Maximum 

respiratory frequency (RFmax) during the first 30 s; Minimum end-tidal PETCO2 during the 

first 30 s; Minimum MCAv during the first 30 s relative to resting baseline; Mean prefrontal 

cerebral total oxygenation index (BrTOI) during the last 30 s relative to resting baseline; 

Ratings of perceived exertion during treading water; Total distance and duration of swims in 

swimming capacity tests. 
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High correlation between dependent variables, which was likely in the current data 

set, creates problems with a traditional MANOVA. A statistical technique that is robust to 

colinearity is the ANOVA–simultaneous component analysis (ASCA; [22]) in which the data 

are decomposed into effect matrices containing the level averages for the experimental 

factors and an unexplained residual matrix. The effect matrix is then analyzed using 

Principal Components Analysis (PCA) to extract the systematic variation of the measured 

variables. The following predictor variables were entered into the ASCA: PETCO2, RFmax, 

MCAv, BrTOI, RPE, and Duration. Using the method described by Zwanenburg et al. [23], 

individual observations were projected on the principal component subspace to graphically 

show the variation at levels of each experimental factor (Skill Level and Water Temperature). 

The significance of the effects due to the experimental factors was estimated using p-values 

derived from permutation testing (10,000 permutations). All data were processed using 

custom written scripts in Matlab (Mathworks, Natick, Mass, USA) followed by the ASCA 

Matlab script [24]. On the basis of the multivariate analysis, the time series of selected 

variables (RFmax, PETCO2 and MCAv) were used to compare between groups in eight 30 s 

bins using 2-way GLM ANOVAs. 

 

3. Results 

Discrete values of the dependent variables differed by temperature (p < 0.0001) and by skill 

level (p < 0.0001) but there was no interaction between temperature and skill level (p = 

0.85). Figure 1 shows the score plot (upper) and loadings (lower) for each factor: skill level 

(left) and water temperature (right). ASCA also calculates the contribution of each main 

effect and interaction to total sum of squares variance. Overall, water temperature 

contributed 31% to total variance, skill level contributed 9%, and the remaining variance was 

unexplained by these independent factors. The score plots are a graphical representation of 

the loadings of each variable on the first principal component of the effect matrices. They 
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indicate the relative contribution of each variable in explaining the observed outcome. Hence 

the separation between the water temperature conditions occurred largely through the 

contributions of RFmax and RPE (positive) and PETCO2, Duration, and MCAv (negative). 

Insert Figure 1 about here 

Table 2: Means ± SD for each of the two groups (Less-skilled and Skilled) at each of two 

water temperatures (10 °C and 27 °C). Where, RFmax is the maximum respiratory frequency 

in the first 30 s after immersion; Min PETCO2is the nadir pressure of expired end-tidal carbon 

dioxide; Min MCAv is the nadir blood flow velocity in the middle cerebral artery during the 

first 30 s (as a percentage change relative to baseline, % BL); Mean Br TOI is the change 

in cerebral total oxygenation index (%) in the prefrontal cortex during the last 30 s of the 

immersion from baseline resting measures. Swim duration was the total duration of 

swimming in the behavioral session following 150 s of treading water. 

Group Less-skilled Less-skilled Skilled Skilled 

Water Temp 10 °C 27 °C 10 °C 27 °C 

RFmax (breaths.min-1) 68 ±18  45 ±12 49 ±15 36 ±7 

Min PETCO2 (mm Hg) 11 ±9 32 ±5 14 ±9 32 ±4 

Min MCAv (% BL) -20 ±11 -6 ±10 -18 ±10 -3 ±7 

Mean Br TOI (%) -2.7±3.0 -2.9 ±1.9 -2.4 ±1.9 -1.5 ±2.2 

Swim distance (m) 61 ±28 104 ±38 75 ±29 116 ±22 

Perceived exertion (scale: 6-20) 16 ±2.0 14 ±1.7 14 ±2.5  11 ±2.8 

 

The cardiorespiratory and cerebrovascular responses (i.e., RFmax, PETCO2 and MCAv) to 

the sudden water immersion were more pronounced in the cold compared to the temperate 

water (Figure 2 and Table 2). The time course comparisons are presented in Figure 3. 

Although, at first glance, the less-skilled group appear to exhibit a stronger and more 

persistent cold shock response, there was no main effect of group or interaction between 
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group and time (p’s > 0.05). While the initial response of MCAv to cold-water immersion was 

similar in both groups, by 60 s MCAv had increased above resting levels and was sustained 

15-30% above resting for the duration of treading water (Figure 3).  

Insert Figures 2 and 3 about here 

4. Discussion 

The main findings were: 1) the cold-shock response was a universal feature of sudden cold-

water immersion for skilled and less-skilled swimmers; 2) multifactorial analysis revealed that 

PETCO2, RFmax, and swimming duration were influenced most heavily by water temperature, 

and; 3) after an initial drop in MCAv within the first 30 s of the immersion, MCAv increased 

~30% above resting levels despite maintained hyperventilation-induced hypocapnia.  

 

4.1 Physiological responses to cold-water immersion while treading water 

When suddenly immersed in cold water all participants experienced the cold shock 

physiological response. For example, maximum breathing frequency increased by more 

(approximately 50%) in cold compared to temperate water, and ~400% above resting level. 

This finding confirms indications from earlier research that competent swimmers are also 

susceptible to cold shock [25]. It should be acknowledged that the severity of cold shock 

varied considerably from participant to participant. Hyperventilation was typically most 

pronounced within the first minute of immersion, which would coincide with the fastest rate of 

skin temperature reduction. Directly indicative of hyperventilation, end-tidal PCO2 was 

reduced with initial immersion in water and notably more in the cold water (Figure 2). Both 

groups experienced similar initial responses in the first 30 s of cold-water immersion and this 

was matched with concomitant responses in CBF velocity; specifically, MCAv decreased 

more in the cold water (~20% below baseline) compared to temperate water (~5% 

reduction). This was expected given previous observations of cerebral blood flow velocity 
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during passive cold-water immersion [8] and the strong relation between brain blood flow 

and arterial carbon dioxide pressure [26].  

In contrast to the findings reported to date following passive and seated immersion, 

MCAv increased above baseline levels following the initial drop in MCAv upon immersion. 

Interestingly, this was despite the maintained hypocapnia (see Figure 2) and thus illustrates 

an uncoupling of the normally tight relation between PETCO2 and MCAv [26]. The increased 

MCAv is likely explained by the combined effects of increased cardiac output and mean 

arterial pressure associated with exercise when treading water, since the hydrostatic and 

cold-shock effects would be expected to be the same as previous reports. Thus, engaging in 

some level of physical activity (i.e., treading water) rather than passively floating as 

recommended currently in the HELP posture, may serve to maintain or even elevate 

cerebral blood flow whilst in cold water (thereby potentially preventing a reduction in 

vigilance and eventual loss of consciousness). However, the benefits of such a survival 

strategy must be considered against potentially prolonging the disruption to baseline 

breathing rates and increased convective heat loss in the cold water [27]. Further research 

directly comparing passive and active floatation strategies in cold water is necessary to 

explore whether benefits of maintaining brain blood flow during cold-water immersion applies 

more generally.  

4.2 Swimming capacity in cold water 

Regardless of swimming skill level, participants could not swim for as long in the cold water 

condition (Table 2). On average, swimming distance in the cold water was reduced by 

approximately one third compared to the temperate water. With regards to the less-skilled 

group, some participants in this `novice-like' group were capable of swimming the equivalent 

of at least 2 to 3 lengths of a 25-m pool (at a comfortable self-selected speed in temperate 

water). Perhaps using true novices that were unable to swim a single length would have 

resulted in a bigger and ‘clearer’ effect of swimming proficiency on subsequent capacity; 
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however, we found that some level of swimming competency was necessary for participants 

to satisfy the treading water requirements of testing.  

Participants reported higher perceived exertion in the cold condition (Table 2). It is 

possible that amongst other signs (e.g., increased heart rate, blood pressure) participants 

perceived their rapid breathing as a sign of increased physical demand.  

4.3 Limitations 

Past research concerning the risk of drowning in cold water has been largely epidemiological 

or restricted to relatively slow-onset and passive tank immersions due to the obvious 

logistical and ethical barriers that exist, and different research questions. We set out to 

create a controlled testing environment in which participants could be suddenly immersed 

safely. Hence an air-pressurised hydraulic winch and safety harness worn by the participants 

in combination with an aquatic flume was employed. This laboratory environment enabled us 

to more closely simulate sudden CWI, to control water temperature, and also to modify water 

flow appropriately for the survival swim test. While such features are generally positive 

aspects of the study, participants were fully aware of the various safety precautions taken 

and also partially aware of the likely water temperature before immersion (based upon 

ambient temperature). Given such precautionary measures, one can be reasonably 

confident that the levels of anxiety that we and others [12] have reported in laboratory testing 

were much less than might be expected in actual CWI incidents. Furthermore the swimming 

capacity test represented a tightly constrained simulation in which swimming speed was pre-

determined and imposed upon the participants. In real survival scenarios such restrictions on 

behaviour would not exist and therefore the generality of these results must be considered 

with caution. It should also be acknowledged that the water conditions in our testing 

environment were relatively calm and therefore less problematic for keeping the airway clear 

than might be encountered in open water conditions (e.g., “choppy" ocean or river). However 
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in terms of receiving ethical approval for such a study these were deemed necessary 

limitations in the study.  

Finally, we used transcranial Doppler ultrasound as a surrogate for cerebral blood 

flow. This holds true as long as the insonated artery does not change diameter, which has 

been shown under various stimuli for the MCA [28]. We acknowledge the two (opposing) 

possible stimuli that may have changed the diameter of the MCA in this study; namely, 

potential dilation due to large increases in blood pressure associated with the exercise 

pressor effect of treading water, and a possible constriction due to the direct effect of 

increased sympathetic activation associated with, particularly, the cold-water immersion. 

While modest increases in MAP (up to ~30 mm Hg) result in minimal (<4%) changes in MCA 

diameter (Ref), the latter effect, while still a controversial issue within the literature [29, 30], 

could explain some of the increased velocity we observed without necessarily reflecting an 

increase in flow.  

 

4.4. Conclusions 

In conclusion, this study supports previous evidence that the cold-shock response appears 

to be a universal feature of sudden CWI (regardless of swimming skill). Hyperventilation and 

reduced brain blood flow characterises the first minute of CWI but there appeared to be 

individual variation in the subsequent duration of cold shock. A strong predictor of altered 

swimming capacity (i.e., duration in water tolerated) was heavily influenced by water 

temperature. Moreover, physiological responses obviously linked with cold shock (e.g., 

hyperventilation and thus reduced brain blood flow) were also predictors of behavior. Finally, 

treading water following cold-water immersion increases brain blood flow velocity, despite 

maintained cold-shock-induced hyperventilation.   



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Acknowledgements: Water Safety New Zealand funded this project. This organisation also 

provided advice in the design of the study and criteria for swimming skill level of participants. 

We wish to acknowledge Gooitzen Zwanenburg for his advice regarding implementation and 

interpretation of ASCA. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

References 

1. World.Health.Organization. Drowning factsheet. 2012 6 /12 / 2012 [cited 347; Available 
from: http://www.who.int/mediacentre/factsheets/fs347/en/index.html. 

2. Tipton, M.J., The initial responses to cold-water immersion in man. Clinical science, 1989. 
77(6): p. 581-8. 

3. Barwood, M.J., et al., Breath-hold performance during cold water immersion: effects of 
psychological skills training. Aviat Space Environ Med, 2006. 77(11): p. 1136-42. 

4. Barwood, M.J., et al., Breath-hold time during cold water immersion: effects of habituation 
with psychological training. Aviat Space Environ Med, 2007. 78(11): p. 1029-34. 

5. Mantoni, T., et al., Reduced Cerebral Perfusion on Sudden Immersion in Ice Water: A Possible 
Cause of Drowning. Aviation, Space, and Environmental Medicine, 2007. 78(4): p. 374-376. 

6. Golden, F.S. and M.J. Tipton, Human thermal responses during leg-only exercise in cold 
water. The Journal of physiology, 1987. 391: p. 399-405. 

7. Stewart, J.M., Mechanisms of sympathetic regulation in orthostatic intolerance. Journal of 
Applied Physiology, 2012. 113(10): p. 1659-1668. 

8. Datta, A. and M. Tipton, Respiratory responses to cold water immersion: neural pathways, 
interactions, and clinical consequences awake and asleep. Journal of Applied Physiology, 
2006. 100(6): p. 2057-64. 

9. Ogoh, S. and P.N. Ainslie, Cerebral blood flow during exercise: mechanisms of regulation. 
Journal of Applied Physiology, 2009. 107(5): p. 1370-1380. 

10. Hayward, J.S. and C.D. French, Hyperventilation response to cold water immersion: reduction 
by staged entry. Aviation, space, and environmental medicine, 1989. 60(12): p. 1163-5. 

11. Tipton, M., Cold water immersion: sudden death and prolonged survival. The Lancet, 2003. 
362(Supplement 1): p. s12-s13. 

12. Barwood, M.J., et al., Acute anxiety increases the magnitude of the cold shock response 
before and after habituation. European journal of applied physiology, 2012: p. 1-9. 

13. Button, C., et al., Behavioural analysis of human survival characteristics following sudden 
water immersion, in Our Fatal Attraction: Water Safety New Zealand Annual 
Conference2011: Wellington, New Zealand. 

14. Tipton, M., et al., Swimming performance in surf: the influence of experience. International 
Journal of Sports Medicine, 2008. 29(11): p. 895-8. 

15. von Döbeln, W. and I. Holmér, Body composition, sinking force, and oxygen uptake of man 
treading water. Journal of Applied Physiology, 1974. 37(1): p. 55-9. 

16. Aaslid, R., T.M. Markwalder, and H. Nornes, Non-Invasive Transcranial Doppler Ultrasound 
Recording of Flow Velocity in Basal Cerebral-Arteries. Journal of Neurosurgery, 1982. 57(6): 
p. 769-774. 

17. Willie, C., et al., Utility of transcranial Doppler ultrasound for the integrative assessment of 
cerebrovascular function. Journal of neuroscience methods, 2011. 196(2): p. 221-237. 

18. Al-Rawi, P.G., P. Smielewski, and P.J. Kirkpatrick, Evaluation of a near-infrared spectrometer 
(NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke, 
2001. 32(11): p. 2492-2500. 

19. Nollert, G., et al., Determinants of cerebral oxygenation during cardiac surgery. Circulation, 
1995. 92(9): p. 327-333. 

20. Borg, G., Perceived exertion as an indicator of somatic stress. Scandinavian journal of 
rehabilitation medicine, 1970. 2(2): p. 92. 

21. Ducharme, M.B. and D.S. Lounsbury, Self-rescue swimming in cold water: the latest advice. 
Applied Physiology, Nutrition, and Metabolism, 2007. 32(4): p. 799-807. 

22. Smilde, A.K., et al., ANOVA-simultaneous component analysis (ASCA): a new tool for 
analyzing designed metabolomics data. Bioinformatics, 2005. 21(13): p. 3043-3048. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

23. Zwanenburg, G., et al., ANOVA–principal component analysis and ANOVA–simultaneous 
component analysis: a comparison. Journal of Chemometrics, 2011. 25(10): p. 561-567. 

24. Zwanenburg, G., ASCA.m 2011. 
25. Golden, F.S.C., M.J. Tipton, and R.C. Scott, Immersion, near-drowning and drowning. British 

Journal of Anaesthesia, 1997. 79: p. 214-225. 
26. Ainslie, P.N. and J. Duffin, Integration of cerebrovascular CO2 reactivity and chemoreflex 

control of breathing: mechanisms of regulation, measurement, and interpretation. American 
Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2009. 296(5): p. 
R1473-R1495. 

27. Hayward, J.S., J.D. Eckerson, and M.L. Collis, Effect of behavioral variables on cooling rate of 
man in cold water. Journal of Applied Physiology, 1975. 38(6): p. 1073-1077. 

28. Valdueza, J.M., et al., Changes in blood flow velocity and diameter of the middle cerebral 
artery during hyperventilation: assessment with MR and transcranial Doppler sonography. 
American journal of neuroradiology, 1997. 18(10): p. 1929-1934. 

29. Giller, C.A., et al., Cerebral arterial diameters during changes in blood pressure and carbon 
dioxide during craniotomy. Neurosurgery, 1993. 32(5): p. 737-742. 

30. Van Lieshout, J.J. and N.H. Secher, Point: Counterpoint: Sympathetic activity does/does not 
influence cerebral blood flow. Journal of Applied Physiology, 2008. 105(4): p. 1364-1366. 

 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure captions 

Figure 1: Principal Component (PC) scores plot (upper) and loadings (lower) for factors (Skill 

Level, left and Water Temperature, right). The different symbols indicate the different levels 

of factors (i.e Skill Level, left: downward triangle = skilled; circle = less-skilled; Water 

Temperature, right: upward triangle = cold; square = temperate). Level averages are 

indicated by filled symbols. The ellipses indicate the three standard deviation contours for 

the observations in each level. Loadings of each variable on the first principal component of 

the effect matrices are shown by the bars in the lower plots. The higher the loading score, 

the greater the amount of variance between factors explained by the dependent variable. 

Figure 2: Time series of physiological measures whilst treading water for each group (Less-

skilled – left; Skilled– right). Lines indicate mean values, with the dashed line for 27 °C water 

and the solid line for the 10 °C water. The duration that each participant remained in the 

water differed so the number of participants used to calculate the mean at each time is 

indicated in the plots labeled ‘n’. Immersion occurred at time 0 s and the trial terminated at 

time 150 s (events marked by vertical lines) unless the participant requested an earlier 

termination. All post-test recovery periods are aligned to start at the 150 s line.  

Figure 3: Bar charts of selected physiological measures in the cold water condition by group 

(Less-skilled – open bar; Skilled - shaded bar). Immersion occurred at time 0 s and the trial 

terminated at time 150 s (events marked by vertical lines). 
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Highlights 

 Severity of cold shock while treading water not influenced by swimming skill.  

 Treading water increased brain blood flow despite cold shock-induced hypocapnia. 

 Cold-water swimming capacity was at least one third lower than in temperate water. 


